Contact Us | Language: čeština English
| dc.title | Reinforced fluorinated copolymer and polyurethane electrospun layered nanofiber-based membranes for effective model water dead-end microfiltration | en |
| dc.contributor.author | Kimmer, Dušan | |
| dc.contributor.author | Kovářová, Miroslava | |
| dc.contributor.author | Yasir, Muhammad | |
| dc.contributor.author | Lovecká, Lenka | |
| dc.contributor.author | Císař, Jaroslav | |
| dc.contributor.author | Musilová, Lenka | |
| dc.contributor.author | Osička, Josef | |
| dc.contributor.author | Sedlařík, Vladimír | |
| dc.relation.ispartof | Polymers for Advanced Technologies | |
| dc.identifier.issn | 1042-7147 Scopus Sources, Sherpa/RoMEO, JCR | |
| dc.date.issued | 2025 | |
| utb.relation.volume | 36 | |
| utb.relation.issue | 5 | |
| dc.type | article | |
| dc.language.iso | en | |
| dc.publisher | John Wiley and Sons Ltd | |
| dc.identifier.doi | 10.1002/pat.70203 | |
| dc.relation.uri | https://onlinelibrary.wiley.com/doi/epdf/10.1002/pat.70203 | |
| dc.subject | backwashing | en |
| dc.subject | flux | en |
| dc.subject | membrane | en |
| dc.subject | morphology | en |
| dc.subject | nanofiber | en |
| dc.subject | reinforcement | en |
| dc.description.abstract | The research presented herein describes the preparation of electrospun homogeneous nanofibrous structures with customized morphology and properties, as well as textile support for necessary reinforcement for microfiltration applications. Findings report membranes comprising a polyurethane or fluorinated copolymer nanofibrous layer and polyethylene terephthalate nonwoven textile as support were evaluated. The investigation encompassed various constructions of materials, which include the influence of nanostructure morphology, the process of membrane cleaning by backwashing, and factors affecting flux, filtration efficacy, and working life. Application of membrane support made from polyethylene terephthalate with a large distribution of polymer chain provides a sufficiently strong connection with a layer of nanofibers with minimum penetration into the nanostructure involved in flux improvement. It was discerned that nanostructures with a morphology of six layers from thick (fiber diameter ~ 500 nm) and thin (fiber diameter ~ 180 nm) nanofibers with mean pore size 0.67 μm in comparison with membranes prepared from thin nanofibers only (mean pore size 0.26 μm) exhibited improved flux (17 times higher after 150 min of filtration process). In contrast, the filtration efficacy of both membranes for filtering submicron particles remained stable and highly efficient. It also proved to smooth out the surfaces of the novel membranes, which simplifies the removal of caked-up debris. Cleaning the filter by backwashing renewed the efficacy of the developed membranes for filtration and extended their working life. Finally, repeatedly backwashing the thin nanofiber layer membrane raised the water flux measured as 230 L m−2 h−1, that is, six times higher than without backwashing. | en |
| utb.faculty | University Institute | |
| dc.identifier.uri | http://hdl.handle.net/10563/1012462 | |
| utb.identifier.scopus | 2-s2.0-105004820431 | |
| utb.identifier.wok | 001506565100001 | |
| utb.source | j-scopus | |
| dc.date.accessioned | 2025-02-10T09:21:29Z | |
| dc.date.available | 2025-02-10T09:21:29Z | |
| dc.description.sponsorship | European Just Transition Fund; Centre of Polymer Systems; Ministerstvo Školství, Mládeže a Tělovýchovy, MEYS; Tomas Bata University in Zlín, TBU, (RP/CPS/2024-28/002); Tomas Bata University in Zlín, TBU; Ministerstvo Životního Prostředí, MoE, (CZ.02.01.01/00/23_021/0009004, CZ.10.03.01/00/22_003/0000045); Ministerstvo Životního Prostředí, MoE | |
| dc.description.sponsorship | Centre of Polymer Sysrems, Tomas Bata University in Zlin [CZ.10.03.01/00/22_003/0000045]; European Just Transition Fund within the Operational Programme: Just Transition under the aegis of the Ministry of the Environment of the Czech Republic [CZ.02.01.01/00/23_021/0009004]; Operational Programme Johannes Amos Comenius OP JAC [RP/CPS/2024-28/002]; Tomas Bata University in Zlin; Ministry of Education Youth and Sports of the Czech Republic | |
| utb.ou | Centre of Polymer Systems | |
| utb.contributor.internalauthor | Kimmer, Dušan | |
| utb.contributor.internalauthor | Kovářová, Miroslava | |
| utb.contributor.internalauthor | Yasir, Muhammad | |
| utb.contributor.internalauthor | Lovecká, Lenka | |
| utb.contributor.internalauthor | Císař, Jaroslav | |
| utb.contributor.internalauthor | Musilová, Lenka | |
| utb.contributor.internalauthor | Osička, Josef | |
| utb.contributor.internalauthor | Sedlařík, Vladimír | |
| utb.fulltext.affiliation | Dusan Kimmer | Miroslava Kovarova | Muhammad Yasir | Lenka Lovecka | Jaroslav Cisar | Lenka Musilova | Josef Osicka | Vladimír Sedlařík Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic Correspondence: Dusan Kimmer (kimmer@utb.cz) | |
| utb.fulltext.dates | 10 February 2025 Revised: 25 April 2025 Accepted: 29 April 2025 First published: 09 May 2025 | |
| utb.fulltext.references | 1. M. A. Tofighy, T. Mohammadi, and M. H. Sadeghi, “High-Flux PVDF / PVP Nanocomposite Ultrafiltration Membrane Incorporated With Graphene Oxide Nanoribbones With Improved Antifouling Properties,” Journal of Applied Polymer Science 138 (2021): 49718, https://doi.org/10.1002/app.49718. 2. X. Wang and B. S. Hsiao, “Electrospun Nanofiber Membranes,” Current Opinion in Chemical Engineering 12 (2016): 62–81, https://doi.org/10.1016/j.coche.2016.03.001. 3. F. Klaessig, M. Marrapese, and S. Abe, “Current Perspectives in Nanotechnology Terminology and Nomenclature,” in Nanotechnology Standards, ed. V. Murashov and J. Howard (Springer, 2011), 21–52. 4. W. E. Teo and S. Ramakrishna, “A Review on Electrospinning Design and Nanofibre Assemblies,” Nanotechnology 17 (2006): R89–R106, https://doi.org/10.1088/0957-4484/17/14/R01. 5. L. T. H. Nguyen, S. Chen, N. K. Elumalai, et al., “Biological, Chemical, and Electronic Applications of Nanofibers,” Macromolecular Materials and Engineering 298 (2013): 822–867, https://doi.org/10.1002/mame.201200143. 6. R. HMTShirazi, T. Mohammadi, A. A. Asadi, and M. A. Tofighy, “Electrospun Nanofiber Affinity Membranes for Water Treatment Applications: A Review,” Journal of Water Process Engineering 47 (2022): 102795, https://doi.org/10.1016/j.jwpe.2022.102795. 7. D. Kimmer, I. Vincent, J. Fenyk, et al., “Morphology of Nano and Micro Fiber Structures in Ultrafine Particles Filtration,” AIP Conference Proceedings 1375 (2011): 295–311, https://doi.org/10.1063/1.3604490. 8. D. Kimmer, I. Vincent, L. Lovecka, T. Kazda, A. Giurg, and O. Skorvan, “Some Aspects of Applying Nanostructured Materials in Air Filtration, Water Filtration and Electrical Engineering,” AIP Conference Proceedings 1843 (2017): 060001, https://doi.org/10.1063/1.4983003. 9. D. H. Reneker and I. Chun, “Nanometre Diameter Fibres of Polymer, Produced by Electrospinning,” Nanotechnology 7 (1996): 216–223, https://doi.org/10.1088/0957-4484/7/3/009. 10. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, “A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites,” Composites Science and Technology 63 (2003): 2223–2253, https://doi.org/10.1016/S0266-3538(03)00178-7. 11. D. Kimmer, P. Slobodian, D. Petráš, M. Zatloukal, R. Olejník, and P. Sáha, “Polyurethane/Multiwalled Carbon Nanotube Nanowebs Prepared by an Electrospinning Process,” Journal of Applied Polymer Science 111 (2009): 2711–2714, https://doi.org/10.1002/app.29238. 12. M. Ulbricht, “Advanced Functional Polymer Membranes,” Polymer 47 (2006): 2217–2262, https://doi.org/10.1016/j.polymer.2006.01.084. 13. S. Kaur, Z. Ma, R. Gopal, G. Singh, S. Ramakrishna, and T. Matsuura, “Plasma-Induced Graft Copolymerization of Poly(Methacrylic Acid) on Electrospun Poly(Vinylidene Fluoride) Nanofiber Membrane,” Langmuir 23 (2007): 13085–13092, https://doi.org/10.1021/la701329r. 14. M. Moslehi and H. Mahdavi, “Preparation and Characterization of Electrospun Polyurethane Nanofibrous Microfiltration Membrane,” Journal of Polymers and the Environment 28 (2020): 2691–2701, https://doi.org/10.1007/s10924-020-01801-z. 15. L. Huang, J. T. Arena, S. S. Manickam, X. Jiang, B. G. Willis, and J. R. McCutcheon, “Improved Mechanical Properties and Hydrophilicity of Electrospun Nanofiber Membranes for Filtration Applications by Dopamine Modification,” Journal of Membrane Science 460 (2014): 241–249, https://doi.org/10.1016/j.memsci.2014.01.045. 16. R. Zhao, X. Li, B. Sun, H. Ji, and C. Wang, “DiethylenetriamineAssisted Synthesis of Amino-Rich Hydrothermal Carbon-Coated Electrospun Polyacrylonitrile Fiber Adsorbents for the Removal of Cr(VI) and 2,4-Dichlorophenoxyacetic Acid,” Journal of Colloid and Interface Science 487 (2017): 297–309, https://doi.org/10.1016/j.jcis.2016.10.057. 17. H. Na, Q. Li, H. Sun, C. Zhao, and X. Yuan, “Anisotropic Mechanical Properties of Hot-Pressed PVDF Membranes With Higher Fiber Alignments via Electrospinning,” Polymer Engineering and Science 49 (2009): 1291–1298, https://doi.org/10.1002/pen.21368. 18. Y. Chen, N. Wang, M. Jensen, and X. Li, “Low-Temperature Welded PAN/TPU Composite Nanofiber Membranes for Water Filtration,” Journal of Water Process Engineering 47 (2022): 102806, https://doi.org/10.1016/j.jwpe.2022.102806. 19. R. Xin, H. Ma, S. Venkateswaran, and B. S. Hsiao, “Electrospun Nanofibrous Adsorption Membranes for Wastewater Treatment: Mechanical Strength Enhancement,” Chemical Research in Chinese Universities 37 (2021): 355–365, https://doi.org/10.1007/s40242-021-1095-5. 20. Y. C. Woo, L. D. Tijing, W.-G. Shim, et al., “Water Desalination Using Graphene-Enhanced Electrospun Nanofiber Membrane via Air Gap Membrane Distillation,” Journal of Membrane Science 520 (2016): 99–110, https://doi.org/10.1016/j.memsci.2016.07.049. 21. R. Augustine, H. N. Malik, D. K. Singhal, et al., “Electrospun Polycaprolactone/ZnO Nanocomposite Membranes as Biomaterials With Antibacterial and Cell Adhesion Properties,” Journal of Polymer Research 21 (2014): 347, https://doi.org/10.1007/s10965-013-0347-6. 22. P. Pascariu Dorneanu, C. Cojocaru, P. Samoila, N. Olaru, A. Airinei, and A. Rotaru, “Novel Fibrous Composites Based on Electrospun PSF and PVDF Ultrathin Fibers Reinforced With Inorganic Nanoparticles: Evaluation as Oil Spill Sorbents,” Polymers for Advanced Technologies 29 (2018): 1435–1446, https://doi.org/10.1002/pat.4255. 23. I. K. Januariyasa, I. D. Ana, and Y. Yusuf, “Nanofibrous Poly(Vinyl Alcohol)/chitosan Contained Carbonated Hydroxyapatite Nanoparticles Scaffold for Bone Tissue Engineering,” Materials Science and Engineering: C 107 (2020): 110347, https://doi.org/10.1016/j.msec.2019.110347. 24. B. He, L. Tian, J. Li, and Z. Pan, “Effect of Hot-Stretching on Morphology and Mechanical Properties of Electrospun PMIA Nanofibers,” Fibers and Polymers 14 (2013): 405–408, https://doi.org/10.1007/s12221-013-0405-z. 25. X. Hou, X. Yang, L. Zhang, E. Waclawik, and S. Wu, “StretchingInduced Crystallinity and Orientation to Improve the Mechanical Properties of Electrospun PAN Nanocomposites,” Materials and Design 31 (2010): 1726–1730, https://doi.org/10.1016/j.matdes.2009.01.051. 26. J. Ji, G. Sui, Y. Yu, et al., “Significant Improvement of Mechanical Properties Observed in Highly Aligned Carbon-Nanotube-Reinforced Nanofibers,” Journal of Physical Chemistry C 113 (2009): 4779–4785, https://doi.org/10.1021/jp8077198. 27. K. Yoon, B. S. Hsiao, and B. Chu, “Formation of Functional Polyethersulfone Electrospun Membrane for Water Purification by Mixed Solvent and Oxidation Processes,” Polymer 50 (2009): 2893–2899, https://doi.org/10.1016/j.polymer.2009.04.047. 28. X. Liu, H. Ma, and B. S. Hsiao, “Interpenetrating Nanofibrous Composite Membranes for Water Purification,” ACS Applied Nano Materials 2 (2019): 3606–3614, https://doi.org/10.1021/acsanm.9b00565. 29. M. Sun, X. Li, B. Ding, J. Yu, and G. Sun, “Mechanical and Wettable Behavior of Polyacrylonitrile Reinforced Fibrous Polystyrene Mats,” Journal of Colloid and Interface Science 347 (2010): 147–152, https://doi.org/10.1016/j.jcis.2010.03.026. 30. H. Li, C. Zhu, J. Xue, Q. Ke, and Y. Xia, “Enhancing the Mechanical Properties of Electrospun Nanofiber Mats Through Controllable Welding at the Cross Points,” Macromolecular Rapid Communications 38 (2017): 1600723, https://doi.org/10.1002/marc.201600723. 31. J. Bae, I. Baek, and H. Choi, “Mechanically Enhanced PES Electrospun Nanofiber Membranes (ENMs) for Microfiltration: The Effects of ENM Properties on Membrane Performance,” Water Research 105 (2016): 406–412, https://doi.org/10.1016/j.watres.2016.09.020. 32. L. Huang, S. S. Manickam, and J. R. McCutcheon, “Increasing Strength of Electrospun Nanofiber Membranes for Water Filtration Using Solvent Vapor,” Journal of Membrane Science 436 (2013): 213–220, https://doi.org/10.1016/j.memsci.2012.12.037. 33. S.-H. Wu and X.-H. Qin, “Uniaxially Aligned Polyacrylonitrile Nanofiber Yarns Prepared by a Novel Modified Electrospinning Method,” Materials Letters 106 (2013): 204–207, https://doi.org/10.1016/j.matlet.2013.05.010. 34. L. Yu, Z. Shao, L. Xu, and M. Wang, “High Throughput Preparation of Aligned Nanofibers Using an Improved Bubble-Electrospinning,” Polymers 9 (2017): 658, https://doi.org/10.3390/polym9120658. 35. X. Han, Z. Huang, C. He, L. Liu, and Q.-. S. Wu, “Coaxial Electrospinning of PC(Shell)/PU(Core) Composite Nanofibers for Textile Application,” Polymer Composites 29, no. 5 (2008): 579–584, https://doi.org/10.1002/pc.20180. 36. R. Cai, Y. Zhou, J. Hu, et al., “A Novel Sodium Alginate/Cellulose Nanofiber Self-Supported Hydrogel Membrane and Its Filtration Performance,” Journal of Water Process Engineering 50 (2022): 103303, https://doi.org/10.1016/j.jwpe.2022.103303. 37. S. S. Homaeigohar, K. Buhr, and K. Ebert, “Polyethersulfone Electrospun Nanofibrous Composite Membrane for Liquid Filtration,” Journal of Membrane Science 365 (2010): 68–77, https://doi.org/10.1016/j.memsci.2010.08.041. 38. M. Barani, C. H. Riahi, V. Heidari, and S. Bazgir, “Pilot-Scale Continuous Bacterial Filtration Using Nanofibrous Filters,” Journal of Water Process Engineering 48 (2022): 102925, https://doi.org/10.1016/j.jwpe.2022.102925. 39. J. Lev, M. Holba, L. Kalhotka, P. Mikula, and D. Kimmer, “Improvements in the Structure of Electrospun Polyurethane Nanofibrous Materials Used for Bacterial Removal From Wastewater,” International Journal of Theoretical and Applied Nanotechnology 1 (2012): 16–20, https://doi.org/10.11159/ijtan.2012.003. 40. L. Sumin, D. Kimura, A. Yokoyama, K. H. Lee, J. C. Park, and I. S. Kim, “The Effects of Laundering on the Mechanical Properties of MassProduced Nanofiber Web for Use in Wear,” Textile Research Journal 79 (2009): 1085–1090, https://doi.org/10.1177/0040517508101622. 41. L. Sumin, D. Kimura, K. H. Lee, J. C. Park, and I.-S. Kim, “The Effect of Laundering on the Thermal and Water Transfer Properties of Mass-Produced Laminated Nanofiber Web for Use in Wear,” Text & Speech Research 80 (2010): 99–105, https://doi.org/10.1177/0040517508102308. 42. M. N. Pervez, M. E. Talukder, M. R. Mishu, et al., “Fabrication of Polyethersulfone/Polyacrylonitrile Electrospun Nanofiber Membrane for Food Industry Wastewater Treatment,” Journal of Water Process Engineering 47 (2022): 102838, https://doi.org/10.1016/j.jwpe.2022.102838. 43. X. Ke, S. Ribbens, Y. Fan, et al., “Integrating Efficient Filtration and Visible-Light Photocatalysis by Loading ag-Doped Zeolite Y Particles on Filtration Membrane of Alumina Nanofibers,” Journal of Membrane Science 375 (2011): 69–74, https://doi.org/10.1016/j.memsci.2011.02.024. 44. J. Yu, Y.-G. Kim, D. Y. Kim, S. Lee, H. I. Joh, and S. M. Jo, “Super High Flux Microfiltration Based on Electrospun Nanofibrous m-Aramid Membranes for Water Treatment,” Macromolecular Research 23 (2015): 601–606, https://doi.org/10.1007/s13233-015-3086-1. 45. M. Ahsani, F. A. Oghyanous, J. Meyer, M. Ulbricht, and R. Yegani, “PVDF Membranes Modified With Diblock Copolymer PEO-b-PMMA as Additive: Effects of Copolymer and Barrier Pore Size on Filtration Performance and Fouling in a Membrane Bioreactor,” Chemical Engineering Research and Design 184 (2022): 678–691, https://doi.org/10.1016/j.cherd.2022.05.051. 46. X.-T. Yuan, L. Wu, H.-Z. Geng, et al., “Polyaniline/Polysulfone Ultrafiltration Membranes With Improved Permeability and Anti-Fouling Behavior,” Journal of Water Process Engineering 40 (2021): 101903, https://doi.org/10.1016/j.jwpe.2020.101903. 47. A. M. Nasir, N. Awang, J. Jaafar, et al., “Recent Progress on Fabrication and Application of Electrospun Nanofibrous Photocatalytic Membranes for Wastewater Treatment: A Review,” Journal of Water Process Engineering 40 (2021): 101878, https://doi.org/10.1016/j.jwpe.2020.101878. 48. T. Serra, A. Barcelona, N. Pous, V. Salvadó, and J. Colomer, “Disinfection and Particle Removal by a Nature-Based Daphnia Filtration System for Wastewater Treatment,” Journal of Water Process Engineering 50 (2022): 103238, https://doi.org/10.1016/j.jwpe.2022.103238. 49. D. Kimmer, I. Vincent, J. Lev, et al., “Nanofiber Structures in Bacteria Deactivation and Removal From Wastewater and Polluted Air,” in Conference Proceedings FILTECH 2013 (FILTECH Exhibitions Germany GmbH & Co KG, 2013), 12. 50. R. Barhate and S. Ramakrishna, “Nanofibrous Filtering Media: Filtration Problems and Solutions From Tiny Materials,” Journal of Membrane Science 296 (2007): 1–8, https://doi.org/10.1016/j.memsci.2007.03.038. 51. H. Ma, C. Burger, B. S. Hsiao, and B. Chu, “Ultra-Fine Cellulose Nanofibers: New Nano-Scale Materials for Water Purification,” Journal of Materials Chemistry 21 (2011): 7507, https://doi.org/10.1039/c0jm04308g. 52. D. Kimmer, I. Vincent, L. Lovecká, et al., “Method of Manufacturing a Filter Membrane,” CZ Patent No. 308593. | |
| utb.fulltext.sponsorship | This work was supported by the European Just Transition Fund within the Operational Programme: Just Transition under the aegis of the Ministry of the Environment of the Czech Republic, project CirkArena number CZ.10.03.01/00/22_003/0000045 and Operational Programme Johannes Amos Comenius OP JAC “Application potential development in the field of polymer materials in the context of circular economy compliance (POCEK)”, number CZ.02.01.01/00/23_021/0009004. The authors are further grateful for co-funding from the development process of the Centre of Polymer Systems, Tomas Bata University in Zlin, program DKRVO (RP/CPS/2024-28/002) supported by the Ministry of Education Youth and Sports of the Czech Republic. | |
| utb.wos.affiliation | [Kimmer, Dusan; Kovarova, Miroslava; Yasir, Muhammad; Lovecka, Lenka; Cisar, Jaroslav; Musilova, Lenka; Osicka, Josef; Sedlarik, Vladimir] Univ Inst, Tomas Bata Univ Zlin, Ctr Polymer Syst, Zlin, Czech Republic | |
| utb.scopus.affiliation | Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic | |
| utb.fulltext.projects | CZ.10.03.01/00/22_003/0000045 | |
| utb.fulltext.projects | CZ.02.01.01/00/23_021/0009004 | |
| utb.fulltext.projects | DKRVO (RP/CPS/2024-28/002) | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.faculty | University Institute | |
| utb.fulltext.ou | Centre of Polymer Systems | |
| utb.fulltext.ou | Centre of Polymer Systems | |
| utb.fulltext.ou | Centre of Polymer Systems | |
| utb.fulltext.ou | Centre of Polymer Systems | |
| utb.fulltext.ou | Centre of Polymer Systems | |
| utb.fulltext.ou | Centre of Polymer Systems | |
| utb.fulltext.ou | Centre of Polymer Systems | |
| utb.fulltext.ou | Centre of Polymer Systems |