
 

 

SYNTHESIS OF FEEDBACK CONTROLLER FOR CHAOTIC SYSTEMS BY 
MEANS OF EVOLUTIONARY TECHNIQUES 

 
1Roman Senkerik, 1Zuzana Oplatkova, 1, 2Ivan Zelinka, 1Donald Davendra, 1Roman Jasek 

1Tomas Bata University in Zlin , Faculty of Applied Informatics 
Nad Stranemi 4511, 762 72 Zlin, Czech Republic   

2Department of Computer Science, Faculty of Electrical Engineering and Computer Science   
VB-TUO, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic 

{senkerik, oplatkova, zelinka, davendra, jasek}@fai.utb.cz , ivan.zelinka@vsb.cz 
 

 
Abstract 
This research deals with a synthesis of control law 
for three selected discrete chaotic systems by means 
of analytic programming. The novality of the 
approach is that a tool for symbolic regression – 
analytic programming - is used for such kind of 
difficult problem. The paper consists of the 
descriptions of analytic programming as well as 
chaotic systems and used cost function. For 
experimentation, Self-Organizing Migrating 
Algorithm (SOMA) with analytic programming was 
used.  
 
Keywords: Chaos Control, Analytic programming, 
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1. Introduction 
The interest about the interconnection between 
evolutionary techniques and control of chaotic 
systems is spread daily. First steps were done in [1] - 
[3] where the control law was based on Pyragas 
method: Extended delay feedback control – ETDAS 
[4]. These papers were concerned to tune several 
parameters inside the control technique for chaotic 
system. Comparingly, this paper shows a possibility 
as to how to generate the whole control law (not only 
to optimize several parameters) for the purpose of 
stabilization of a chaotic system. The synthesis of 
control is inspired by the Pyragas’s delayed feedback 
control technique [5], [6]. Unlike the original OGY 
control method [7], it can be simply considered as a 
targeting and stabilizing algorithm together in one 
package [8]. Another big advantage of the Pyragas 
method for evolutionary computation is the amount 
of accessible control parameters, which can be easily 
tuned by means of evolutionary algorithms (EA). 
Instead of EA utilization [9], analytic programming 
(AP) is used in this research. AP is a superstructure 
of EAs and is used for synthesis of analytic solution 
according to the required behaviour. Control law 
from the proposed system can be viewed as a 
symbolic structure, which can be synthesized 
according to the requirements for the stabilization of 
the chaotic system. The advantage is that it is not 

necessary to have some “preliminary” control law 
and to estimate its parameters only. This system will 
generate the whole structure of the law even with 
suitable parameter values. 
This work is focused on the expansion of AP 
application for synthesis of a whole control law 
instead of parameters tuning for existing and 
commonly used method control law to stabilize 
desired Unstable Periodic Orbits (UPO) of chaotic 
systems. 
This work is in general concerned to stabilize p-1 
UPO – a fixed point (stable state). Simulations with 
higher periodic orbits (oscillations between several 
values) are now in progress. 
Firstly, a problem design is proposed. The next 
sections are focused on the description of AP and 
evolutionary algorithm. Results and conclusion 
follow afterwards. 
 
2. Problem design 
The brief description of used chaotic systems and 
original feedback chaos control method, ETDAS is 
given. The ETDAS control technique was used in 
this research as an inspiration for synthesizing a new 
feedback control law by means of evolutionary 
techniques.  
 
2.1. Logistic Equation 
The first of chosen examples of chaotic systems was 
the one-dimensional Logistic equation in form (1). 

 
( )nnn xrxx −=+ 11   (1) 

 
The Logistic equation (Logistic map) is a one-
dimensional discrete-time example of how complex 
chaotic behaviour can arise from very simple non-
linear dynamical equation. This chaotic system was 
introduced and popularized by the biologist Robert 
May [10]. It was originally introduced as a 
demographic model as a typical predator – prey 
relationship. The chaotic behaviour can be observed 
by varying the parameter r. At r = 3.57 is the 
beginning of chaos. At r > 3.57, the system exhibits 
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chaotic behaviour. The example of this behaviour is 
depicted in bifurcation diagram – Figure 1. 
 

 
Figure  1. Bifurcation diagram of Logistic equation  

 
2.2. Henon map 
The second chosen example of chaotic system was 
the two dimensional Henon map in form (2). 
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This is a model invented with a mathematical 
motivation to investigate chaos. The Henon map is a 
discrete-time dynamical system, which was 
introduced as a simplified model of the Poincaré 
map for the Lorenz system. It is one of the most 
studied examples of dynamical systems that exhibit 
chaotic behavior. The map depends on two 
parameters, a and b, which for the canonical Henon 
map have values of a = 1.4 and b = 0.3. For these 
canonical values the Henon map is chaotic [11]. 
The example of this chaotic behavior can be clearly 
seen from bifurcation diagram – Fig. 
 

 
Figure 2. Bifurcation diagram of Henon Map  

Figure 2 shows the bifurcation diagram for the 
Henon map created by plotting of a variable x as a 
function of the one control parameter for the fixed 
second parameter. 
 

2.3. Synthesized system 
The last chosen example of chaotic systems was a 
synthesized system introduced in [12] and also used 
in the research related to the investigation of the 
design of the “blackbox mode” cost functions 
securing the stabilization to desired UPO (unstable 
periodic orbit) [13]. The experiments published in 
[12] have been made for the purpose of synthesizing 
various chaotic systems by means of Analytic 
Programming. The above mentioned paper [13] 
discusses the use of evolutionary algorithms for 
controlling of selected chaotic systems synthesized 
by means of AP, but evolutionary algorithms were 
used for tuning of control rule parameters. Here, a 
complete synthesis of control rule structure including 
optimal value of all parameters is presented. This 
approach suppresses the fact which appeared within 
previous research, that some of synthesized systems 
are barely controllable. One of them was chosen for 
this case (3). 
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This system exhibits chaotic behavior for the 

control parameter A in the ranges <0.1, 0.13> and 
<0.8, 1.2> (see Figures 3 and 4). 

 

    
Figure 3. Bifurcation diagram for A = <0.8, 1.2> 

Figure 4. Bifurcation diagram for A = <0.1, 0.15> 
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2.4. ETDAS control method 
Desired UPOs was only p-1 orbit (a fixed point) in 
this research. Original EDTAS chaos control method 
was obviously an inspiration for the preparation of 
sets of basic functions and operators for AP. 
The original control method – ETDAS has form (4). 
  

 ( )[ ]nmnn xSRKF −−= −1  
 mnnn RSxS −+=  (4) 
 
Where K and R are adjustable constants, F is the 
perturbation, S is given by a delay equation utilizing 
previous states of the system and m is the period of 
m-periodic orbit to be stabilized.  
The feedback perturbation nF  in equations (4) may 
have an arbitrarily large value, which can cause the 
diverging of the system outside the interval <0, 1.0> 
for Logistic equation, <-1.5, 1.5> for Henon map 
and <-2.5, 0.5> for new synthesized chaotic system 
(in case of control parameter A = <0.8, 1.2>).  
Therefore, feedback perturbation nF  should have a 
value between maxF− , maxF . In this paper a suitable 

maxF  value was taken from the previous research [3]. 
To find the optimal value for this threshold and 
including other parameters into a meta-evolution 
process is now in progress. 

 
 

3. Cost Function 
Proposal for the cost function comes from the 

simplest Cost Function (CF) presented in [9]. The 
core of CF could be used only for the stabilization of 
p-1 orbit. The idea was to minimize the area created 
by the difference between the required state and the 
real system output on the whole simulation interval – 
�i.  

But another universal cost function had to be used 
for stabilizing of higher periodic orbit and having the 
possibility of adding penalization rules. It was 
synthesized from the simple CF and other terms were 
added. In this case, it is not possible to use the 
simple rule of minimizing the area created by the 
difference between the required and actual state on 
the whole simulation interval – �i, due to many 
serious reasons, for example: degrading of the 
possible best solution by phase shift of periodic 
orbit.  

This CF is in general based on searching for 
desired stabilized periodic orbit and thereafter 
calculation of the difference between desired and 
found actual periodic orbit on the short time interval 
- �s (approx. 20 - 50 iterations) from the point, where 
the first min. value of difference between desired 
and actual system output is found. Such a design of 
CF should secure the successful stabilization of 

either p-1 orbit (stable state) or higher periodic orbit 
anywise phase shifted.  
The CFBasic has the form (5). 
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Where:   
TS - target state 
AS - actual state 
�1 - the first minimal value of difference between TS 
and AS 
�2 – the end of optimization interval (�1+ �s) 
pen1= 0 if �i - �2 � �s;  
pen1= 10*( �i - �2) if �i - �2 < �s (i.e. late stabilization) 
 
4. Analytic Programming 
Basic principles of the AP were developed in 2001 
[14]. Until that time only Genetic Programming (GP) 
and Grammatical Evolution (GE) had existed. GP 
uses Genetic Algorithms (GA) while AP can be used 
with any EA, independently on individual 
representation. To avoid any confusion, based on the 
nomenclature according to the used algorithm, the 
name - Analytic Programming was chosen, since AP 
represents synthesis of analytical solution by means 
of EA. 
The core of AP is based on a special set of 
mathematical objects and operations. The set of 
mathematical objects is a set of functions, operators 
and so-called terminals (as well as in GP), which are 
usually constants or independent variables. This set 
of variables is usually mixed together and consists of 
functions with different number of arguments. 
Because of a variability of the content of this set, it is 
termed the “general functional set” – GFS. The 
structure of GFS is created by subsets of functions 
according to the number of their arguments. For 
example GFSall is a set of all functions, operators and 
terminals, GFS3arg is a subset containing functions 
with only three arguments, GFS0arg represents only 
terminals, etc. The subset structure presence in GFS 
is vitally important for AP. It is used to avoid 
synthesis of pathological programs, i.e. programs 
containing functions without arguments, etc. The 
content of GFS is dependent only on the user. 
Various functions and terminals can be mixed 
together [14].  
The second part of the AP core is a sequence of 
mathematical operations, which are used for the 
program synthesis. These operations are used to 
transform an individual of a population into a 
suitable program. Mathematically stated, it is a 
mapping from an individual domain into a program 
domain. This mapping consists of two main parts. 
The first part is called Discrete Set Handling (DSH) 
(Figure 5) [14] - [16] and the second one stands for 
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security procedures which do not allow synthesizing 
pathological programs. The method of DSH, when 
used, allows handling arbitrary objects including 
nonnumeric objects like linguistic terms {hot, cold, 
dark…}, logic terms (True, False) or other user 
defined functions. In the AP, DSH is used to map an 
individual into GFS and together with security 
procedures creates the above-mentioned mapping, 
which transforms arbitrary individual into a program.  
 

 
Figure 5 Discrete set handling 

 
AP needs some EA [16] that consists of a population 
of individuals for its run. Individuals in the 
population consist of integer parameters, i.e. an 
individual is an integer index pointing into GFS. The 
creation of the program can be schematically 
observed in Figure 6. The individual contains 
numbers which are indices into GFS. The detailed 
description is represented in [14] - [16]. 
AP exists in 3 versions – basic without constant 
estimation, APnf – estimation by means of nonlinear 
fitting package in Mathematica environment and 
APmeta – constant estimation by means of another 
evolutionary algorithms; meta implies 
metaevolution. 
 

 
Figure 6 Main principles of AP 

 
5. Used evolutionary algorithm 
SOMA is a stochastic optimization algorithm that is 
modelled on the social behaviour of cooperating 
individuals [17]. It was chosen because it has been 
proven that the algorithm has the ability to converge 

towards the global optimum [17]. SOMA works with 
groups of individuals (population) whose behavior 
can be described as a competitive – cooperative 
strategy. The construction of a new population of 
individuals is not based on evolutionary principles 
(two parents produce offspring) but on the behavior 
of social group, e.g. a herd of animals looking for 
food. This algorithm can be classified as an 
algorithm of a social environment. To the same 
group of algorithms, Particle Swarm Optimization 
(PSO) algorithm can also be classified, sometimes 
called swarm intelligence. In the case of SOMA, 
there is no velocity vector as in PSO, only the 
position of individuals in the search space is changed 
during one generation, referred to as ‘migration 
loop’. 
The rules are as follows: In every migration loop the 
best individual is chosen, i.e. individual with the 
minimum cost value, which is called the Leader. An 
active individual from the population moves in the 
direction towards the Leader in the search space. At 
the end of the crossover, the position of the 
individual with minimum cost value is chosen. If the 
cost value of the new position is better than the cost 
value of an individual from the old population, the 
new one appears in new population. Otherwise the 
old one remains there. The main principle is depicted 
in Figures 6 - 8. 
 

 
Figure 6. Principle of SOMA, movement in the 
direction towards the Leader 
 

276



 

 

 
 
Figure 7. Principle of SOMA, the end of one 
migration loop 
 

 
 
Figure 8. Basic principle of crossover in SOMA, 
PathLength is replaced here by Mass 
 
6. Experimental results 
As described in the last paragraph of section 4, AP 
requires an EA for its run. In this paper APmeta 
version was used. SOMA ATO strategy [17] was 
used for both optimization tasks – to find a suitable 
form of the control law and in meta-evolution 
process, thus to find optimal values of constants in 
the evolutionary synthesized control law. Settings of 
EA parameters for both processes were similar and 
based on performed numerous experiments and 
simulations with APmeta (Table 1 and Table 2). 
 
 

Table 1. SOMA settings for AP  

Parameter Value 
PathLength 3 
Step 0.11 
PRT 0.1 
PopSize 50 
Migrations 4 
Max. CF Evaluations (CFE) 5345 
 

Table 2. SOMA settings for meta-evolution  

Parameter Value 
PathLength 3 
Step 0.11 
PRT 0.1 
PopSize 40 
Migrations 5 
Max. CF Evaluations (CFE) 5318 

 
For all 3 cases – Logistic equation, Henon map and 
synthesized chaotic system, the total number of 50 
simulations were carried out. All 150 simulations 
were successful and have given new synthesized 
control law, which was able to stabilize the system at 
required value within the short stabilizing interval of 
150 iterations. Table 3 shows the number of cost 
function evaluations (CFE) required for obtaining 
the control law i.e. the main process of AP including 
the meta approach of second SOMA algorithm. 
 

Table 3. CFE for AP including meta approach  

Case study/ 
CFE 

Logistic 
equation 

Henon 
map 

Synthesized 
system 

Min 170176 154222 239310 
Max 2.6*10^7 1.7*10^7 2.5*10^7 
 
In addition to total number of CFE required for 
meta-evolution process, another decisive factor 
describing the quality of solution is a speed of 
stabilization of chaotic system measured in 
iterations. Generally there are two approaches. The 
first one is evaluated as a number of required 
iterations to achieve a selected accepted error value 
(10-6 in this research) between desired UPO and 
system output (Table 4). But in some rare cases, this 
can represent only entering of system into very close 
neighbourhood of desired UPO and not full 
stabilization.  The second approach was evaluated as 
a first minimal difference between actual and 
required system output within whole simulation 
interval – i.e. the beginning of full stabilization at 
desired UPO (Table 5). 
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Table 4. Iterations required for stabilization – based 
on accepted error value  

Case study/  
Iterations 

Logistic 
equation 

Henon 
map

Synthesized 
system

Min 78 20 65 
Max 151 67 77 
Average 95 35 71 
 

Table 5. Iterations required for stabilization – based 
on min. diff. between required and actual output  

Case study/  
Iterations 

Logistic 
equation 

Henon 
map 

Synthesized 
system 

Min 89 70 68 
Max 131 130 81 
Average 113 103 80 
 
6.1. Example of control law for Logistic equation 
The example of a new synthesized feedback control 
law Fn (perturbation) for the controlled Logistic 
equation (6) inspired by original ETDAS control 
method (4) has the form (7).  
 

( ) nnnn Fxrxx +−=+ 11   (6) 
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Simulation output is depicted in Figure 9. 
 

 
 
Figure 9. Stabilization of Logistic equation 
 
6.2. Example of control law for Henon map 
The example of a new synthesized feedback control 
law Fn (perturbation) for the controlled Henon map 
(8) inspired by original ETDAS control method (4) 
has the form (9). 
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Simulation output representing successful and quick 
stabilization of Henon map is depicted in Figure 10. 
 

Figure 10. Stabilization of Henon map 
 
6.3. Example of control law for the evolutionary 
synthesized system 
The example of a new synthesized feedback control 
law Fn (perturbation) for the controlled evolutionary 
synthesized system (10) inspired by original ETDAS 
control method (4) has the form (11).   
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Simulation depicted in Figure 11 lends weight to the 
argument, that AP is able to synthesize a new control 
law securing very quick and precise stabilization 
even for artificial and complicated evolutionary 
synthesized chaotic system.  
 

 
Figure  11. Stabilization of evolutionary synthesized 
system 
 
7. Conclusion 
This paper deals with a synthesis of a control law by 
means of AP for stabilization of three selected 
chaotic systems - Logistic equation, Henon map and 
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evolutionary synthesized system. Within this 
presented approach, the analytic programming was 
used instead of tuning of parameters for existing 
control technique by means of EA’s as in the 
previous research. 
Presented results reinforce the argument that AP is 
able to solve this kind of difficult problems and to 
produce a new synthesized control law in a symbolic 
way securing desired behaviour of chaotic system 
and quick and precise stabilization.  
All repeated 50 simulations for each case study were 
successful and the control law has been found. 
Future plans are concerned to higher periodic orbits 
stabilization together with performing of numerous 
simulations to obtain more results and produce better 
statistics, thus to confirm the robustness of this 
approach. 
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