
WXSHAPEFRAMEWORK: AN EASY WAY FOR DIAGRAMS
MANIPULATION IN C++ APPLICATIONS

 MICHAL BLIŽŇÁK1, TOMÁŠ DULÍK2, VLADIMÍR VAŠEK3

Department of Informatics and Artificial Inteligence1, 2, Department of Automation and Control
Engineering3

Faculty of Applied Informatics, Tomas Bata University
Nad Stráněmi 4511, 760 05, Zlín

CZECH REPUBLIC
bliznak@fai.utb.cz1, dulik@fai.utb.cz2, vasek@fai.utb.cz3

Abstract: wxShapeFramework is new cross-platform software library written in C++ programming language
which is suitable for creation of software applications manipulating diagrams, images and other graphical
objects. Thanks to the underlying technologies such as wxWidgets toolkit and its XML-based persistent data
container add-on called wxXmlSerializer it is an ideal solution for rapid and easy cross-platform visualisation
software development. The paper reveals how the wxSF allows user to easily create applications able to
interactively handle various scenes consisting of pre-defined or user-defined graphic objects (both vector- and
bitmap-based) or GUI controls, store them to XML files, export them to bitmap images, print them etc.
Moreover, thanks to applied software licence the library can be used for both open-source and commercial
projects on all main target platforms including MS Windows, MacOS and Linux.

Keywords: Diagram, vector, bitmap, GUI, wxWidgets, wxXmlSerializer, wxShapeFramework, wxSF, C++

1 Introduction
Modern software applications often need the ability to
graphically represent various data or logical
structures, information flows, processes and similar
abstract information types in the form of diagrams.
Whatever the application does, the graphical
representation of any problem is always more clear
and understandable then a textual one.

The main goal of this paper is to introduce a new
open-source cross-platform software library called
wxShapeFramework (shortly wxSF) [1] written in
C++ language. The library is based on well-known
cross-platform GUI library wxWidgets [2] and is
suitable for easy creation of software applications
manipulating various diagrams and other graphic
objects. It is a replacement for fairly out-of-date
wxWidgets add-on library called OGL (Object
Graphics Library) [3] which is not developed any
more. The wxSF can be used as a base part of
applications like various CASE tools, technological
processes modeling tools, etc.

2 What the wxShapeFramework is
The library consists of a set of classes encapsulating
so called shape canvas (a visual GUI control used for
management of graphic objects and supporting
serialization/deserialization to XML files, clipboard
and drag&drop operations, undo/redo, export to BMP
files, printing, etc.) and diagram graphic objects

called shapes (including basic rectangular and elliptic
shapes, line and curve shapes, polygonal shapes, static
and in-place editable text, bitmap images, etc.).

The wxSF allows to define relationship between
various shape types (for example which shape can be
a child of another one, which shape types can be
connected together by which connector type, how
various connections look like, etc.) and provides
ability to interactively design diagrams composed of
those shape objects.

3 A technological background and the
library structure
The library uses the wxWidgets API, so it is platform
independent as far as the appropriate wxWidgets port
is available for a required target platform. wxSF also
uses the persistent data container provided by the
wxXmlSerializer (shortly wxXS) software library [5].
wxXS allows users to easily serialize and deserialize
hierarchically arranged class instances and their data
members to an XML structure. The XML content can
be stored to a disk file or to another output stream
supported by wxWidgets. This functionality is used
for saving and loading diagrams as well as a base for
the clipboard and undo/redo operations provided by
the wxSF. Relation between wxSF and wxXS libraries
is explained in figure 2.

wxSF consists of more than 40 classes which can be
divided by their purpose into three main groups:

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 268 Issue 3, Volume 9, March 2010

● classes implementing a diagram manager,

● classes implementing the shape canvas,

● diagram components classes.

The class diagram of main library classes is shown in
figure 1.

Figure 1: Main library classes and their cooperation

The diagram manager encapsulated by
wxSFDiagramManager class is a main persistent
data container (inherited from wxXmlSerializer
class provided by the wxXS library). It is responsible
for management of included diagram components and
for saving/loading them to/from various I/O streams.
It also provides a set of member functions suitable for
basic policy definition (user can define which shapes
can be included into a specific diagram manager
instance).

Figure 2: Logical library structure

The diagram manager is not a visual object; it only
stores and manages diagram components. The
diagram is visualized by so called shape canvas
encapsulated by wxSFShapeCanvas class. Shape
canvas can be assigned to one instance of data
manager and acts as its graphic user interface. This
approach leads to possibility to process diagrams by
an application without need of their displaying
(which is useful for loading or creating of diagrams at

the background). The shape canvas also provides
clipboard and undo/redo functionality as well as a
possibility to design the diagram interactively.
Moreover, for better performance and drawing
scalability it uses special double-buffered painting
canvas (bitmap-based memory device context)
encapsulated by wxSFScaledDC class. This
drawing class can use both standard GDI functions
and enhanced graphics engine encapsulated by
wxGraphicsContext class as well.

The last mentioned class group encapsulates the
diagram graphic components (shapes). Every shape
class is inherited from the base shape class called
wxSFShapeBase (inherited from
xsSerializable class provided by the wxXS
library). This class encapsulates a basic functionality
like moving, drawing invocation, hit detection, and
policies definition and includes set of virtual
functions allowing a programmer to defined specific
shape's properties and behaviour (like resizing or
drawing). Finally, there is also a set of predefined
shape classes encapsulating common diagram
components like

● rectangles (wxSFRectShape, ...),

● squares (wxSFSquareShape),

● ellipses (wxSFEllipseShape),

● circles (wxSFCircleShape),

● text objects (wxSFTextShape, ...),

● polygons (wxSFPolygonShape, ...),

● grid containers (wxSFGrigShape, ...),

● GUI container (wxSFControlShape),

● bitmaps (wxSFBitmapShape),

● and lines (wxSFLineShape, ...)

Every predefined shape can be used as it is or as a
base for another more specific shape.

Class hierarchy diagram for the most important
classes is shown in the figure 3.

Figure 3: Diagram objects (shapes) hierarchy

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 269 Issue 3, Volume 9, March 2010

4 Usage of wxShapeFramework
Now let’s take a look at an example how wxSF can be
used for creation of simple graphics applications. The
first example will demonstrate basic usage of diagram
manager and shape canvas classes, the second
example will focus to user-defined shape objects
creation and manipulation. Note that in these
examples only code fragments related to the wxSF are
discussed and it is supposed that the reader is familiar
with programming using wxWidgets.

4.1 “Hello World” in graphics

This simple example shows how to create an
application displaying a “diagram” managed by one
instance of diagram manager class. The diagram is
visualized via the shape canvas class. Generally, there
are two ways how the data manager and shape canvas
classes can be used; they can be used “as they are” or
as bases for new classes. There is no need for
inheriting new diagram manager class in our simple
scenario so the class wxSFDiagramManager
is used as it is and as a static class instance (dynamic
diagram manager instances have sense for
applications processing more than one diagram at the
same time). On the other hand the shape canvas can
be used in both ways (as it is or as a base class for
further inheritance) in all application scenarios.
It depends on the application requirements and
programmer's preferences only. In this paper only the
simpler method (usage of original shape canvas class)
is discussed.

The diagram manager instance and shape canvas
should be declared and created during the application
frame window initialization. The initialization code
can be as follows:

Example 1:

// add wxWidgets header file
#include "wx/wx.h"
// add wxShapeFramework include file
#include "wx/wxsf/wxShapeFramework.h"

// declaration of main application window
class wxSFSample1Frame: public wxFrame
{
 public:
 wxSFSample1Frame(wxFrame *frame);
 ~wxSFSample1Frame();

 private:
 // create wxSF diagram manager
 wxSFDiagramManager m_Manager;
 // create pointer to wxSF shape
 // canvas
 wxSFShapeCanvas* m_pCanvas;

 // declare event handler for
 // wxSFShapeCanvas
 void OnRightClickCanvas

 (wxMouseEvent& event);
};

// constructor of main application frame
wxSFSample1Frame::wxSFSample1Frame(wxFrame
*frame) : wxFrame(frame, -1, title)
{
 // set accepted shapes (accept only
 // wxSFRectShape)
 m_Manager.AcceptShape(wxT("wxSFRectShape
"));

 // create shape canvas and associate it
 // with shape manager
 m_pCanvas = new wxSFShapeCanvas
 (&m_Manager, this);
 // set shape canvas properties if
 // required:
 m_pCanvas->AddStyle
 (wxSFShapeCanvas::sfsGRID_SHOW);

 m_pCanvas->AddStyle
 (wxSFShapeCanvas::sfsGRID_USE);

 // connect event handlers to the shape
 // canvas
 m_pCanvas->Connect(wxEVT_RIGHT_DOWN,
wxMouseEventHandler(wxSFSample1Frame::OnRigh
tClickCanvas), NULL, this);
}

Let’s discuss the code above in more details. The first
code part declares application frame class with
constructor, destructor, diagram manager static object,
pointer to shape canvas and with one event handler
further used by the shape canvas. The frame class
constructor code does these initialization steps:

1. setting shape class objects accepted by the
diagram manager (now only
wxSFRectShape class instances are
accepted),

2. creating the shape canvas as a child window
of main application frame,

3. definition of shape canvas properties (a
design grid is shown and used),

4. registering previously declared event handler
in the shape canvas.

Implementation of registered event handler could be
like this:

Continuing of Example 1:

void wxSFSample1Frame::OnRightClickCanvas
 (wxMouseEvent& event)
{
 // add new rectangular shape to the
 // diagram:
 wxSFShapeBase* pShape =
m_Manager.AddShape(CLASSINFO(wxSFRectShape),
event.GetPosition());

 // set some shape's properties if

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 270 Issue 3, Volume 9, March 2010

 // required:
 if(pShape)
 {
 // set accepted child shapes for the
 // new shape ...
 pShape->AcceptChild
 (wxT("wxSFRectShape"));
 }
 // ... and then perform standard
 // operations provided by the shape
 // canvas:
 event.Skip();
}

Event handler invoked at the right mouse button click
creates new instance of rectangular shape
encapsulated by the wxSFRectShape class and
adds it to the canvas at a position read from the mouse
event class object. Also some basic shape policy is set
here which tells the shape canvas that only
wxSFRectShape class object are accepted as a
child objects of newly created shape. The last
command statement (event.Skip()) calls default
event handler implemented in wxSFShapeCanvas
class.

And this is all what the user needs to do for
implementation of diagrams in his application. The
application built from previous code could look like
this:

Figure 4: wxShapeFramework demonstration

4.2 Persistence of the diagram

wxShapeFramework library is based on the persistent
hierarchical data container provided by
wxXmlSerializer library and fully uses its built-in
potential so operations like saving or loading of
diagrams content can be implemented in very easy
way. The diagram manager class inherits set of
member functions suitable for serialization and
deserialization of its content which can be used as
follows.

A current content of diagram manager can be saved to
a disk file (or any output stream provided by
wxWidgets library) by single code line looking like

this one:

m_Manager.SerializeToXML(wxT("data.xml"));

Loading of stored diagram is as easy as the saving and
can be performed by this code line:

m_Manager.DeserializeFromXML(wxT("data.xml")
);

4.3 User-defined shapes? Why not!

The example above uses only predefined shape object
but the wxSF allows user to define completely unique
shapes based on the most suitable ancestor. In the
second example a star shape inherited from
wxSFPolygonShape class with embedded editable
text shape (wxSFEditTextShape class instance)
is created and used in enhanced version of the first
example.

The star shape class declaration can be as follows:

Example 2:

// include main wxSF header file
#include "wx/wxsf/wxShapeFramework.h"

class cStarShape : public wxSFPolygonShape
{
public:
 // enable RTTI and cloneability
 XS_DECLARE_CLONABLE_CLASS(cStarShape);

 // default constructor used by RTTI
 cStarShape();
 // copy constructor Clone() function
 cStarShape(static cStarShape& obj);
 // destructor
 virtual ~cStarShape(){;}

protected:
 // protected data members
 wxSFEditTextShape* m_pText;
};

The implementation code is here:

#include "StarShape.h"

// implement RTTI information and Clone()
// functions
XS_IMPLEMENT_CLONABLE_CLASS(cStarShape,
wxSFPolygonShape);

// define star shape as an array of
// wxRealPoint values
const wxRealPoint star[10]={
 wxRealPoint(0,-50), wxRealPoint(15,-10),
 wxRealPoint(50, -10), wxRealPoint(22, 10),
 wxRealPoint(40, 50), wxRealPoint(0, 20),
 wxRealPoint(-40, 50), wxRealPoint(-22, 10),
 wxRealPoint(-50, -10), wxRealPoint(-15,-
10)};

// default constructor
cStarShape::cStarShape()
{

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 271 Issue 3, Volume 9, March 2010

 // disable serialization of polygon
 // vertices, because they are always
 // set in this constructor
 EnablePropertySerialization(wxT(
 "vertices"), false);
 // set polygon vertices
 SetVertices(10, star);

 // polygon-based shapes can be connected
 // either to the vertices or to
 // the nearest border point (default
 // value is TRUE).
 SetConnectToVertex(false);

 // set accepted connections for the new
 // shape
 AcceptConnection(wxT("All"));
 AcceptSrcNeighbour(wxT("cStarShape"));
 AcceptTrgNeighbour(wxT("cStarShape"));

 // create associated child shape(s)
 m_pText = new wxSFEditTextShape();
 // set some properties
 if(m_pText)
 {
 // set text
 m_pText->SetText(wxT("Hello!"));

 // set alignment
 m_pText->SetVAlign(
 wxSFShapeBase::valignMIDDLE);
 m_pText->SetHAlign(
 wxSFShapeBase::halignCENTER);

 // set required shape style(s)
 m_pText->SetStyle(

 sfsALWAYS_INSIDE | sfsHOVERING);

 // components of composite shapes
 // created at runtime in parent
 // shape constructor cannot be
 // re-created by the serializer so
 // it is important to disable their
 // automatic serialization ...
 m_pText->EnableSerialization(false);
 // ... but their properties can be
 // serialized in the standard way:
 XS_SERIALIZE_DYNAMIC_OBJECT_NO_CREAT
E(m_pText, wxT("title"));

 // assign the text shape to the
 // parent polygon shape
 AddChild(m_pText);
 }
}

// copy constructor
cStarShape::cStarShape(static cStarShape&
obj) : wxSFPolygonShape(obj)
{
 // clone source child text object..
 m_pText = (wxSFEditTextShape*)
 obj.m_pText->Clone();
 if(m_pText)
 {
 // .. and append it to this shapes
 // as its child

 AddChild(m_pText);
 // this object is created by the
 // parent class constructor and
 // not by the serializer (only its

 // properties are deserialized
 XS_SERIALIZE_DYNAMIC_OBJECT_NO_CREAT
E(m_pText, wxT("title"));
 }
}

The implementation code may seems quite complex
but it also shows some interesting functionality like
creation of child shapes directly in the program code,
shape cloning or modification of shape layout and
behaviour.

This new shape object (instance of cStarShape
class) can be added to an existing diagram manager in
the way discussed in the first example. cStarShape
class as well as its embedded child (text shape class
wxSFEditTextShape) must be accepted by the
diagram manager (using
wxSFDiagramManager::AcceptShape())
and then a new star shape can be created and added to
a diagram by the wxSFDiagramManager::
AddShape() function.

There is also a possibility to connect several star
shapes by any type of connection line defined in the
wxSF as shown in the example. These connection
lines can be hard-coded or created interactively by
invocation of one of the following functions:

● wxSFDiagramManager::
CreateConnection()

● wxSFShapeCanvas::
StartInteractiveConnection()

Figure 4 shows the star shapes defined in the code
above which was added to the Example 1.

Figure 5: User-defined composed shapes

4.4 Handling of shape and canvas events

Definition and implementation of diagram structure is
just only one development aspect of creation of any
comprehensive diagram-manipulating application.
The second and also very important task is handling
of various events which can originate in both shape

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 272 Issue 3, Volume 9, March 2010

canvas and shapes. The wxSF library allows users to
use two different ways how to do that and it is only up
to the user which way will choose – the functionality
is the same.

In general, all events related to shape canvas/shapes
can be handled via set of virtual functions declared in
relevant classes or by using standard wxWidgets
event system thanks to a set of special event types and
classes provided by wxSF. Note that wxWidgets
events produced by wxSF are mostly generated by
default implementations of relevant virtual functions
so if a concurrent usage of virtual functions and
standard event system is requested then the user is
responsible for invoking of standard virtual functions
from his own overrided implementations.

 4.4.1 Shape canvas events

Shape canvas base class (wxSFShapeCanvas)
declaration contains set of virtual functions which can
be used for handling of various mouse operations
performed on the canvas and for handling of some
operations performed on displayed shapes. Moreover,
all standard events emitted from shapes are redirected
to a shape canvas so they can be handled here as well.

At the first, lets demonstrate how standard mouse
events performed on a shape canvas can be handled
by using virtual functions.

For that reasons shape canvas class
wxSFShapeCanvas declares these seven virtual
functions:

● virtual void OnLeftDown
(wxMouseEvent &event)

● virtual void OnLeftDoubleClick
(wxMouseEvent &event)

● virtual void OnLeftUp
(wxMouseEvent &event)

● virtual void OnRightDown
(wxMouseEvent &event)

● virtual void OnRightDoubleClick
(wxMouseEvent &event)

● virtual void OnRightUp
(wxMouseEvent &event)

● virtual void OnMouseMove
(wxMouseEvent &event)

In addition also one virtual function determined for
handling of keyboard event is declared there:

● virtual void OnKeyDown
(wxKeyEvent &event)

Note that all these virtual functions implement
standard shape canvas behaviour so if a user wants to

override them together with preservation of the
default functionality then he is responsible for
invoking of the originals from his own
implementation code as illustrated in following
example:

Example 3:

// custom shape canvas class
class MyCanvas : public wxSFShapeCanvas
{
 public:
 // overrided virtual functions
 virtual void OnLeftDown(wxMouseEvent
&event);
}

// overrided virtual event handler
void MyCanvas::OnLeftDown(wxMouseEvent
&event)
{
 // your custom code

 // invoke original handler
 wxSFShapeCanvas::OnLeftDown(event);

}

As can be seen from example 3 the original event
handler is simply called like ordinary function from
within the user-defined handler.

This way of user-defined event handlers
implementation is quite straightforward but requests
small additional programming overhead because a
new class must be inherited from
wxSFShapeCanvas base.

This drawback can be eliminated by using second
possible approach, i.e. by using standard wxWidgets
event system. All previously mentioned virtual event
handlers are de facto called by standard wxWidgets
event system so only thing the user has to do is to
map desired mouse/keyboard events to his own
handler routines in a standard way. Also in this case
the user is responsible for calling of original handlers
defined in wxSF if the default behaviour should be
preserved. This approach is demonstrated in example
4:

Example 4:

// custom frame class
class MyFrame : public wxFrame
{
 public:
 MyFrame();
 protected:
 wxSFShapeCanvas *m_Canvas;
 // overrided virtual functions
 void OnLeftDown(wxMouseEvent
&event);
};

MyFrame::MyFrame()
{
 // create and initialize shape canvas
here...

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 273 Issue 3, Volume 9, March 2010

 // bind desired events to user-defined
handlers
 m_pCanvas->Connect(wxEVT_LEFT_DOWN,
wxMouseEventHandler(MyFrame::OnLeftDown),
NULL, this);

}

// custom event handler
void MyFrame::OnLeftDown(wxMouseEvent
&event)
{
 // your custom code

 // invoke original handler
 event.Skip();
}

In this source code an application frame derived from
wxFrame class is declared. Beside the class
constructor it contains also pointer to shape canvas
class and declaration of custom event handler
function. Binding of desired mouse event to newly
created handler is done by using Connect()
function in the class constructor. Note that invoking
of default event handler provided directly by
wxSFShapeCanvas class is done by using
Skip() member function which is the common way
how to call default event handlers via standard
wxWidgets event system.

Main advantage of the second approach is that there is
no need of creation of derived canvas class; the
original one can be used without any changes.

All previously mentioned virtual handler functions
declared in wxSFShapeCanvas class have one
common aspect: handled events are generated directly
by wxWidgets library. But, there is also slightly
different set of virtual functions which can be used for
handling of events originated in wxSF library. The
functions are:

● virtual void OnTextChange
(wxSFEditTextShape *shape)

● virtual void OnConnectionFinished
(wxSFLineShape *connection)

● virtual void OnDrop (wxCoord x,
wxCoord y, wxDragResult def,
const ShapeList &dropped)

● virtual void OnPaste (const
ShapeList &pasted)

The main difference is that these events are generated
by wxSF library itself under following conditions:

OnTextChange handler is called if any text-based
shape's content has changed,

OnConnectionFinished handler is called when
interactive connection creation is finished,

OnDrop handler is called if any shapes are dropped
(by using Drag&Drop functionality) to the shape
canvas,

and finally OnPaste handler is called if some shapes
are pasted from system clipboard to active shape
canvas.

Default implementations of these default virtual
handlers emit relevant standard events which can be
handled by standard wxWidgets event system like
demonstrated above. For that reason a set of special
event types and classes is declared in wxSF. For more
details is highly recommended to study library's
reference documentation and sample projects, which
are parts of library source package distribution.

 4.4.2 Shape events

In previous chapter shape canvas events have been
discussed. Now lets focus to events which inform user
about various operations performed on displayed
shapes.

Similarly to the shape canvas class there are set of
virtual functions declared in base shape class
wxSFShapeBase called on relevant events. The
functions are:

● virtual void OnLeftClick (const
wxPoint &pos)

● virtual void OnRightClick (const
wxPoint &pos)

● virtual void OnLeftDoubleClick
(const wxPoint &pos)

● virtual void OnRightDoubleClick
(const wxPoint &pos)

● virtual void OnBeginDrag (const
wxPoint &pos)

● virtual void OnDragging (const
wxPoint &pos)

● virtual void OnEndDrag (const
wxPoint &pos)

● virtual void OnBeginHandle
(wxSFShapeHandle &handle)

● virtual void OnHandle
(wxSFShapeHandle &handle)

● virtual void OnEndHandle
(wxSFShapeHandle &handle)

● virtual void OnMouseEnter (const
wxPoint &pos)

● virtual void OnMouseOver (const
wxPoint &pos)

● virtual void OnMouseLeave (const
wxPoint &pos)

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 274 Issue 3, Volume 9, March 2010

● virtual bool OnKey (int key)

● virtual void OnChildDropped
(const wxRealPoint &pos,
wxSFShapeBase *child)

The handlers listed above could be divided into
several logical categories:

● Mouse events – events emitted when various
mouse-related operations are performed on
the shape,

● Handle events – events emitted when various
operations are performed on shape handle,

● Keyboard event – event emitted when any
key is pressed while the shape is selected,

● Other events – other events informing user
about shape state change.

All those shape events are called internally by shape
framework and their default handlers are responsible
for emitting of relevant wxWidgets events which can
be handled by using event tables in the standard way.

Note that wxWidgets events are emitted only if source
shape contains sfsEMIT_EVENTS flag which is set
off in default. This restriction is here due to possible
congestion of event loop by events emitted from
shapes in extend diagrams). All emitted events are
internally redirected to a shape canvas where the
source shape is displayed on so the wxWidgets event
must be caught there.

Obviously, there are similar rules for working with
shape event handlers like with shape canvas ones: if
the default behavior should be preserved (i.e.
wxWidgets events should be emitted) then the default
implementations must be invoked from user-defined
overrided handlers.

For better handling of shape event a set of special
event classes, event types and mapping macros are
provided by wxSF (wxSFShapeEvent,
wxSFShapeTextEvent, wxSFShapeDropEvent,
wxSFShapePasteEvent,
wxSFShapeHandleEvent,
wxSFShapeKeyEvent, wxSFShapeMouseEvent
and wxSFShapeChildDropEvent). For further
documentation please see the library reference manual
or sample application wxSFSample1 which is shown
in figure 6 demonstrating ability to bind specific
shape events via built-in wxWidgets event system.

The following example shows how to enable emitting
of shape events and how to handle them.

Example 5:

Assume that we have one shape which should emit
wxWidgets events so we have to allow this

functionality by setting of sfsEMIT_EVENTS flag:
// pShape is a pointer of type wxSFShapeBase
or derived

pShape->AddStyle(
wxSFShapeBase::sfsEMIT_EVENTS);

Now lets register new event handler for standard
event emitted when a shape handle is dragged.
Somewhere in an application initialization code the
new event handler must be bound in this way:
// m_pCanvas is pointer to wxSFShapeCanvas
class instance
m_pCanvas->Connect(wxEVT_SF_SHAPE_HANDLE,
wxSFShapeHandleEventHandler(MyFrame::OnShape
HandleEvent), NULL, this);

and its implementation then could looks as follows:
// user-defined event handler
void
MyFrame::OnShapeHandleEvent(wxSFShapeHandleE
vent& event)
{
 // get reference to dragged shape handle
 wxSFShapeHandle &hnd =
event.GetHandle();

 // perform desired operations here ...

 // invoke default handler if needed
 event.Skip();
}

Figure 6: Shape events demonstration

4.5 GUI controls management
Another unique feature provided by
wxShapeFramework library is an ability to manage
various GUI controls by using a special shape type.
This feature allows a dynamic re-organization of an
application user interface and also displaying and

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 275 Issue 3, Volume 9, March 2010

usage of any GUI control as a part of composed
shapes.

All that features are possible thanks to special
wxSFControlShape class. It is a simple
rectangular shape which can act as a container for
wxWidgets GUI controls. In addition to basic
functionality provided by wxSFRectShape base
class it allows user to define how GUI events will be
processed and in which way the shape dimension will
be controlled. All wxWidgets events emitted from
managed GUI control can be processed either by the
GUI control itself or by parent shape canvas and
shape control dimensions can be updated to the
managed GUI control ones or vice versa.

Figure 7: Shape events demonstration

Figure 7 shows sample project wxSFSample4 which
demonstrates usage of wxSFControlShape. It
allows user to place several GUI controls onto a shape
canvas, move them around and resize them.

The basic idea of wxSFControlShape usage is as
follows:

1. User creates an instance of
wxSFControlShape and sets some visual
aspects like GUI control offset or pen and
brush used during modification of shape
dimensions and position (in this case the GUI
control is hidden during the modification
process).

2. User have to assign an instance of GUI
control which should be managed to the
control shape. An authoritative dimensions
can be set during this step, i.e. user can
determine whether the control shape will be
resized to fit managed GUI control or vice
versa.

3. User should determine how GUI events will

be processed: they can be processed by either
shape canvas where the control shape is
displayed on or by the GUI control itself.
However, this behaviour can be modified any
time during the control shape lifetime.

Following commented example illustrates how a
control shape managing simple button can be created.

Example 6:
// create new control shape
wxSFControlShape* pShape =
(wxSFControlShape*)
m_Manager.AddShape(CLASSINFO(wxSFControlShap
e), event.GetPosition());

// set properties
if(pShape)
{
 // disable accepted child shapes
 pShape->ClearAcceptedChilds();

 // set some visual aspects here:
 pShape->SetControlOffset(5);
 //pShape->SetModBorder
(*wxTRANSPARENT_PEN);
 //pShape->SetModFill(wxBrush(*wxRED,
wxCROSSDIAG_HATCH));

 // Assign managed GUI control to the
canvas. Remember the control shape now owns
the GUI control and it is
 // deleted by the shape control in its
destructor. If you want to remove the GUI
control from the parent shape
 // just assign a new control or NULL
value to it. You can also specify whether
managed GUI control
 // is resized in accordance to
dimensions of its parent control shape or
vice versa.
 pShape->SetControl(new
wxButton(m_pCanvas, wxID_ANY, wxT("Hello
World!")), sfFIT_SHAPE_TO_CONTROL);
 //pShape->SetControl(new
wxButton(m_pCanvas, wxID_ANY, wxT("Hello
World!")), sfFIT_CONTROL_TO_SHAPE);

 // You can specify whether events
generated by the managed control are
processed by the shape canvas
 // or/and the widget as well. Note that
GUI controls differ in a way how they
process events
 // so the behaviour can be different for
various widgets.
 pShape->SetEventProcessing
(wxSFControlShape::evtMOUSE2CANVAS |
wxSFControlShape::evtKEY2CANVAS);
 //pShape->SetEventProcessing
(wxSFControlShape::evtMOUSE2GUI |
wxSFControlShape::evtKEY2GUI);
}

4.6 Undo/Redo and Clipboard
The previous chapters dealt with basic functionality
and operations. In addition, wxSF provides even more
advanced functionality which could please many

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 276 Issue 3, Volume 9, March 2010

developers (and application users as well, of course)
such as built-in support for undo/redo and clipboard
operations.

All these operations use built-in serialization
functionality provided by underlying
wxXmlSerializer library [5] in default so no
additional programming overhead is required. The
operations can be simply invoked by following
wxSFShapeCanvas member functions:

● Undo(), Redo(), Copy(), Cut()
and Paste()

There are also set of member functions defined in
shape canvas class which allow user to determine
whether requested operation has a sense at the
moment (i.e. any shape is selected or the clipboard
contains data understandable for wxSF library). The
functions are following:

● CanUndo(), CanRedo(),
CanCopy(), CanCut() and
CanPaste().

Undo/redo operations are internally provided by so
called history manager (encapsulated by
wxSFCanvasHistory class) which can be used for
further tuning of their functionality like setting of a
history depth (number of stored canvas states) or
clearing of whole history. Reference to the history
manager can be obtained from shape canvas by
wxSFShapeCanvas::GetHistoryManager()
member function.

4.7 Printing and image export
In addition to the undo/redo and clipboard operations
the library has also printing and image exporting
capabilities. All these operations are encapsulated by
wxSFShapeCanvas class (in cooperation with set
of other helper classes) and can be simply invoked by
its member functions like Print(),
PrintPreview() and SaveCanvasToBMP().

Moreover, printing can be tuned in more details by
SetPrintHAlign(), SetPrintVAlign() and
SetPrintMode() functions in application source
code or interactively by an application user via dialog
window which can be displayed by using
PageSetup() function.

Shape canvas content can be also exported to a
bitmap file (in BMP format) by using
SaveCanvasToBMP() function which will make a
snapshot of current canvas drawing.

5 Conclusion
As can be seen from the document and given
examples, the wxShapeFramework software library
has sufficient potential for effective development of
various software applications which use diagrams or
other form of visual communications. Note that only
very small fraction of all the functions provided by
the library has been discussed in this paper. For
deeper understanding of its principles and potential
we would recommend to go through the library
reference documentation and sample projects.

The library can be freely obtained from
SourceForge.net software repository [1] and wxCode
repository [6] and is distributed under wxWidgets
license [4] so it can be used for both open-source and
commercial projects without any restrictions. Up to
the present day the library has been downloaded more
than 4500 times and only few bugs and patches were
reported by the users so it can be regarded (despite its
relative youth) as sufficiently mature software project.
Of course, the development of the wxSF is still in
progress so new features and improvements are
continuously included to fulfil all requirements of
modern cross-platform diagram software library.

6 Acknowledgements
This work was supported by the Ministry of
Education of the Czech Republic under grant No.
MSM 7088352102.

7 References
[1] wxShapeFramework library website, 2008:

http://sourceforge.net/projects/wxsf

[2] Smart, J., Hock, K. Cross-Platform GUI
Programming with wxWidgets, Prentice Hall,
2006

[3] wxOGL code repository at wxCode website,
2008,:
http://wxcode.sourceforge.net/showcomp.php?
name=ogl

[4] wxWidgets license documents, 2008:
http://www.wxwidgets.org/about/newlicen.htm

[5] Bližňák, Michal, Dulík, Tomáš, Vašek, Vladimír,
A Persistent Cross-Platform Class Objects
Container for C++ and wxWidgets , WSEAS
TRANSACTIONS on COMPUTERS, Issue 5,
Volume 8, May 2009, p.778-787, ISSN 1109-
2750.

[6] wxCode repository (official website for
wxWidgets add-ons), 2010,
https://sourceforge.net/projects/wxcode/files/

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 277 Issue 3, Volume 9, March 2010

http://sourceforge.net/projects/wxsf
https://sourceforge.net/projects/wxcode/files/
http://www.wxwidgets.org/about/newlicen.htm
http://www.wxwidgets.org/
http://www.wxwidgets.org/

