Contact Us | Language: čeština English
| dc.title | Optimization of the dark fermentation technique for hydrogen production through supplementation with ascorbic acid and/or l-cysteine by Clostridium butyricum CCDBC 11 | en |
| dc.contributor.author | Pištěková, Hana | |
| dc.contributor.author | Dušánková, Miroslava | |
| dc.contributor.author | Šopík, Tomáš | |
| dc.contributor.author | Klaban, Jakub | |
| dc.contributor.author | Dostálková, Jitka | |
| dc.contributor.author | Moučka, Robert | |
| dc.contributor.author | Sedlařík, Vladimír | |
| dc.relation.ispartof | Journal of Agricultural and Food Chemistry | |
| dc.identifier.issn | 0021-8561 Scopus Sources, Sherpa/RoMEO, JCR | |
| dc.date.issued | 2025 | |
| utb.relation.volume | 73 | |
| utb.relation.issue | 22 | |
| dc.citation.spage | 13654 | |
| dc.citation.epage | 13662 | |
| dc.type | article | |
| dc.language.iso | en | |
| dc.publisher | American Chemical Society | |
| dc.identifier.doi | 10.1021/acs.jafc.5c03194 | |
| dc.relation.uri | https://pubs.acs.org/doi/10.1021/acs.jafc.5c03194 | |
| dc.subject | biohydrogen production | en |
| dc.subject | dark fermentation | en |
| dc.subject | ascorbic acid | en |
| dc.subject | L-cysteine | en |
| dc.subject | Clostridium butyricum | en |
| dc.description.abstract | This study explores the enhancement of biohydrogen production through the addition of oxygen scavengers, ascorbic acid, and l-cysteine during dark fermentation by Clostridium butyricum strain. The supplementation of these compounds significantly reduced the bacterial lag phase and accelerated cell growth, thereby boosting the hydrogen output. Using saccharified corn scrap as the substrate, a maximum cumulative hydrogen yield of 2.20 mol H2/mol glucose was achieved with 5 mg/L ascorbic acid. This treatment reduced the lag phase by 65.6% and increased the hydrogen yield by 40.9% compared to the control and by 11.4% relative to l-cysteine supplementation alone. Biogas production was quantified via the water displacement method, and hydrogen content was analyzed using gas chromatography. The results indicate that ascorbic acid is a cost-effective and efficient additive for improving the hydrogen yield in dark fermentation processes. | en |
| utb.faculty | University Institute | |
| dc.identifier.uri | http://hdl.handle.net/10563/1012461 | |
| utb.identifier.scopus | 2-s2.0-105005950089 | |
| utb.identifier.wok | 001495093300001 | |
| utb.identifier.pubmed | 40418735 | |
| utb.identifier.coden | JAFCA | |
| utb.source | j-scopus | |
| dc.date.accessioned | 2025-03-20T08:15:14Z | |
| dc.date.available | 2025-03-20T08:15:14Z | |
| dc.description.sponsorship | European Just Transition Fund; Ministerstvo Životního Prostředí, MZP, (CZ.10.03.01/00/22_003/0000045); Ministerstvo Životního Prostředí, MZP; Ministerstvo Školství, Mládeže a Tělovýchovy, MEYS, (CZ.02.01.01/00/23_021/0009004); Ministerstvo Školství, Mládeže a Tělovýchovy, MEYS; Tomas Bata University in Zlín, TBU, (RP/CPS/2024-28/002); Tomas Bata University in Zlín, TBU | |
| dc.description.sponsorship | Ministerstvo ?kolstv?, Ml?de?e a Telov?chovy [CZ.10.03.01/00/22_003/0000045]; European Just Transition Fund within the Operational Programme: Just Transition under the aegis of the Ministry of the Environment of the Czech Republic [CZ.02.01.01/00/23_021/0009004]; Ministry of Education, Youth and Sports of Czech Republic, Operational Programme Johannes Amos Comenius OP JAC [RP/CPS/2024-28/002]; Tomas Bata University in Zlin; Ministry of Education, Youth and Sports of the Czech Republic | |
| dc.rights | Attribution 4.0 International | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.rights.access | openAccess | |
| utb.ou | Centre of Polymer Systems | |
| utb.contributor.internalauthor | Pištěková, Hana | |
| utb.contributor.internalauthor | Dušánková, Miroslava | |
| utb.contributor.internalauthor | Šopík, Tomáš | |
| utb.contributor.internalauthor | Klaban, Jakub | |
| utb.contributor.internalauthor | Dostálková, Jitka | |
| utb.contributor.internalauthor | Moučka, Robert | |
| utb.contributor.internalauthor | Sedlařík, Vladimír | |
| utb.fulltext.affiliation | Hana Pistekova,* Miroslava Dusankova, Tomas Sopik, Jakub Klaban, Jitka Dostalkova, Robert Moucka, and Vladimir Sedlarik* AUTHOR INFORMATION Corresponding Authors Hana Pistekova − Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; orcid.org/0000-0001-9657-3230; Email: pistekova@utb.cz Vladimir Sedlarik − Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; orcid.org/0000-0002-7843-0719; Email: sedlarik@utb.cz Authors Miroslava Dusankova − Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic Tomas Sopik − Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic Jakub Klaban − Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic Jitka Dostalkova − Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic Robert Moucka − Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jafc.5c03194 | |
| utb.fulltext.dates | Received: March 20, 2025 Revised: May 14, 2025 Accepted: May 15, 2025 Published: May 26, 2025 | |
| utb.fulltext.references | (1) Ishaq, H.; Dincer, I.; Crawford, C. A Review on Hydrogen Production and Utilization: Challenges and Opportunities. Int. J. Hydrogen Energy 2022, 47 (62), 26238−26264. (2) D’Silva, T. C.; Khan, S. A.; Kumar, S.; Kumar, D.; Isha, A.; Deb, S.; Yadav, S.; Illathukandy, B.; Chandra, R.; Vijay, V. K.; Subbarao, P. M. V.; Bagi, Z.; Kovács, K. L.; Yu, L.; Gandhi, B. P.; Semple, K. T. Biohydrogen Production through Dark Fermentation from Waste Biomass: Current Status and Future Perspectives on Biorefinery Development. Fuel 2023, 350, No. 128842. (3) Cao, Y.; Liu, H.; Liu, W.; Guo, J.; Xian, M. Debottlenecking the Biological Hydrogen Production Pathway of Dark Fermentation: Insight into the Impact of Strain Improvement. Microb. Cell Fact. 2022, 21 (1), 166. (4) Yuan, Z.; Yang, H.; Zhi, X.; Shen, J. Enhancement Effect of LCysteine on Dark Fermentative Hydrogen Production. Int. J. Hydrogen Energy 2008, 33 (22), 6535−6540. (5) Baeyens, J.; Zhang, H.; Nie, J.; Appels, L.; Dewil, R.; Ansart, R.; Deng, Y. Reviewing the Potential of Bio-Hydrogen Production by Fermentation. Renewable Sustainable Energy Rev. 2020, 131, No. 110023. (6) Jain, R.; Panwar, N. L.; Jain, S. K.; Gupta, T.; Agarwal, C.; Meena, S. S. Bio-Hydrogen Production through Dark Fermentation: An Overview. Biomass Convers. Biorefinery 2024, 14 (12), 12699−12724. (7) Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P. N. L.; Esposito, G. A Review on Dark Fermentative Biohydrogen Production from Organic Biomass: Process Parameters and Use of byProducts. Appl. Energy 2015, 144, 73−95. (8) Das, D.; Veziroglu, T. N. Advances in Biological Hydrogen Production Processes. Int. J. Hydrogen Energy 2008, 33 (21), 6046−6057. (9) Kamaraj, M.; Ramachandran, K. K.; Aravind, J. Biohydrogen Production from Waste Materials: Benefits and Challenges. Int. J. Environ. Sci. Technol. 2020, 17 (1), 559−576. (10) Martinez-Burgos, W. J.; Sydney, E. B.; de Paula, D. R.; Medeiros, A. B. P.; de Carvalho, J. C.; Molina, D.; Soccol, C. R. Hydrogen Production by Dark Fermentation Using a New Low-Cost Culture Medium Composed of Corn Steep Liquor and Cassava Processing Water: Process Optimization and Scale-Up. Bioresour. Technol. 2021, 320, No. 124370. (11) Elbeshbishy, E.; Dhar, B. R.; Nakhla, G.; Lee, H. S. A Critical Review on Inhibition of Dark Biohydrogen Fermentation. Renewable Sustainable Energy Rev. 2017, 79, 656−668. (12) Bao, M.; Su, H.; Tan, T. Dark Fermentative Bio-Hydrogen Production: Effects of Substrate Pre-Treatment and Addition of Metal Ions or L-Cysteine. Fuel 2013, 112, 38−44. (13) Wen, H.-Q.; Xing, D.-F.; Xie, G.-J.; Yin, T.-M.; Ren, N.-Q.; Liu, B.-F. Enhanced Photo-Fermentative Hydrogen Production by Synergistic Effects of Formed Biofilm and Added L-Cysteine. Renewable Energy 2019, 139, 643−650. (14) Yang, G.; Wang, J. Various Additives for Improving Dark Fermentative Hydrogen Production: A Review. Renew. Sustain. Energy Rev. 2018, 95, 130−146. (15) Zhao, X.; Xing, D.; Liu, B.; Lu, L.; Zhao, J.; Ren, N. The Effects of Metal Ions and L-Cysteine on HydA Gene Expression and Hydrogen Production by Clostridium Beijerinckii RZF-1108. Int. J. Hydrogen Energy 2012, 37 (18), 13711−13717. (16) Zhang, L.; Ding, J.; Li, Y.; Liu, X.; Jiang, J.; Ren, N. Effects of LCysteine and Giant Panda Excrement on Hydrogen Production from Cassava Residues. J. Residuals Sci. Technol. 2016, 13, S227−S234. (17) Qu, Y. Y.; Guo, W. Q.; Ding, J.; Ren, N. Q. Effect of L-Cysteine on Continuous Fermentative Hydrogen Production. Appl. Mech. Mater. 2012, 178−181, 406−410. (18) Xie, G.-J.; Liu, B.-F.; Xing, D.-F.; Nan, J.; Ding, J.; Ren, N.-Q. Photo-Fermentative Bacteria Aggregation Triggered by L-Cysteine during Hydrogen Production. Biotechnol. Biofuels 2013, 6 (1), 64. (19) Guo, W. Q.; Ding, J.; Cao, G. L.; Chen, C.; Zhou, X. J.; Ren, N. Q. Accelerated Startup of Hydrogen Production Expanded Granular Sludge Bed with L-Cysteine Supplementation. Energy 2013, 60, 94−98. (20) Shu, G.; Yang, H.; Tao, Q.; He, C. Effect of Ascorbic Acid and Cysteine Hydrochloride on Growth of Bifidobacterium Bifidum. Adv. J. Food Sci. Technol. 2013, 5 (6), 678−681. (21) Dey, A.; Neogi, S. Oxygen Scavengers for Food Packaging Applications: A Review. Trends Food Sci. Technol. 2019, 90, 26−34. (22) Zhu, S.; Zhang, Y.; Zhang, Z.; Ai, F.; Zhang, H.; Li, Y.; Wang, Y.; Zhang, Q. Ascorbic Acid-Mediated Zero-Valent Iron Enhanced Hydrogen Production Potential of Bean Dregs and Corn Stover by Photo Fermentation. Bioresour. Technol. 2023, 374, No. 128761. (23) Sivaramakrishnan, R.; Shanmugam, S.; Sekar, M.; Mathimani, T.; Incharoensakdi, A.; Kim, S. H.; Parthiban, A.; Edwin Geo, V.; Brindhadevi, K.; Pugazhendhi, A. Insights on Biological Hydrogen Production Routes and Potential Microorganisms for High Hydrogen Yield. Fuel 2021, 291, No. 120136. (24) Drbohlav, J.; Havlíková, Š.; Kvasničková, E.; Rittich, B.; Španová, A. Způsob Zpracování Odpadních Vod z Výroby Sýrů 305450, 2022. (25) Havlíková, Š.; Kvasničková, E.; Rittich, B.; Španová, A. Sledování Tvorby Vodíku Při Fermentaci Různých Médií Kmenem Clostridium Butyricum E16A. Mlékařské List. 2011, 126. (26) Boshagh, F.; Rostami, K. A Review of Measurement Methods of Biological Hydrogen. Int. J. Hydrogen Energy 2020, 45 (46), 24424−24452. (27) Dada, O.; Yusoff, W. M. W.; Kalil, M. S. Biohydrogen Production from Ricebran Using Clostridium Saccharoperbutylacetonicum N1−4. Int. J. Hydrogen Energy 2013, 38 (35), 15063−15073. (28) Argun, H.; Kargi, F.; Kapdan, I.; Oztekin, R. Batch Dark Fermentation of Powdered Wheat Starch to Hydrogen Gas: Effects of the Initial Substrate and Biomass Concentrations. Int. J. Hydrogen Energy 2008, 33 (21), 6109−6115. (29) Adessi, A.; Concato, M.; Sanchini, A.; Rossi, F.; De Philippis, R. Hydrogen Production under Salt Stress Conditions by a Freshwater Rhodopseudomonas Palustris Strain. Appl. Microbiol. Biotechnol. 2016, 100 (6), 2917−2926. (30) Zhang, T.; Jiang, D.; Zhang, H.; Jing, Y.; Tahir, N.; Zhang, Y.; Zhang, Q. Comparative Study on Bio-Hydrogen Production from Corn Stover: Photo-Fermentation, Dark-Fermentation and DarkPhoto Co-Fermentation. Int. J. Hydrogen Energy 2020, 45 (6), 3807−3814. (31) Xie, G.-J.; Liu, B.-F.; Ding, J.; Ren, H.-Y.; Xing, D.-F.; Ren, N.-Q. Hydrogen Production by Photo-Fermentative Bacteria Immobilized on Fluidized Bio-Carrier. Int. J. Hydrogen Energy 2011, 36 (21), 13991−13996. (32) Chirife, J.; Herszage, L.; Joseph, A.; Kohn, E. S. In Vitro Study of Bacterial Growth Inhibition in Concentrated Sugar Solutions: Microbiological Basis for the Use of Sugar in Treating Infected Wounds. Antimicrob. Agents Chemother. 1983, 23 (5), 766−773. (33) Hu, C. C.; Giannis, A.; Chen, C. L.; Qi, W.; Wang, J. Y. Comparative Study of Biohydrogen Production by Four Dark Fermentative Bacteria. Int. J. Hydrogen Energy 2013, 38 (35), 15686−15692. (34) Yin, Y.; Wang, J. Isolation and Characterization of a Novel Strain Clostridium Butyricum INET1 for Fermentative Hydrogen Production. Int. J. Hydrogen Energy 2017, 42 (17), 12173−12180. (35) Davila-Vazquez, G.; Cota-Navarro, C. B.; Rosales-Colunga, L. M.; de León-Rodríguez, A.; Razo-Flores, E. Continuous Biohydrogen Production Using Cheese Whey: Improving the Hydrogen Production Rate. Int. J. Hydrogen Energy 2009, 34 (10), 4296−4304. (36) Liu, C. H.; Chang, C. Y.; Cheng, C. L.; Lee, D. J.; Chang, J. S. Fermentative Hydrogen Production by Clostridium Butyricum CGS5 Using Carbohydrate-Rich Microalgal Biomass as Feedstock. Int. J. Hydrogen Energy 2012, 37 (20), 15458−15464. (37) Plangklang, P.; Reungsang, A.; Pattra, S. Enhanced BioHydrogen Production from Sugarcane Juice by Immobilized Clostridium Butyricum on Sugarcane Bagasse. Int. J. Hydrogen Energy 2012, 37 (20), 15525−15532. (38) Teke, G. M.; Anye Cho, B.; Bosman, C. E.; Mapholi, Z.; Zhang, D.; Pott, R. W. M. Towards Industrial Biological Hydrogen Production: A Review. World J. Microbiol. Biotechnol. 2024, 40 (1), 37. (39) Litti, Y. V.; Khuraseva, N. D.; Vishnyakova, A. V.; Zhuravleva, E. A.; Kovalev, A. A.; Kovalev, D. A.; Panchenko, V. A.; Parshina, S. N. Comparative Study on Biohydrogen Production by Newly Isolated Clostridium Butyricum SP4 and Clostridium Beijerinckii SP6. Int. J. Hydrogen Energy 2023, 48 (71), 27540−27556. | |
| utb.fulltext.sponsorship | This work was supported from the European Just Transition Fund within the Operational Programme: Just Transition under the aegis of the Ministry of the Environment of the Czech Republic, project CirkArena number CZ.10.03.01/00/22_003/0000045 and the Ministry of Education, Youth and Sports of Czech Republic, Operational Programme Johannes Amos Comenius OP JAC “Application potential development in the field of polymer materials in the context of circular economy compliance (POCEK)″, under Grant Number CZ.02.01.01/00/23_021/0009004. The authors are further grateful for cofunding from the development process of the Centre of Polymer Systems, Tomas Bata University in Zlin, program DKRVO (RP/CPS/2024-28/002) supported by the Ministry of Education, Youth and Sports of the Czech Republic. | |
| utb.wos.affiliation | [Pistekova, Hana; Dusankova, Miroslava; Sopik, Tomas; Klaban, Jakub; Dostalkova, Jitka; Moucka, Robert; Sedlarik, Vladimir] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Zlin 76001, Czech Republic | |
| utb.scopus.affiliation | Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, tr. Tomase Bati 5678, Zlin, 760 01, Czech Republic | |
| utb.fulltext.projects | CZ.10.03.01/00/22_003/0000045 | |
| utb.fulltext.projects | CZ.02.01.01/00/23_021/0009004 | |
| utb.fulltext.projects | DKRVO (RP/CPS/2024-28/002) | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.ou | Centre of Polymer Systems | |
| utb.fulltext.ou | Centre of Polymer Systems | |
| utb.fulltext.ou | Centre of Polymer Systems | |
| utb.fulltext.ou | Centre of Polymer Systems | |
| utb.fulltext.ou | Centre of Polymer Systems | |
| utb.fulltext.ou | Centre of Polymer Systems | |
| utb.fulltext.ou | Centre of Polymer Systems |