TBU Publications
Repository of TBU Publications

Application of green solvents as a replacement of toxic dimethylformamide in the polylactic acid electrospinning process

DSpace Repository

Show simple item record


dc.title Application of green solvents as a replacement of toxic dimethylformamide in the polylactic acid electrospinning process en
dc.contributor.author Lovecká, Lenka
dc.contributor.author Kovářová, Miroslava
dc.contributor.author Hanušová, Dominika
dc.contributor.author Kimmer, Dušan
dc.contributor.author Poláchová, Andrea
dc.contributor.author Sedlařík, Vladimír
dc.relation.ispartof Sustainable Materials and Technologies
dc.identifier.issn 2214-9929 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2025
utb.relation.volume 44
dc.type article
dc.language.iso en
dc.publisher Elsevier B.V.
dc.identifier.doi 10.1016/j.susmat.2025.e01405
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S2214993725001733
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S2214993725001733/pdfft?md5=cf19e0565a2c0bca1f07aa255cc6e21b&pid=1-s2.0-S2214993725001733-main.pdf
dc.subject electrospinning en
dc.subject nanofibre en
dc.subject green solvent en
dc.subject PLA en
dc.subject dimethylformamide en
dc.subject air filtration en
dc.description.abstract Nanofibres based on polylactic acid (PLA) have a wide range of applications, including air filtration. They are prepared by electrospinning using toxic solvents as dimethylformamide. This study focused on the use of green solvents to prepare electrospinnable solutions. It was found that a combination of solvents is necessary. A nozzle electrospinning technique was applied to produce PLA nanofibres from optimised dual (ethyl or methyl lactate with acetone) or ternary (cyclopentanone, acetone and ethyl or methyl lactate) solvent system. The prepared nanofibres were evaluated for morphology and quality of nanofibres (SEM), surface wettability (contact angle), filtration properties (automated filter tester) and pore size and distribution (porometry). Potential changes in the chemical composition and the presence of residual solvent were investigated by FTIR, TGA and headspace analysis. It was found that green solvents can substitute dimethylformamide; especially combination of cyclopentanone/ethyl lactate/acetone provides air filtration properties comparable to dimethylformamide/acetone-based systems. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1012434
utb.identifier.scopus 2-s2.0-105003378738
utb.identifier.wok 001483025300001
utb.source j-scopus
dc.date.accessioned 2025-02-25T10:16:19Z
dc.date.available 2025-02-25T10:16:19Z
dc.description.sponsorship European Just Transition Fund; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Ministerstvo Životního Prostředí, MŽP, (CZ.10.03.01/00/22_003/0000045, CZ.02.01.01/00/23_021/0009004); Ministerstvo Životního Prostředí, MŽP; Tomas Bata University in Zlín, TBU, (RP/CPS/2024-28/002); Tomas Bata University in Zlín, TBU
dc.description.sponsorship European Just Transition Fund within the Operational Programme: Just Transition under the aegis of the Ministry of the Environment of the Czech Republic [CZ.10.03.01/00/22_003/0000045]; European Just Transition Fund within the Operational Programme Johannes Amos Comenius OP JAC "Application potential development in the field of polymer materials in the context of circular economy compliance (POCEK) " [CZ.02.01.01/00/23_021/0009004]; Development process of Centre of Polymer Systems, Tomas Bata University in Zlin, program DKRVO - Ministry of Education Youth and Sports of the Czech Republic [RP/CPS/2024-28/002]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Lovecká, Lenka
utb.contributor.internalauthor Kovářová, Miroslava
utb.contributor.internalauthor Hanušová, Dominika
utb.contributor.internalauthor Kimmer, Dušan
utb.contributor.internalauthor Poláchová, Andrea
utb.contributor.internalauthor Sedlařík, Vladimír
utb.fulltext.affiliation Lenka Lovecká *, Miroslava Kovářová , Dominika Hanušová , Dušan Kimmer, Andrea Poláchová , Vladimír Sedlařík Tomas Bata University in Zlin, Centre of Polymer Systems, tr. T. Bati 5678, 760 01 Zlin, Czech Republic * Corresponding author. E-mail address: lovecka@utb.cz (L. Lovecká).
utb.fulltext.dates Received 26 February 2025 Received in revised form 16 April 2025 Accepted 21 April 2025 Available online 22 April 2025
utb.fulltext.references [1] J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications, Chem. Rev. 119 (2019) 5298–5415, https://doi.org/10.1021/acs.chemrev.8b00593. [2] J.-H. Wu, T.-G. Hu, H. Wang, et al., Electrospinning of PLA nanofibers: recent advances and its potential application for food packaging, J. Agric. Food Chem. 70 (2022) 8207–8221, https://doi.org/10.1021/acs.jafc.2c02611. [3] M.R. El-Aassar, O.M. Ibrahim, Z.H. Al-Oanzi, Biotechnological applications of polymeric nanofiber platforms loaded with diverse bioactive materials, Polymers 13 (2021) 3734, https://doi.org/10.3390/polym13213734. [4] F. Imani, R. Karimi-Soflou, I. Shabani, A. Karkhaneh, PLA electrospun nanofibers modified with polypyrrole-grafted gelatin as bioactive electroconductive scaffold, Polymer 218 (2021) 123487, https://doi.org/10.1016/j.polymer.2021.123487. [5] H. Gao, G. Liu, J. Guan, et al., Biodegradable hydro-charging polylactic acid meltblown nonwovens with efficient PM0.3 removal, Chem. Eng. J. 458 (2023) 141412, https://doi.org/10.1016/j.cej.2023.141412. [6] Y. Zhou, Y. Liu, M. Zhang, et al., Electrospun nanofiber membranes for air filtration: a review, Nanomaterials 12 (2022) 1077, https://doi.org/10.3390/nano12071077. [7] T. Fan, R. Daniels, Preparation and characterization of electrospun Polylactic acid (PLA) Fiber loaded with birch bark triterpene extract for wound dressing, AAPS PharmSciTech 22 (2021) 205, https://doi.org/10.1208/s12249-021-02081-z. [8] M.C. Biswas, B. Jony, P.K. Nandy, et al., Recent advancement of biopolymers and their potential biomedical applications, J. Polym. Environ. 30 (2022) 51–74, https://doi.org/10.1007/s10924-021-02199-y. [9] Y. Wu, Y. Wang, F. Wang, et al., Preparation and properties study of polylactic acid/bacterial cellulose composite scaffolds by solvent removal, J. Mater. Res. 37 (2022) 1602–1611, https://doi.org/10.1557/s43578-022-00560-y. [10] X.-X. He, J. Zeng, G.-F. Yu, et al., Near-field electrospinning: Progress and applications, J. Phys. Chem. C 121 (2017), https://doi.org/10.1021/acs.jpcc.6b12783. [11] A.A.M. Zubir, M.P. Khairunnisa, N.A. Surib, et al., Electrospinning of PLA with DMF: effect of polymer concentration on the bead diameter of the electrospun fibre, IOP Conf. Ser. Mater. Sci. Eng. 778 (2020) 012087, https://doi.org/10.1088/1757-899X/778/1/012087. [12] K. Ji, C. Liu, H. He, et al., Green-solvent-Processable composite Micro/nanofiber membrane with gradient asymmetric structure for efficient microfiltration, Small 19 (2023) 2207330, https://doi.org/10.1002/smll.202207330. [13] J. Mu, X. Pei, W. Dai, et al., A novel biodegradable fibrous membrane with remarkable filtration and antibacterial properties, J. Polym. Environ. 29 (2021) 4040–4047, https://doi.org/10.1007/s10924-021-02163-w. [14] R. Scaffaro, M.C. Citarrella, Stable and reusable electrospun bio-composite fibrous membranes based on PLA and natural fillers for air filtration applications, Sustain. Mater. Technol. 42 (2024) e01146, https://doi.org/10.1016/j.susmat.2024.e01146. [15] T. Luo, J. Zhang, J. Wang, et al., Sustainable pollution treatment system through Fiber filter materials, Sustain. Mater. Technol. 42 (2024) e01168, https://doi.org/10.1016/j.susmat.2024.e [16] R. Casasola, N.L. Thomas, A. Trybala, S. Georgiadou, Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter, Polymer 55 (2014) 4728–4737, https://doi.org/10.1016/j.polymer.2014.06.032. [17] T. Casalini, F. Rossi, A. Castrovinci, G. Perale, A perspective on Polylactic acidbased polymers use for nanoparticles synthesis and applications, Front. Bioeng. Biotechnol. 7 (2019) 259, https://doi.org/10.3389/fbioe.2019.00259. [18] A. Jash, G. Paliyath, L.-T. Lim, Activated release of bioactive aldehydes from their precursors embedded in electrospun poly(lactic acid) nonwovens, RSC Adv. 8 (2018) 19930–19938, https://doi.org/10.1039/C8RA03137A. [19] A. Jordan, C.G.J. Hall, L.R. Thorp, H.F. Sneddon, Replacement of less-preferred dipolar aprotic and ethereal solvents in synthetic organic chemistry with more sustainable alternatives, Chem. Rev. 122 (2022) 6749–6794, https://doi.org/10.1021/acs.chemrev.1c00672. [20] W. Xie, T. Li, A. Tiraferri, et al., Toward the next generation of sustainable membranes from green chemistry principles, ACS Sustain. Chem. Eng. 9 (2021) 50–75, https://doi.org/10.1021/acssuschemeng.0c07119. [21] J. Avossa, G. Herwig, C. Toncelli, et al., Electrospinning based on benign solvents: current definitions, implications and strategies, Green Chem. 24 (2022) 2347–2375, https://doi.org/10.1039/D1GC04252A. [22] F.P. Byrne, S. Jin, G. Paggiola, et al., Tools and techniques for solvent selection: green solvent selection guides, Sustain. Chem. Process 4 (2016) 7, https://doi.org/10.1186/s40508-016-0051-z. [23] A. Amelio, G. Genduso, S. Vreysen, et al., Guidelines based on life cycle assessment for solvent selection during the process design and evaluation of treatment alternatives, Green Chem. 16 (2014) 3045–3063, https://doi.org/10.1039/C3GC42513D. [24] D. Prat, A. Wells, J. Hayler, et al., CHEM21 selection guide of classical- and less classical-solvents, Green Chem. 18 (2015) 288–296, https://doi.org/10.1039/C5GC01008J. [25] R.K. Henderson, C. Jiménez-González, D.J.C. Constable, et al., Expanding GSK’S solvent selection guide – embedding sustainability into solvent selection starting at medicinal chemistry, Green Chem. 13 (2011) 854–862, https://doi.org/10.1039/C0GC00918K. [26] H.-B. Kim, J.-I. Yoo, S.-C. Kang, J.-K. Song, Green solvent selection for all solutionprocessed inverted quantum dot light emitting diode, Small 20 (2024) 2304051, https://doi.org/10.1002/smll.202304051. [27] C. Kahrs, J. Schwellenbach, Membrane formation via non-solvent induced phase separation using sustainable solvents: a comparative study, Polymer 186 (2020) 122071, https://doi.org/10.1016/j.polymer.2019.122071. [28] S.A. Naziri Mehrabani, V. Vatanpour, I. Koyuncu, Green solvents in polymeric membrane fabrication: a review, Sep. Purif. Technol. 298 (2022) 121691, https://doi.org/10.1016/j.seppur.2022.121691. [29] A.P. Cardoso, A. Giacobbo, A.M. Bernardes, C.A. Ferreira, Performance evaluation of polysulfone-based membranes produced with a green solvent, J. Mater. Res. 39 (2024) 1525–1536, https://doi.org/10.1557/s43578-024-01327-3. [30] C.J. Clarke, W.-C. Tu, O. Levers, et al., Green and sustainable solvents in chemical processes, Chem. Rev. 118 (2018) 747–800, https://doi.org/10.1021/acs.chemrev.7b00571. [31] C.Z. Mosher, P.A.P. Brudnicki, Z. Gong, et al., Green electrospinning for biomaterials and biofabrication, Biofabrication 13 (2021), https://doi.org/10.1088/1758-5090/ac0964. [32] D. Kim, S.P. Nunes, Green solvents for membrane manufacture: recent trends and perspectives, Curr. Opin. Green Sustain. Chem. 28 (2021) 100427, https://doi.org/10.1016/j.cogsc.2020.100427. [33] J. Lopez, S. Pletscher, A. Aemissegger, et al., N-Butylpyrrolidinone as alternative solvent for solid-phase peptide synthesis, Org. Process. Res. Dev. 22 (2018) 494–503, https://doi.org/10.1021/acs.oprd.7b00389. [34] A. Duereh, Y. Sato, R.L. Smith Jr., H. Inomata, Methodology for replacing dipolar aprotic solvents used in API processing with safe hydrogen-bond donor and acceptor solvent-pair mixtures, Org. Process. Res. Dev. 21 (2017) 114–124, https://doi.org/10.1021/acs.oprd.6b00401. [35] Boddula R. Inamuddin, M.I. Ahamed, A.M. Asiri, Green Sustainable Process for Chemical and Environmental Engineering and Science: Solvents for the Pharmaceutical Industry, 1st ed., Elsevier Publiations, Cambridge, 2020. [36] C.M. Alder, J.D. Hayler, R.K. Henderson, et al., Updating and further expanding GSK’S solvent sustainability guide, Green Chem. 18 (2016) 3879–3890, https://doi.org/10.1039/C6GC00611F. [37] R. Casasola, N.L. Thomas, S. Georgiadou, Electrospinning of poly(lactic acid): theoretical approach for the solvent selection to produce defect-free nanofibers, J. Polym. Sci. B Polym. Phys. 54 (2016) 1483–1498, https://doi.org/10.1002/polb.24042. [38] J. Song, B. Zhang, Z. Lu, et al., Hierarchical porous poly(l-lactic acid) Nanofibrous membrane for ultrafine particulate aerosol filtration, ACS Appl. Mater. Interfaces 11 (2019) 46261–46268, https://doi.org/10.1021/acsami.9b18083. [39] H. Maleki, B. Azimi, S. Ismaeilimoghadam, S. Danti, Poly(lactic acid)-based electrospun fibrous structures for biomedical applications, Appl. Sci. 12 (2022) 3192, https://doi.org/10.3390/app12063192. [40] T.A. Otitoju, C.-H. Kim, M. Ryu, et al., Exploring green solvents for the sustainable fabrication of bio-based polylactic acid membranes using nonsolvent-induced phase separation, J. Clean. Prod. 467 (2024) 142905, https://doi.org/10.1016/j.jclepro.2024.142905. [41] F.P. Byrne, C.M. Nussbaumer, E.J. Savin, et al., A family of water-immiscible, dipolar aprotic, Diamide solvents from succinic acid, ChemSusChem 13 (2020) 3212–3221, https://doi.org/10.1002/cssc.202000462. [42] K.G. Patel, R.K. Maynard, L.S. Ferguson, et al., Experimentally determined Hansen solubility parameters of biobased and biodegradable polyesters, ACS Sustain. Chem. Eng. 12 (2024) 2386–2393, https://doi.org/10.1021/acssuschemeng.3c07284. [43] M. Li, T. Ren, Y. Sun, et al., New parameter derived from the Hansen solubility parameter used to evaluate the solubility of Asphaltene in solvent, ACS Omega 7 (2022) 13801–13807, https://doi.org/10.1021/acsomega.2c00018. [44] M.A. Rasool, C. Van Goethem, I.F.J. Vankelecom, Green preparation process using methyl lactate for cellulose-acetate-based nanofiltration membranes, Sep. Purif. Technol. 232 (2020) 115903, https://doi.org/10.1016/j.seppur.2019.115903. [45] I. Deneme, T.A. Yıldız, N. Kayaci, H. Usta, The Hansen solubility approach towards green solvent processing: n-channel organic field-effect transistors under ambient conditions, J. Mater. Chem. C 12 (2024) 3854–3864, https://doi.org/10.1039/D4TC00324A. [46] A. Macchia, F. Valentini, I.A. Colasanti, C. Zaratti, Prediction of green solvent applicability in cultural heritage using Hansen solubility parameters, Cremonesi method and integrated toxicity index, Sustainability 17 (2025) 2944, https://doi.org/10.3390/su17072944. [47] George Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd Edition, 3rd ed., John Wiley & Sons, 2004. [48] H. Liu, R. Zhao, X. Song, et al., Lewis acidic ionic liquid [Bmim]FeCl4 as a high efficient catalyst for Methanolysis of poly (lactic acid), Catal. Lett. 147 (2017) 2298–2305, https://doi.org/10.1007/s10562-017-2138-x. [49] N. Milaniak, G. Laroche, F. Massines, Fourier-transform infrared spectroscopy of ethyl lactate decomposition and thin-film coating in a filamentary and a glow dielectric barrier discharge, Plasma Process. Polym. 18 (2021) 2000248, https://doi.org/10.1002/ppap.202000248. [50] D. Riccardis, M. Federica, Electrospun Nanofibrous membranes for air filtration: a critical review, Compouds 3 (2023) 390–410, https://doi.org/10.3390/compounds3030030. [51] R. Scaffaro, M.C. Citarrella, Nanofibrous polymeric membranes for air filtration application: a review of Progress after the COVID-19 pandemic, Macro Materials Eng. 308 (2023) 2300072, https://doi.org/10.1002/mame.202300072. [52] X. Ji, J. Huang, L. Teng, et al., Advances in particulate matter filtration: materials, performance, and application, Green Energy Environ. 8 (2023) 673–697, https://doi.org/10.1016/j.gee.2022.03.012. [53] F. Russo, R. Castro-Muñoz, S. Santoro, et al., A review on electrospun membranes for potential air filtration application, J. Environ. Chem. Eng. 10 (2022) 108452, https://doi.org/10.1016/j.jece.2022.108452. [54] M. Zhu, J. Han, F. Wang, et al., Electrospun nanofibers membranes for effective air filtration, Macromol. Mater. Eng. 302 (2017) 1600353, https://doi.org/10.1002/mame.201600353. [55] S. Shi, W. Bai, X. Chen, et al., Advances in nanofiber filtration membranes: from principles to intelligent applications, Adv. Funct. Mater. 2423284 (2025), https://doi.org/10.1002/adfm.202423284. [56] M. Shen, J. Li, L. Ke, et al., Bioinspired tree-like electroactive poly(lactic acid) nanofibers with enhanced surface activity and interfacial polarization for intelligent health management, Sep. Purif. Technol. 360 (2025) 131065, https://doi.org/10.1016/j.seppur.2024.131065. [57] L. Jiang, L. Zhang, X. He, et al., High-efficiency respiratory protection and intelligent monitoring by nanopatterning of electroactive poly(lactic acid) nanofibers, Int. J. Biol. Macromol. 289 (2025) 138769, https://doi.org/10.1016/j.ijbiomac.2024.138769. [58] C. Wang, L. Zhang, X. He, et al., Self-crystal electret poly(lactic acid) nanofibers for high-flow air purification and AI-assisted respiratory diagnosis, J. Hazard. Mater. 485 (2025) 136932, https://doi.org/10.1016/j.jhazmat.2024.136932. [59] X. He, Y. Chen, H. Sun, et al., Plant-mimicking biodegradable nanofibers for enhanced PM capturing and AI-assisted high-accuracy respiratory diagnosis, Sep. Purif. Technol. 361 (2025) 131459, https://doi.org/10.1016/j.seppur.2025.131459. [60] C. Xu, L. Jiang, Y. Zhang, et al., Lotus leaf-inspired poly(lactic acid) nanofibrous membranes with enhanced humidity resistance for superefficient PM filtration and high-sensitivity passive monitoring, J. Hazard. Mater. 488 (2025) 137516, https://doi.org/10.1016/j.jhazmat.2025.137516. [61] C. Agarwal, A.K. Pandey, S. Das, et al., Neck-size distributions of through-pores in polymer membranes, J. Membr. Sci. 415–416 (2012) 608–615, https://doi.org/10.1016/j.memsci.2012.05.055. [62] B. Xu, X. Yu, Y. Wu, Z. Lin, Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet, Environ. Technol. 38 (2017) 558–565, https://doi.org/10.1080/09593330.2016.1202328. [63] D. Li, M.W. Frey, Y.L. Joo, Characterization of nanofibrous membranes with capillary flow porometry, J. Membr. Sci. 286 (2006) 104–114, https://doi.org/10.1016/j.memsci.2006.09.020. [64] S.J. Eichhorn, W.W. Sampson, Statistical geometry of pores and statistics of porous nanofibrous assemblies, J. R. Soc. Interface 2 (2005) 309–318, https://doi.org/10.1098/rsif.2005.0039. [65] R. Bagherzadeh, S.S. Najar, M. Latifi, et al., A theoretical analysis and prediction of pore size and pore size distribution in electrospun multilayer nanofibrous materials, J. Biomed. Mater. Res. 101A (2013) 2107–2117, https://doi.org/10.1002/jbm.a.34487. [66] S. Khanmohammadi Khoshui, S.A. Hosseini Ravandi, R. Bagherzadeh, et al., Investigation of the pore geometrical structure of nanofibrous membranes using statistical modelling, Appl. Phys. A Mater. Sci. Process. 122 (2016) 914, https://doi.org/10.1007/s00339-016-0439-3. [67] W. Han, D. Rao, H. Gao, et al., Green-solvent-processable biodegradable poly(lactic acid) nanofibrous membranes with bead-on-string structure for effective air filtration: “Kill two birds with one stone.”, Nano Energy 97 (2022) 107237 https://doi.org/10.1016/j.nanoen.2022.107237. [68] J. Ge, X. Lv, J. Zhou, et al., Multi-level structured polylactic acid electrospun fiber membrane based on green solvents for high-performance air filtration, Sep. Purif. Technol. 331 (2024) 125659, https://doi.org/10.1016/j.seppur.2023.125659. [69] J.S.C. Lo, W. Daoud, C.Y. Tso, et al., Optimization of polylactic acid-based medical textiles via electrospinning for healthcare apparel and personal protective equipment, Sustain. Chem. Pharm. 30 (2022) 100891, https://doi.org/10.1016/j.scp.2022.100891. [70] D.F. Canizales-Rodríguez, F. Rodríguez-Félix, J.A. Tapia-Hernández, et al., Food grade nanofiber of Polylactic acid by electrospinning: physicochemical characterization of solutions and parameters of the technique, J. Food Qual. 2024 (2024) 5579613, https://doi.org/10.1155/2024/5579613. [71] M. Lin, J. Shen, Q. Qian, et al., Fabrication of Poly(Lactic Acid)@TiO2 Electrospun Membrane Decorated with Metal–Organic Frameworks for Efficient Air Filtration and Bacteriostasis, Polymers 16 (2024) 889, https://doi.org/10.3390/polym16070889. [72] A. Tampau, C. González-Martínez, A. Chiralt, Polylactic acid–based materials encapsulating carvacrol obtained by solvent casting and electrospinning, J. Food Sci. 85 (2020) 1177–1185, https://doi.org/10.1111/1750-3841.15094. [73] L. Williams, F.L. Hatton, M.C. Righetti, E. Mele, Investigating how the properties of electrospun poly(lactic acid) Fibres loaded with the essential oil limonene evolve over time under different storage conditions, Polymers 16 (2024) 1005, https://doi.org/10.3390/polym16071005. [74] C. Yang, F. Topuz, S.-H. Park, G. Szekely, Biobased thin-film composite membranes comprising priamine–genipin selective layer on nanofibrous biodegradable polylactic acid support for oil and solvent-resistant nanofiltration, Green Chem. 24 (2022) 5291–5303, https://doi.org/10.1039/D2GC01476A. [75] C.S.M. Pereira, V.M.T.M. Silva, A.E. Rodrigues, Ethyl lactate as a solvent: properties, applications and production processes – a review, Green Chem. 13 (2011) 2658, https://doi.org/10.1039/c1gc15523g. [76] D.Y. Aqar, N. Rahmanian, I.M. Mujtaba, Methyl lactate synthesis using batch reactive distillation: operational challenges and strategy for enhanced performance, Sep. Purif. Technol. 158 (2016) 193–203, https://doi.org/10.1016/j.seppur.2015.12.023. [77] P. Mäki-Arvela, A. Aho, Dyu Murzin, Heterogeneous catalytic synthesis of methyl lactate and lactic acid from sugars and their derivatives, ChemSusChem 13 (2020) 4833–4855, https://doi.org/10.1002/cssc.202001223. [78] J.-W. Lee, C.T. Trinh, Microbial biosynthesis of lactate esters, Biotechnol. Biofuels 12 (2019) 226, https://doi.org/10.1186/s13068-019-1563-z. [79] P. Majgaonkar, R. Hanich, F. Malz, R. Brüll, Chemical recycling of post-consumer PLA waste for sustainable production of ethyl lactate, Chem. Eng. J. 423 (2021) 129952, https://doi.org/10.1016/j.cej.2021.129952. [80] F.M. Lamberti, L.A. Román-Ramírez, A.P. Dove, J. Wood, Methanolysis of poly (lactic acid) using catalyst mixtures and the kinetics of methyl lactate production, Polymers 14 (2022) 1763, https://doi.org/10.3390/polym14091763. [81] W.-J. Zhou, P. Metivier, Science—an important lever to tackle sustainability in the specialty chemical industry, Natl. Sci. Rev. 10 (2023) nwad193, https://doi.org/10.1093/nsr/nwad193. [82] X. Li, P. Jia, T. Wang, Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals, ACS Catal. 6 (2016) 7621–7640, https://doi.org/10.1021/acscatal.6b01838. [83] S. Dutta, Catalytic transformation of biomass into sustainable Carbocycles: recent advances, prospects, and challenges, ChemPlusChem 90 (2025) e202400568, https://doi.org/10.1002/cplu.202400568. [84] M. Sauer, Industrial production of acetone and butanol by fermentation—100 years later, FEMS Microbiol. Lett. 363 (2016) fnw134, https://doi.org/10.1093/femsle/fnw134. [85] H. Luo, L. Ge, J. Zhang, et al., Enhancing acetone biosynthesis and acetone–butanol–ethanol fermentation performance by co-culturing clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition, Bioresour. Technol. 200 (2016) 111–120, https://doi.org/10.1016/j.biortech.2015.09.116. [86] F.E. Liew, R. Nogle, T. Abdalla, et al., Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale, Nat. Biotechnol. 40 (2022) 335–344, https://doi.org/10.1038/s41587-021-01195-w.
utb.fulltext.sponsorship This work was supported from the European Just Transition Fund within the Operational Programme: Just Transition under the aegis of the Ministry of the Environment of the Czech Republic, project CirkArena number CZ.10.03.01/00/22_003/0000045 and Operational Programme Johannes Amos Comenius OP JAC “Application potential development in the field of polymer materials in the context of circular economy compliance (POCEK)”, number CZ.02.01.01/00/23_021/0009004. Authors are further grateful for co-funding from the development process of Centre of Polymer Systems, Tomas Bata University in Zlin, program DKRVO (RP/CPS/2024-28/002) supported by the Ministry of Education Youth and Sports of the Czech Republic.
utb.wos.affiliation [Lovecka, Lenka; Kovarova, Miroslava; Hanusova, Dominika; Kimmer, Dusan; Polachova, Andrea; Sedlarik, Vladimir] Tomas Bata Univ Zlin, Ctr Polymer Syst, Tr T Bati 5678, Zlin 76001, Czech Republic
utb.scopus.affiliation Tomas Bata University in Zlin, Centre of Polymer Systems, tr. T. Bati 5678, Zlin, 760 01, Czech Republic
utb.fulltext.projects CZ.10.03.01/00/22_003/0000045
utb.fulltext.projects CZ.02.01.01/00/23_021/0009004
utb.fulltext.projects DKRVO (RP/CPS/2024-28/002)
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Files in this item

Show simple item record