organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(Adamantan-1-yl)-1,3-bis(4-methylphenyl)propan-2-ol

Eva Babjaková,^a Peter Bartoš^b and Robert Vícha^a*

^aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín, 762 72, Czech Republic, and ^bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic Correspondence e-mail: rvicha@ft.utb.cz

Received 23 November 2012; accepted 12 December 2012

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.094; data-to-parameter ratio = 14.2.

The conformation of the title compound, $C_{27}H_{34}O_{34}$, is stabilized by a weak intramolecular $C-H\cdots\pi$ interaction. The dihedral angle between the benzene rings is $54.79 (4)^{\circ}$. The adamantane cage consists of three fused cyclohexane rings in classical chair conformations, with C-C-C angles in the range 107.75 (10)–111.35 (9) $^{\circ}$. Although the molecule contains a hydroxy group as a conceivable hydrogen-bond donor, this group is sterically hindered by bulky substituents and no hydrogen bonds are observed in the crystal structure.

Related literature

For the preparation of the title compound, see: Vícha et al. (2006). For other examples of sterically shielded carbinols, see: Babjaková et al. (2010); Vícha & Nečas (2010). For the structure of a related molecule which does form a hydrogenbonded dimer in the solid state, see: Vaissermann & Lomas (1997).

Experimental

Crystal data C27H34O

 $M_r = 374.54$

Triclinic, $P1$	
a = 6.4065 (2) Å	
b = 13.1474 (4) Å	
c = 13.3466 (4) Å	
$\alpha = 70.718 \ (3)^{\circ}$	
$\beta = 81.700 \ (3)^{\circ}$	
$\gamma = 80.134 \ (3)^{\circ}$	

Data collection

Agilent Xcalibur (Sapphire2)	6750 measured reflections
diffractometer	3675 independent reflections
Absorption correction: multi-scan	2925 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Agilent, 2011)	$R_{\rm int} = 0.010$
$T_{\min} = 0.996, \ T_{\max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture o
$wR(F^2) = 0.094$	independent and constrained
S = 1.07	refinement
3675 reflections	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
258 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

V = 1040.75 (6) Å³

Mo $K\alpha$ radiation

 $0.50 \times 0.50 \times 0.40 \text{ mm}$

of

 $\mu = 0.07 \text{ mm}^{-1}$ T = 120 K

7 - 2

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C31-C36 ring.

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C12-H12\cdots Cg1$	0.94	2.61	3.3577 (12)	136

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

The financial support of this work by the Internal Founding Agency of Tomas Bata University in Zlin (project No. IGA/ FT/2012/016) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2194).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England
- Babjaková, E., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o2175.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vaissermann, J. & Lomas, J. S. (1997). Acta Cryst. C53, 1341-1343.
- Vícha, R. & Nečas, M. (2010). Acta Cryst. E66, 01626.
- Vícha, R., Nečas, M. & Potáček, M. (2006). Collect. Czech. Chem. Commun. 71, 709–722.

supplementary materials

Acta Cryst. (2013). E69, o108 [doi:10.1107/S1600536812050647]

2-(Adamantan-1-yl)-1,3-bis(4-methylphenyl)propan-2-ol

Eva Babjaková, Peter Bartoš and Robert Vícha

Comment

The title molecule consists of two *p*-methylated benzene rings, the adamantane cage and propane-2-ol backbone to form a strained tertiary alcohol (Fig. 1). Both benzene rings are essentially planar with maximum deviations from their least squares best planes of 0.0013 (14) Å for C16 and 0.0138 (14) Å for C36, respectively. The dihedral angle between these best planes is 54.79 (4)°. The torsion angles C20—C2—C3—C31, C20—C2—C1—C11, C2—C1—C11—C12, C2—C3 —C31—C32 and C21—C20—C2—O2 are -174.97 (10), -129.54 (11), -97.69 (15), 104.62 (14) and 61.95 (12)°, respectively. The conformation of the molecules in the solid state is stabilized by a weak C—H··· π interaction, C12—H12···*Cg*1 (*Cg*1 is the centre of gravity of C31–C36), with a C12–*Cg*1 distance of 3.3576 (12) Å (Fig. 2, Table 1). In contrast to the more strained molecules of di(1-adamantyl)(2,5-diisopropylphenyl)methanol those form H-bonded dimers in the solid state (Vaissermann & Lomas, 1997), no H-bonds were observed in the crystal packing of the title compound. The shortest distance between two adjacent O-atoms is 4.6340 (13) Å (Fig. 2). Some other examples of such sterically shielded carbinols have been previously published (Babjaková *et al.*, 2010; Vícha & Nečas, 2010).

Experimental

The title compound was isolated from complex mixture obtained from the reaction of adamantane-1-carbonyl chloride with 4-methylbenzylmagnesium chloride in diethyl ether as described previously (Vícha *et al.*, 2006). The crystal used for data collection was grown by slow evaporation of an *n*-hexane solution at room temperature.

Refinement

All carbon bound H atoms were placed at calculated positions and were refined as riding with their U_{iso} set to either $1.2U_{eq}$ or $1.5U_{eq}$ (methyl) of the respective carrier atoms; in addition, the methyl H atoms were allowed to rotate about the C—C bond. Oxygen bound H atom was located in a difference Fourier map and refined isotropically with the U_{iso} set to $1.5U_{eq}$ of the carrier atom.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 2012) and Mercury (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

ORTEP of the asymmetric unit with atoms represented as 50% probability ellipsoids. H-atoms are shown as small spheres at arbitrary radii.

Figure 2

Part of the crystal structure of the title compound showing the intramolecular C—H $\cdots \pi$ interactions. H-atoms have been omitted for clarity (except for those participating in H-bonds). Symmetry code: (i) -*x* + 1, -*y* + 1, -*z* + 1.

2-(Adamantan-1-yl)-1,3-bis(4-methylphenyl)propan-2-ol

Crystal data	
$C_{27}H_{34}O$	$\gamma = 80.134 \ (3)^{\circ}$
$M_r = 374.54$	V = 1040.75 (6) Å ³
Triclinic, P1	Z = 2
Hall symbol: -P 1	F(000) = 408
a = 6.4065 (2) Å	$D_{\rm x} = 1.195 {\rm ~Mg} {\rm ~m}^{-3}$
b = 13.1474 (4) Å	Melting point: 404 K
c = 13.3466 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 70.718 \ (3)^{\circ}$	Cell parameters from 4289 reflections
$\beta = 81.700 \ (3)^{\circ}$	$\theta = 3.1 - 27.8^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$ T = 120 K

Data collection

Agilent Xcalibur (Sapphire2)	6750 measured reflections
diffractometer	3675 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2925 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.010$
Detector resolution: 8.4353 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
ωscan	$h = -7 \rightarrow 7$
Absorption correction: multi-scan	$k = -15 \rightarrow 15$
(CrysAlis PRO; Agilent, 2011)	$l = -10 \rightarrow 15$
$T_{\min} = 0.996, \ T_{\max} = 1.000$	
Definement	

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.035$	$w = 1/[\sigma^2(F_o^2) + (0.0483P)^2 + 0.1419P]$
$wR(F^2) = 0.094$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
3675 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
258 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$
0 restraints	

Special details

Experimental. Spectral properties of title compound: ¹H NMR (500 MHz; CDCl₃): δ 1.36 (bs, 1H); 1.71 (m, 6H); 1.82(m, 6H); 2.06 (m, 3H); 2.32(s, 6H); 2.68(d, 2H); 3.02(d, 2H); 6.87(d, 4H); 7.01(d, 4H) p.p.m.. ¹³C NMR (75.5 MHz; CDCl₃): δ 21.2 (CH₃); 29.0 (CH); 36.7 (CH₂); 37.4 (CH₂); 40.0 (CH₂); 41.3 (C); 76.7(C); 128.9 (CH); 131.2 (CH); 135.5(C); 135.7(C) p.p.m.. IR (KBr): 3581(*s*), 2918(*s*), 2904(*s*), 2879(*s*), 2852(*s*), 1511(*m*), 1454(*m*), 1344(*m*), 1107(w), 1059(w), 1041(w), 997(w), 966(w), 847(w), 818(*m*), 808(*m*), 752(*m*), 714(w), 579(*m*), 496(w), 476(w) cm⁻¹ MS (EI, 70 eV): 77 (5), 79 (15), 91 (6), 93 (10), 105 (24), 107 (6), 135 (100), 136 (11), 269 (27), 270 (6) *m/z*(%). **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of *F*² against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*²,

Block, colourless

 $0.50 \times 0.50 \times 0.40 \text{ mm}$

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
02	0.52442 (14)	0.31340 (7)	0.53822 (7)	0.0244 (2)	
H2	0.577 (2)	0.3189 (12)	0.4778 (12)	0.037*	
C1	0.3383 (2)	0.18382 (10)	0.49612 (10)	0.0227 (3)	
H1A	0.3365	0.1115	0.5508	0.027*	
H1B	0.2087	0.1990	0.4584	0.027*	
C2	0.32531 (19)	0.27081 (9)	0.55451 (9)	0.0203 (3)	
C3	0.1531 (2)	0.36778 (10)	0.51005 (9)	0.0246 (3)	
H3A	0.0114	0.3432	0.5345	0.030*	
H3B	0.1616	0.4255	0.5411	0.030*	
C11	0.5301 (2)	0.17801 (9)	0.41677 (10)	0.0214 (3)	
C12	0.5241 (2)	0.22950 (10)	0.30754 (10)	0.0255 (3)	

H12	0.3955	0.2707	0.2810	0.031*
C13	0.7026 (2)	0.22165 (11)	0.23704 (10)	0.0276 (3)
H13	0.6933	0.2575	0.1630	0.033*
C14	0.8939 (2)	0.16309 (10)	0.27152 (10)	0.0242 (3)
C15	0.9002 (2)	0.11175 (10)	0.38029 (10)	0.0270 (3)
H15	1.0291	0.0706	0.4066	0.032*
C16	0.7225 (2)	0.11930 (10)	0.45123 (10)	0.0268 (3)
H16	0.7323	0.0835	0.5253	0.032*
C17	1.0884 (2)	0.15472 (12)	0.19488 (11)	0.0322 (3)
H17A	1.1167	0.2278	0.1504	0.048*
H17B	1.0641	0.1135	0.1494	0.048*
H17C	1.2110	0.1174	0.2350	0.048*
C20	0.28329 (19)	0.21981 (9)	0.67801 (9)	0.0187 (3)
C21	0.26153 (19)	0.30786 (9)	0.73322 (9)	0.0204 (3)
H21A	0.3918	0.3439	0.7139	0.025*
H21B	0.1396	0.3637	0.7077	0.025*
C22	0.22752 (19)	0.25899 (10)	0.85462 (9)	0.0219 (3)
H22	0.2142	0.3179	0.8880	0.026*
C23	0.4157 (2)	0.17335 (10)	0.89566 (10)	0.0249 (3)
H23A	0.5484	0.2073	0.8777	0.030*
H23B	0.3933	0.1419	0.9742	0.030*
C24	0.4346 (2)	0.08420(10)	0.84410(10)	0.0233 (3)
H24	0 5580	0.0282	0.8704	0.028*
C25	0.2308(2)	0.0202	0.87323 (10)	0.020
H25A	0.2069	-0.0018	0.9516	0.029*
H25B	0.2003	-0.0283	0.8408	0.029*
C26	0.04286 (19)	0.11655 (10)	0.83190 (10)	0.02°
H26	-0.0908	0.0819	0.8512	0.0225 (3)
C27	0.0202(2)	0.20631 (10)	0.88350 (10)	0.027
H27A	-0.0034	0.1752	0.9619	0.0297 (3)
H27R	-0.1001	0.2618	0.8578	0.028
C28	0.47010 (19)	0.13264 (10)	0.72260 (10)	0.028 0.0217(3)
H28A	0.47010 (17)	0.0740	0.72200 (10)	0.0217 (3)
H28R	0.4049	0.1657	0.0899	0.026*
C20	0.0039	0.1057 0.16575 (10)	0.7033	0.020
U29	-0.0458	0.10375 (10)	0.71028 (9)	0.0212 (3)
1129A 1120B	0.0438	0.2200	0.0845	0.025*
П29Б	0.0873 0.1602 (2)	0.1080	0.0708 0.20017 (10)	0.023°
C31	0.1092(2)	0.41044(9)	0.39017(10)	0.0224(3)
0.52	0.0303 (2)	0.39003 (10)	0.32900 (10)	0.0243 (3)
П32 С22	-0.0783	0.5526 0.42052 (10)	0.3040	0.029°
035	0.0473(2)	0.43933 (10)	0.21930 (10)	0.0247 (3)
П33	-0.0303	0.4231	0.1804	0.030°
C34	0.2034(2) 0.2418(2)	0.50525(10) 0.52452(10)	0.10343(10)	0.0243(3)
035	0.3418 (2)	0.52435(10)	0.22392 (10)	0.0271 (3)
пээ С26	0.4300	0.3084	0.1909	0.033°
U30	0.3228 (2)	0.48324 (10)	0.33013 (10)	0.0203(3)
пэ0 С27	0.4100	0.3008	0.07572 (10)	0.032^{*}
U3/	0.2247(2)	0.55055 (11)	0.04572(10)	0.0321(3)
пэ/А	0.3400	0.3913	0.0223	0.048*

supplementary materials

H37B	0.0944	0.5992	0.0230	0.048*
H37C	0.2457	0.4917	0.0140	0.048*

Atomic displacement parameters $(Å^2)$

	1 1					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
02	0.0262 (5)	0.0263 (5)	0.0211 (5)	-0.0112 (4)	0.0051 (4)	-0.0072 (4)
C1	0.0260 (7)	0.0196 (6)	0.0224 (7)	-0.0041 (5)	-0.0023 (5)	-0.0058 (5)
C2	0.0207 (6)	0.0182 (6)	0.0213 (6)	-0.0051 (5)	0.0002 (5)	-0.0047 (5)
C3	0.0308 (7)	0.0203 (6)	0.0199 (6)	-0.0006(5)	-0.0008(5)	-0.0047 (5)
C11	0.0252 (7)	0.0168 (6)	0.0235 (7)	-0.0021 (5)	-0.0040(5)	-0.0077 (5)
C12	0.0266 (7)	0.0263 (7)	0.0240 (7)	0.0019 (6)	-0.0073 (6)	-0.0091 (6)
C13	0.0350 (8)	0.0279 (7)	0.0191 (7)	-0.0023 (6)	-0.0027 (6)	-0.0070 (5)
C14	0.0268 (7)	0.0222 (7)	0.0273 (7)	-0.0042 (5)	-0.0011 (5)	-0.0130 (5)
C15	0.0260 (7)	0.0252 (7)	0.0297 (7)	0.0046 (6)	-0.0074 (6)	-0.0107 (6)
C16	0.0342 (8)	0.0233 (7)	0.0200(7)	0.0026 (6)	-0.0044 (6)	-0.0051 (5)
C17	0.0304 (8)	0.0355 (8)	0.0336 (8)	-0.0048 (6)	0.0016 (6)	-0.0165 (6)
C20	0.0176 (6)	0.0175 (6)	0.0199 (6)	-0.0038 (5)	-0.0005 (5)	-0.0043 (5)
C21	0.0198 (6)	0.0189 (6)	0.0217 (6)	-0.0051 (5)	-0.0016 (5)	-0.0042 (5)
C22	0.0235 (7)	0.0220 (7)	0.0202 (6)	-0.0049 (5)	-0.0021 (5)	-0.0058 (5)
C23	0.0227 (7)	0.0290 (7)	0.0207 (7)	-0.0072 (5)	-0.0041 (5)	-0.0021 (5)
C24	0.0191 (7)	0.0215 (6)	0.0247 (7)	-0.0007(5)	-0.0039 (5)	-0.0012 (5)
C25	0.0249 (7)	0.0208 (7)	0.0228 (7)	-0.0056 (5)	-0.0001(5)	-0.0009(5)
C26	0.0177 (6)	0.0227 (7)	0.0246 (7)	-0.0074 (5)	0.0006 (5)	-0.0029 (5)
C27	0.0216 (7)	0.0261 (7)	0.0195 (6)	-0.0038 (5)	0.0018 (5)	-0.0031 (5)
C28	0.0172 (6)	0.0206 (6)	0.0243 (7)	-0.0037 (5)	0.0001 (5)	-0.0033 (5)
C29	0.0189 (6)	0.0203 (6)	0.0238 (7)	-0.0041 (5)	-0.0031 (5)	-0.0051 (5)
C31	0.0274 (7)	0.0162 (6)	0.0222 (7)	0.0011 (5)	-0.0032 (5)	-0.0061 (5)
C32	0.0227 (7)	0.0196 (6)	0.0279 (7)	-0.0007(5)	-0.0015 (5)	-0.0044 (5)
C33	0.0248 (7)	0.0242 (7)	0.0263 (7)	0.0003 (5)	-0.0078 (5)	-0.0092 (5)
C34	0.0289 (7)	0.0213 (7)	0.0214 (7)	0.0019 (5)	-0.0040 (5)	-0.0068 (5)
C35	0.0314 (8)	0.0229 (7)	0.0252 (7)	-0.0074 (6)	-0.0030 (6)	-0.0029 (5)
C36	0.0357 (8)	0.0211 (7)	0.0245 (7)	-0.0075 (6)	-0.0077 (6)	-0.0054 (5)
C37	0.0338 (8)	0.0370 (8)	0.0233 (7)	-0.0013 (6)	-0.0040 (6)	-0.0077 (6)

Geometric parameters (Å, °)

02—C2	1.4395 (14)	C22—H22	1.0000
O2—H2	0.812 (15)	C23—C24	1.5239 (18)
C1-C11	1.5109 (17)	C23—H23A	0.9900
C1—C2	1.5683 (16)	C23—H23B	0.9900
C1—H1A	0.9900	C24—C25	1.5303 (16)
C1—H1B	0.9900	C24—C28	1.5324 (16)
С2—С3	1.5498 (17)	C24—H24	1.0000
C2—C20	1.5630 (16)	C25—C26	1.5320 (17)
C3—C31	1.5096 (16)	C25—H25A	0.9900
С3—НЗА	0.9900	C25—H25B	0.9900
С3—Н3В	0.9900	C26—C27	1.5301 (17)
C11—C16	1.3894 (17)	C26—C29	1.5342 (16)
C11—C12	1.3930 (17)	C26—H26	1.0000

C12—C13	1.3841 (18)	С27—Н27А	0.9900
C12—H12	0.9500	С27—Н27В	0.9900
C13—C14	1.3828 (18)	C28—H28A	0.9900
С13—Н13	0.9500	C28—H28B	0.9900
C14—C15	1.3875 (18)	С29—Н29А	0.9900
C14—C17	1.5071 (17)	С29—Н29В	0.9900
C15—C16	1.3836 (18)	C31—C36	1.3900 (17)
C15—H15	0.9500	C31—C32	1.3920 (18)
C16—H16	0.9500	C32—C33	1.3845 (17)
С17—Н17А	0.9800	С32—Н32	0.9500
C17—H17B	0.9800	C33—C34	1.3881 (18)
С17—Н17С	0.9800	С33—Н33	0.9500
C20—C21	1.5430 (16)	C34—C35	1.3891 (18)
C20—C28	1.5444 (17)	C34—C37	1.5059 (17)
C20—C29	1.5454 (16)	C35—C36	1.3845 (17)
C21—C22	1.5311 (16)	С35—Н35	0.9500
C21—H21A	0.9900	С36—Н36	0.9500
C21—H21B	0.9900	С37—Н37А	0.9800
C22—C23	1.5293 (17)	С37—Н37В	0.9800
C22—C27	1.5325 (17)	С37—Н37С	0.9800
С2—О2—Н2	108.8 (11)	С24—С23—Н23В	109.9
C11—C1—C2	116.07 (10)	С22—С23—Н23В	109.9
C11—C1—H1A	108.3	H23A—C23—H23B	108.3
C2—C1—H1A	108.3	C23—C24—C25	109.95 (10)
C11—C1—H1B	108.3	C23—C24—C28	109.94 (10)
C2—C1—H1B	108.3	C25—C24—C28	109.14 (10)
H1A—C1—H1B	107.4	C23—C24—H24	109.3
O2—C2—C3	107.41 (9)	С25—С24—Н24	109.3
O2—C2—C20	105.06 (9)	C28—C24—H24	109.3
C3—C2—C20	111.35 (10)	C24—C25—C26	108.95 (10)
O2—C2—C1	111.17 (9)	С24—С25—Н25А	109.9
C3—C2—C1	110.22 (10)	С26—С25—Н25А	109.9
C20—C2—C1	111.46 (9)	С24—С25—Н25В	109.9
C31—C3—C2	115.30 (10)	С26—С25—Н25В	109.9
С31—С3—НЗА	108.4	H25A—C25—H25B	108.3
С2—С3—НЗА	108.4	C27—C26—C25	109.41 (10)
С31—С3—Н3В	108.4	C27—C26—C29	109.57 (10)
С2—С3—Н3В	108.4	C25—C26—C29	110.20 (10)
НЗА—СЗ—НЗВ	107.5	С27—С26—Н26	109.2
C16—C11—C12	117.03 (11)	С25—С26—Н26	109.2
C16—C11—C1	120.32 (11)	С29—С26—Н26	109.2
C12—C11—C1	122.66 (11)	C26—C27—C22	109.25 (10)
C13—C12—C11	121.09 (12)	С26—С27—Н27А	109.8
C13—C12—H12	119.5	С22—С27—Н27А	109.8
C11—C12—H12	119.5	С26—С27—Н27В	109.8
C14—C13—C12	121.78 (12)	С22—С27—Н27В	109.8
C14—C13—H13	119.1	H27A—C27—H27B	108.3
C12—C13—H13	119.1	C24—C28—C20	111.27 (10)
			` '

C13—C14—C15	117.24 (12)	C24—C28—H28A	109.4
C13—C14—C17	121.84 (12)	C20—C28—H28A	109.4
C15—C14—C17	120.92 (12)	C24—C28—H28B	109.4
C16—C15—C14	121.29 (12)	C20—C28—H28B	109.4
C16—C15—H15	119.4	H28A—C28—H28B	108.0
C14—C15—H15	119.4	C26—C29—C20	110.41 (10)
C15—C16—C11	121.57 (12)	С26—С29—Н29А	109.6
C15—C16—H16	119.2	С20—С29—Н29А	109.6
C11—C16—H16	119.2	С26—С29—Н29В	109.6
C14—C17—H17A	109.5	С20—С29—Н29В	109.6
C14—C17—H17B	109.5	H29A—C29—H29B	108.1
H17A—C17—H17B	109.5	C36—C31—C32	117.51 (11)
C14—C17—H17C	109.5	C36—C31—C3	121.18 (11)
H17A—C17—H17C	109.5	C32—C31—C3	121.31 (11)
H17B—C17—H17C	109.5	C33—C32—C31	121.35 (12)
C21—C20—C28	107.74 (10)	С33—С32—Н32	119.3
C21—C20—C29	107.66 (10)	С31—С32—Н32	119.3
C28—C20—C29	107.99 (9)	C32—C33—C34	121.08 (12)
C21—C20—C2	110.48 (9)	С32—С33—Н33	119.5
C28—C20—C2	110.59 (9)	С34—С33—Н33	119.5
C29—C20—C2	112.22 (9)	C33—C34—C35	117.56 (11)
C22—C21—C20	111.34 (9)	C33—C34—C37	121.41 (12)
C22—C21—H21A	109.4	C35—C34—C37	121.00 (12)
C20—C21—H21A	109.4	C36—C35—C34	121.48 (12)
C22—C21—H21B	109.4	С36—С35—Н35	119.3
C20—C21—H21B	109.4	С34—С35—Н35	119.3
H21A—C21—H21B	108.0	C35—C36—C31	120.96 (12)
C23—C22—C21	110.08 (10)	С35—С36—Н36	119.5
C23—C22—C27	109.69 (10)	С31—С36—Н36	119.5
C21—C22—C27	108.76 (10)	С34—С37—Н37А	109.5
С23—С22—Н22	109.4	С34—С37—Н37В	109.5
C21—C22—H22	109.4	Н37А—С37—Н37В	109.5
С27—С22—Н22	109.4	С34—С37—Н37С	109.5
C24—C23—C22	108.95 (10)	Н37А—С37—Н37С	109.5
C24—C23—H23A	109.9	Н37В—С37—Н37С	109.5
С22—С23—Н23А	109.9		
C11—C1—C2—O2	-12.69 (14)	C27—C22—C23—C24	60.05 (13)
C11—C1—C2—C3	106.29 (12)	C22—C23—C24—C25	-60.43 (12)
C11—C1—C2—C20	-129.54 (11)	C22—C23—C24—C28	59.76 (13)
O2—C2—C3—C31	70.51 (13)	C23—C24—C25—C26	60.58 (13)
C20—C2—C3—C31	-174.97 (10)	C28—C24—C25—C26	-60.10(13)
C1—C2—C3—C31	-50.74 (14)	C24—C25—C26—C27	-60.16 (12)
C2—C1—C11—C16	82.61 (14)	C24—C25—C26—C29	60.37 (13)
C2—C1—C11—C12	-97.68 (14)	C25—C26—C27—C22	60.14 (12)
C16—C11—C12—C13	0.28 (18)	C29—C26—C27—C22	-60.78 (13)
C1 - C11 - C12 - C13	-179.44 (12)	C_{23} — C_{22} — C_{27} — C_{26}	-60.16 (13)
C11 - C12 - C13 - C14	-0.2(2)	$C_{21} - C_{22} - C_{27} - C_{26}$	60.29 (12)
C12—C13—C14—C15	0.21 (19)	C23—C24—C28—C20	-60.11 (13)

C12—C13—C14—C17	-179.83(12)	C25—C24—C28—C20	60.57 (13)
C13—C14—C15—C16	-0.25(19)	C21—C20—C28—C24	57.46 (12)
C17—C14—C15—C16	179.79 (12)	C29—C20—C28—C24	-58.57 (13)
C14—C15—C16—C11	0.3 (2)	C_{2} C_{20} C_{28} C_{24}	178.29 (9)
C12-C11-C16-C15	-0.32(18)	C_{27} C_{26} C_{29} C_{20}	60 53 (13)
C1 - C11 - C16 - C15	17940(12)	C_{25} C_{26} C_{29} C_{20} C_{20}	-59.90(13)
02-C2-C20-C21	61.95 (12)	C_{21} C_{20} C_{29} C_{26}	-5842(12)
C_{3} C_{2} C_{20} C_{21}	-54.02(13)	C_{28} C_{20} C_{29} C_{26} C_{26}	57 66 (13)
C1 - C2 - C20 - C21	-17755(10)	$C_2 - C_2 $	179 80 (9)
02-02-020-021	-57.24(12)	$C_2 = C_3 $	-75.74(15)
C_{3} C_{2} C_{20} C_{20} C_{20} C_{20}	$-173\ 21\ (10)$	$C_2 = C_3 $	104 61 (14)
C1 - C2 - C20 - C28	63 26 (12)	$C_{36} = C_{31} = C_{32} = C_{33}$	1.60(18)
02 - C2 - C20 - C29	-17790(9)	C_{3} C_{31} C_{32} C_{33}	-17875(11)
$C_{2} = C_{2} = C_{20} = C_{29}$	66 14 (13)	$C_{31} = C_{32} = C_{33} = C_{34}$	0.53 (19)
$C_1 - C_2 $	-5740(13)	C_{32} C_{33} C_{34} C_{35}	-1.57(19)
$C_{1} = C_{2} = C_{2} = C_{2} = C_{2}$	-57.24(12)	$C_{32} = C_{33} = C_{34} = C_{35}$	-17977(12)
$C_{20} = C_{20} = C_{21} = C_{22}$	57.24(12)	$C_{32} = C_{33} = C_{34} = C$	0.40(10)
$C_{2} = C_{2} = C_{2$	-178 14 (0)	$C_{33} = C_{34} = C_{35} = C_{36}$	(13)
$C_2 = C_2 $	1/0.14(9)	$C_{34} = C_{35} = C_{30}$	170.09(12) 1.7(2)
$C_{20} = C_{21} = C_{22} = C_{23}$	59.02(13)	$C_{34} = C_{35} = C_{30} = C_{31}$	1.7(2)
$C_{20} = C_{21} = C_{22} = C_{24}$	-00.38(13)	$C_{2} = C_{21} = C_{26} = C_{25}$	-2.0/(18)
C21—C22—C23—C24	-39.39 (12)	C3-C31-C30-C35	1//.0/(11)

Hydrogen-bond geometry (Å, °)

*Cg*1 is the centroid of the C31–C36 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
C12—H12…Cg1	0.94	2.61	3.3577 (12)	136