Publikace UTB
Repozitář publikační činnosti UTB

Changes in the thermal and structural properties of polylactide and its composites during a long-term degradation process

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Changes in the thermal and structural properties of polylactide and its composites during a long-term degradation process en
dc.contributor.author Císař, Jaroslav
dc.contributor.author Pummerová, Martina
dc.contributor.author Dröhsler, Petra
dc.contributor.author Masař, Milan
dc.contributor.author Sedlařík, Vladimír
dc.relation.ispartof Polymers
dc.identifier.issn 2073-4360 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2025
utb.relation.volume 17
utb.relation.issue 10
dc.type article
dc.language.iso en
dc.publisher Multidisciplinary Digital Publishing Institute (MDPI)
dc.identifier.doi 10.3390/polym17101326
dc.relation.uri https://www.mdpi.com/2073-4360/17/10/1326
dc.relation.uri https://www.mdpi.com/2073-4360/17/10/1326/pdf?version=1747142527
dc.subject polylactide en
dc.subject polymer composite en
dc.subject calcium carbonate en
dc.subject plasticizer en
dc.subject hydrolysis en
dc.subject crystallinity en
dc.description.abstract As a polymer degrades, its structure changes, and the course of composting also affects the rate and degree of decomposition. Moreover, the potential exists for the formation of microplastics. This work focuses on the investigation of the long-term hydrolytic degradation of PLA-based composites at different temperatures (50, 55, and 60 °C, respectively). Samples were prepared on semi-industrial equipment, simulating actual production conditions. The effect of the degradation temperature on molecular weight was studied by gel permeation chromatography. Variation in the thermal properties and crystallinity of the PLA and its composites was investigated using differential scanning calorimetry and thermal gravimetric analysis. Mass loss during hydrolytic degradation was assessed using the gravimetric technique, and confirmation of microplastic residues in the hydrolyzed samples was evaluated using Fourier-transform infrared spectroscopy. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1012463
utb.identifier.scopus 2-s2.0-105006737335
utb.identifier.wok 001495640500001
utb.identifier.pubmed 40430622
utb.source j-scopus
dc.date.accessioned 2025-06-28T13:04:57Z
dc.date.available 2025-06-28T13:04:57Z
dc.description.sponsorship European Just Transition Fund; Ministerstvo Školství, Mládeže a Tělovýchovy, MSMT; Ministerstvo Životního Prostředí, MoE, (RP/CPS/2024-28/007, CZ.02.01.01/00/23_021/0009004, RP/CPS/2024-28/002, CZ.10.03.01/00/22_003/0000045); Ministerstvo Životního Prostředí, MoE; Technology Agency of the Czech Republic, TACR, (TQ03000235); Technology Agency of the Czech Republic, TACR
dc.description.sponsorship European Just Transition Fund within the Operational Programme: Just Transition under the aegis of the Ministry of the Environment of the Czech Republic; Operational Programme Johannes Amos Comenius OP JAC "Application potential development in the field of polymer materials in the context of circular economy compliance (POCEK)"; Development process of Centre of Polymer Systems, Tomas Bata University in Zlin, program DKRVO [RP/CPS/2024-28/002, RP/CPS/2024-28/007]; Ministry of Education Youth and Sports of the Czech Republic; Technology Agency of the Czech Republic [TQ03000235]; [CZ.10.03.01/00/22_003/0000045]; [CZ.02.01.01/00/23_021/0009004]
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Císař, Jaroslav
utb.contributor.internalauthor Pummerová, Martina
utb.contributor.internalauthor Dröhsler, Petra
utb.contributor.internalauthor Masař, Milan
utb.contributor.internalauthor Sedlařík, Vladimír
utb.fulltext.affiliation Jaroslav Cisar, Martina Pummerova * , Petra Drohsler , Milan Masar and Vladimir Sedlarik * Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760-01 Zlín, Czech Republic; jcisar@utb.cz (J.C.); pvalkova@utb.cz (P.D.); masar@utb.cz (M.M.) * Correspondence: pummerova@utb.cz (M.P.); sedlarik@utb.cz (V.S.); Tel.: +420-576-031-740 (M.P.); +420-576-038-013 (V.S.)
utb.fulltext.dates Received: 28 March 2025 Revised: 5 May 2025 Accepted: 10 May 2025 Published: 13 May 2025
utb.fulltext.references 1. Kontou, E.; Niaounakis, M.; Panayiotis, G. Comparative study of PLA nanocomposites reinforced with clay and silica nanofillers and their mixtures. J Appl. Polym. Sci. 2011, 122, 1519–1529. https://doi.org/10.1002/app.34234 2. Balaguer, M.; Aliaga, C.; Fito, C.; Hortal, M. Compostability assessment of nano-reinforced poly(lactic acid) films. Waste Manag. 2016, 48, 143–155. https://doi.org/10.1016/j.wasman.2015.10.030 3. Gigante, V.; Coltelli, M.-B.; Vannozzi, A.; Panariello, L.; Fusco, A.; Trombi, L.; Lazzeri, A. Flat die extruded biocompatible poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) based films. Polymers 2019, 11, 1857. https://doi.org/10.3390/polym11111857 4. Pantani, R.; Sorrentino, A. Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym. Degrad. Stab. 2013, 51, 1089–1096. https://doi.org/10.1016/j.polymdegradstab.2013.01.005 5. Olewnik-Kruszkowska, E. Influence of the type of buffer solution on thermal and structural properties of polylactide-based composites. Polym. Degrad. Stab. 2016, 129, 87–95. https://doi.org/10.1016/j.polymdegradstab.2016.04.009 6. Shi, N.; Dou, Q. Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J. Therm. Anal. Calorim. 2015, 119, 635–642. https://doi.org/10.1007/s10973-014-4162-z 7. Guo, H.; Zou, X.; Dai, W.; Zhang, P.; Xiao, B. Properties and morphology of polylactic acid composites reinforced by orientation aligned calcium carbonate whisker. J Appl. Polym. Sci. 2022, 140, e53622. https://doi.org/10.1002/app.53622 8. Chow, W.S.; Leu, Y.Y.; Mohd Ishak, Z.A. Water absorption of poly(lactic acid) nanocomposites: Effects of nanofillers and maleated rubbers. Polym. Plast. Technol. Mater. 2014, 53, 858–863. https://doi.org/10.1080/03602559.2014.886054 9. Leu, Y.Y.; Chow, W.S. Kinetics of water absorption and thermal properties of poly(lactic acid)/organo montmorillonite/poly(ethylene glycol) nanocomposites. J. Vinyl Addit. Technol. 2011, 17, 40–47. https://doi.org/10.1002/vnl.20259 10. Turan, D.; Sirin, H.; Ozkoc, G. Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and plasticised PLA. J. Appl. Polym. Sci. 2010, 121, 1067–1075. https://doi.org/10.1002/app.33802 11. Zuo, U.; Chen, X.; Ding, Y.; Cui, L.; Fan, B.; Pan, L.; Zhang, K. Novel designed PEG-dicationic imidazolium-based ionic liquids as effective plasticizers for sustainable polylactide. Chin. J. Chem. 2021, 39, 2234–2240. https://doi.org/10.1002/cjoc.202100217 12. Cisar, J.; Drosler, P.; Pummerova, M.; Sedlarik, V.; Skoda, D. Composite based on PLA with improved shape stability under high-temperature conditions. Polymer 2023, 276, 125943. https://doi.org/10.1016/j.polymer.2023.125943 13. Li, Y.; Han, C.; Yu, Y.; Xiao, L.; Shao, Y. Crystallization behaviors of poly(lactic acid) composites fabricated using functionalized eggshell powder and poly(ethylene glycol). Thermochim. Acta 2018, 663, 67–76. https://doi.org/10.1016/j.tca.2018.03.011 14. Bhiogade, A.; Kannan, M.; Devanathan, S. Degradation kinetics study of Poly lactic acid (PLA) based biodegradable green composites. Mater. Today 2020, 24, 806–814. https://doi.org/10.1016/j.matpr.2020.04.389 15. Rocha, D.B.; Souza de Carvalho, J.; Aparecida de Oliveira, S. A new approach for flexible PBAT/PLA/CaCO3 films into agriculture. J. Appl. Polym. Sci 2018, 135, 46660. https://doi.org/10.1002/app.46660 16. Vidović, E.; Faraguna, F.; Jukić, A. Influence of inorganic fillers on PLA crystallinity and thermal properties. J. Therm. Anal. Calorim. 2017, 127, 371–380. https://doi.org/10.1007/s10973-016-5750-x 17. Gayer, C.; Ritter, J.; Bullemer, M.; Grom, S.; Jauer, L.; Meiners, W.; Schleifenbaum, J.H. Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds. Mater. Sci. Eng. C 2019, 101, 660–673. https://doi.org/10.1016/j.msec.2019.03.101 18. Donate, R.; Monzón, M.; Alemán-Domínguez, M.E.; Ortega, Z. Enzymatic degradation study of PLA-based composite scaffolds. Rev. Adv. Mater. Sci. 2020, 59, 170–175. https://doi.org/10.1515/rams-2020-0005 19. Polyák, P.; Nagy, K.; Vértessy, B.; Pukánszky, B. Self-regulating degradation technology for the biodegradation of poly(lactic acid). Environ. Technol. Innov. 2023, 29, 103000. https://doi.org/10.1016/j.eti.2022.103000 20. Kalita, N.K.; Damare, N.A.; Hazarika, D.; Bhagabati, P.; Kalamdhad, A.; Katiyar, V. Biodegradation and characterization study of compostable PLA bioplastic containing algae biomass as potential degradation accelerator. Environ. Chall. 2021, 3, 100067. https://doi.org/10.1016/j.envc.2021.100067 21. Ruggero, F.; Belardi, S.; Carretti, E.; Lotti, T.; Lubello, C.; Gori, R. Rigid and film bioplastics degradation under suboptimal composting conditions: A kinetic study. Waste Manag. Res. 2022, 40, 1311–1321. https://doi.org/10.1177/0734242X211063731 22. Briassoulis, D.; Pikasi, A.; Hiskakis, M. Organic recycling of post-consumer /industrial bio-based plastics through industrial aerobic composting and anaerobic digestion—Techno-economic sustainability criteria and indicators. Polym. Degrad. Stab. 2021, 190, 109642. https://doi.org/10.1016/j.polymdegradstab.2021.109642 23. Hottle, T.A.; Agüero, M.L.; Bilec, M.M.; Landis, A.E. Alkaline amendment for the enhancement of compost degradation for polylactic acid biopolymer products. Compost Sci. Util. 2016, 24, 159–173. https://doi.org/10.1080/1065657X.2015.1102664 24. Kale, G.; Auras, R.; Singh, S.P.; Narayan, R. Biodegradability of polylactide bottles in real and simulated composting conditions. Polym. Test. 2007, 26, 1049–1061. https://doi.org/10.1016/j.polymertesting.2007.07.006 25. Guzman-Sielicka, A.; Janik, H.; Sielicki, P. Proposal of new starch-blends composition quickly degradable in marine environment. J. Polym. Environ. 2013, 21, 802–806. https://doi.org/10.1007/s10924-012-0558-7 26. Donate, R.; Monzón, M.; Alemán-Domínguez, M.E.; Rodríguez-Esparragón, F. Effects of ceramic additives and bioactive coatings on the degradation of polylactic acid-based bone scaffolds under hydrolytic conditions. J. Biomed. Mater. Res. B 2023, 111, 429–441. https://doi.org/10.1002/jbm.b.35162 27. Kucharczyk, P.; Hnatkova, E.; Dvorak, Z.; Sedlarik, V. Novel aspects of the degradation process of PLA based bulky samples under conditions of high partial pressure of water vapour. Polym. Degrad. Stab. 2013, 98, 150–157. https://doi.org/10.1016/j.polymdegradstab.2012.10.016 28. Liao, R.; Yang, B.; Yu, W.; Zhou, C. Isothermal cold crystallization kinetics of polylactide/nucleating agents. J. Appl. Polym. Sci. 2007, 104, 310–317. https://doi.org/10.1002/app.25733 29. Hoque, E.M.; Ghorban, D.M.; Khalid, M. Next generation biomimetic bone tissue engineering matrix from poly (L- lactic acid) PLA/calcium carbonate composites doped with silver nanoparticles. Curr. Anal. Chem. 2018, 14, 268–277. https://doi.org/10.2174/1573411013666171003155024 30. De Santis, F.; Pantani, R.; Titomanlio, G. Nucleation and crystallization kinetics of poly(lactic acid). Thermochim. Acta 2011, 522, 128–1334. https://doi.org/10.1016/j.tca.2011.05.034 31. Pantani, R.; De Santis, F.; Sorrentino, A.; De Maio, F.; Titomanlio, G. Crystallization kinetics of virgin and processed poly(lactic acid). Polym. Degrad. Stab. 2010, 95, 1148–1159. https://doi.org/10.1016/j.polymdegradstab.2010.04.018 32. Muller, J.; Jimenez, A.; Gonzalez-Martinez, C.; Chiralt, A. Influence of plasticizers on thermal properties and crystallization behaviour of poly(lactic acid) films obtained by compression moulding. Polym. Int. 2016, 65, 970–978. https://doi.org/10.1002/pi.5142 33. Papadopoulou, K.; Klonos, P.A.; Kyritsis, A.; Tarani, E.; Chrissafis, K.; Masek, O.; Tsachouridis, K.; Anastasiou, A.D.; Bikiaris, D.N. Synthesis and characterization of PLA/biochar bio-composites containing different biochar types and content. Polymers 2025, 17, 263. https://www.ncbi.nlm.nih.gov/pubmed/39940467 34. Backes, E.H.; Pires, L.D.; Costa, L.C.; Passador, F.R.; Pessan, L.A. Analysis of the degradation during melt processing of PLA/Biosilicate® composites. J. Compos. Sci. 2019, 3, 1–12. https://doi.org/10.3390/jcs3020052 35. Drohsler, P.; Yasir, M.; Fabian, D.R.C.; Cisar, J.; Yadollahi, Z.; Sedlarik, V. Comparative degradation study of a biodegradable composite based on polylactide with halloysite nanotubes and a polyacrylic acid copolymer. Mater. Today Commun. 2022, 33, 10440. https://doi.org/10.1016/j.mtcomm.2022.104400 36. Krishnudu, M.D.; Reddy, V.P.; Kumar, V.M.; Reddy, S.R.; Rao, U.A. Effect of CaCO3 filler reinforcement on PLA matrix composites fabricated through injection moulding. Phys. Scr. 2024, 99, 065053. https://doi.org/10.1088/1402-4896/ad4eae 37. Yu, Y.; Zhu, B.; Ding, Y.; Zhou, C.; Ge, S. Impacts of poly(lactic acid) microplastics on organic compound leaching and heavy metal distribution during hydrothermal treatment of sludge. Sci. Total Environ. 2023, 901, 166012. https://doi.org/10.1016/j.scitotenv.2023.166012 38. Gbadeyan, O.L. Thermomechanical characterization of bioplastic films produced using a combination of polylactic acid and bionano calcium carbonate. Sci. Rep. 2022, 15538, 1–9. https://doi.org/10.1038/s41598-022-20004-1 39. Nekhamanurak, B.; Patanathabutr, P.; Hongsriphan, N. The influence of micro-/nano-CaCO3 on thermal stability and melt rheology behavior of poly(lactic acid). Energy Procedia 2014, 56, 118–128. https://doi.org/10.1016/j.egypro.2014.07.139 40. Kim, H.-S.; Park, B.H.; Choi, J.H.; Yoon, J.-S. Mechanical properties and thermal stability of poly(L-lactide)/calcium carbonate composites. J. Appl. Polym. Sci. 2008, 109, 3087–3092. https://doi.org/10.1002/app.28229 41. Tsuji, H.; Echizen, Y.; Saha, S.K.; Nishimura, Y. Photodegradation of poly(L-lactic acid): Effects of photosensitizer. Macromol. Mater. Eng. 2008, 290, 1192–1203. https://doi.org/10.1002/mame.200500278 42. Kalia, S.; Avérous, L. Biodegradable and Biobased Polymers for Environmental and Biomedical Applications, 1st ed.; Wiley: Hoboken, NJ, USA, 2016; pp. 171–224. 43. Dreier, J.; Brütting, C.; Ruckdäschel, H.; Altstädt, V.; Bonten, C. Investigation of the thermal and hydrolytic degradation of polylactide during autoclave foaming. Polymers 2021, 16, 2624. https://doi.org/10.3390/polym13162624 44. Odelius, K.; Hoglund, A.; Kumar, S.; Hakkarainen, M.; Ghosh, A.K.; Bhatnagar, N.; Albertsson, A.-C. Porosity and pore size regulate the degradation product profile of polylactide. Biomacromolecules 2011, 12, 1250–1258. https://doi.org/10.1021/bm1015464 45. Zhou, Z.; Zhou, J.; Yi, Q.; Liu, L.; Zhao, Y.; Nie, H.; Liu, X.; Zou, J.; Chen, L. Biological evaluation of poly-L-lactic acid composite containing bioactive glass. Polym. Bull. 2010, 65, 411–423. https://doi.org/10.1007/s00289-010-0266-1 46. Dobircau, L.; Delpouve, N.; Herbinet, R.; Domenek, S.; Le Pluart, L.; Delbreilh, L.; Dacrue, V.; Dargent, E. Molecular mobility and physical ageing of plasticized poly(lactide). Polym. Eng. Sci. 2015, 55, 858–865. https://doi.org/10.1002/pen.23952 47. Wolf, M.H.; Gil-Castel, O.; Cea, J.; Carrasco, J.C.; Ribes-Greus, A. Degradation of Plasticised Poly(lactide) Composites with nanofibrillated cellulose in different hydrothermal environments. J. Polym. Environ. 2023, 31, 2055–2072. https://doi.org/10.1007/s10924-022-02711-y 48. Gonzala, G.L.; Babetto, A.S.; Goncalves, L.M.; Bettini, S.H.; Souza, A.M. Biodegradation behavior of poly (lactic acid) samples obtained by three-dimensional printing: Influence of temperature and pigment presence. Polym. Eng. Sci. 2024, 64, 2812–2823. https://doi.org/10.1002/pen.26727 49. Kara, Y.; Molnar, K. Decomposition behavior of stereocomplex PLA melt-blown fine fiber mats in water and in compost. J. Polym. Environ. 2022, 31, 1398–1414. https://doi.org/10.1007/s10924-022-02694-w 50. Fortunati, E.; Armentano, I.; Iannoni, A.; Barbale, M.; Zaccheo, S.; Scavone, M.; Visai, L.; Kenny, J.M. New multifunctional poly(lactide acid) composites: Mechanical, antibacterial, and degradation properties. J. Appl. Polym. Sci. 2012, 124, 1. https://doi.org/10.1002/app.35039
utb.fulltext.sponsorship This work was supported by the European Just Transition Fund within the Operational Programme: Just Transition under the aegis of the Ministry of the Environment of the Czech Republic, project CirkArena number CZ.10.03.01/00/22_003/0000045; Operational Programme Johannes Amos Comenius OP JAC “Application potential development in the field of polymer materials in the context of circular economy compliance (POCEK)”, number CZ.02.01.01/00/23_021/0009004; and the development process of Centre of Polymer Systems, Tomas Bata University in Zlín, program DKRVO (RP/CPS/2024-28/002 and RP/CPS/2024-28/007); and the Ministry of Education Youth and Sports of the Czech Republic. The authors are further grateful for co-funding from the Technology Agency of the Czech Republic (project no. TQ03000235).
utb.wos.affiliation [Cisar, Jaroslav; Pummerova, Martina; Drohsler, Petra; Masar, Milan; Sedlarik, Vladimir] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida Tomase Bati 5678, Zlin 76001, Czech Republic
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 760-01, Czech Republic
utb.fulltext.projects CZ.10.03.01/00/22_003/0000045
utb.fulltext.projects CZ.02.01.01/00/23_021/0009004
utb.fulltext.projects DKRVO (RP/CPS/2024-28/002)
utb.fulltext.projects DKRVO (RP/CPS/2024-28/007)
utb.fulltext.projects TQ03000235
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International