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 Abstract 

This paper discusses the possibility of using evolutionary 
algorithms for the reconstruction of chaotic systems. The 
main aim of this work is to show that evolutionary algo-
rithms are capable of the reconstruction of chaotic sys-
tems without any partial knowledge of internal structure, 
i.e. based only on measured data. Algorithm SOMA 
was used in reported experiments here. Systems selected 
for numerical experiments here is the well-known 
Lorenz system. For each algorithm and its version, 
repeated simulations were done, totaling 20 simulations. 
According to obtained results it can be stated that 
evolutionary reconstruction is an alternative and 
promising way as to how to identify chaotic systems. 
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1    Introduction 
Identification of various dynamical systems is vitally im-
portant in the case of practical applications as well as in 
theory. A rich set of various methods for dynamical 
system identification has been developed. In the case of 
chaotic dynamics, it is for example the well-known re-
construction of a chaotic attractor based on research of 
[1] who has shown that, after the transients have died out, 
one can reconstruct the trajectory of the attractor from the 
measurement of a single component. Since the entire tra-
jectory contains a large amount of information, the series 
of papers by [2], [3] is introduced to show a set of aver-
aged coordinate invariant numbers (generalized dimen-
sions, entropies, and scaling indices) by which different 
strange attractors can be distinguished. The method pre-
sented in this research is based on Evolutionary Algo-
rithm's (EA's), see [4], which allows the reconstruction 
of not only chaotic attractors as a geometrical objects, 
but also their mathematical description. All these tech-
niques belong to the class of genetic programming tech-
niques; see [5], [6]. Generally, when it is used on data 
fitting, these techniques are called Symbolic Regression 
(SR). SR represents a process, in which measured data is 
fitted by a suitable mathematical formula such as x2 + C, 
sin(x) + l/ex, etc., mathematically, this process is quite 
well known and can be used when data of an unknown 
process is obtained. Historically, SR has been in the pre-
view of manual manipulation, however during the recent 
past, a large inroad has been made through the use of 
computers. Generally, there are two well-known meth-
ods, which can be used for SR by means of computers. 
The first one is called Genetic Programming (GP), [5], 
[6] and the other is Grammatical Evolution (GE), [7], 

 [8]. The idea as to how to solve various problems using 
SR by means of EA's was introduced by John Koza, who 
used Genetic Algorithms (GA) for GP. GP is basically a 
symbolic regression, which is done by the use of EA's, 
instead of a human brain. The ability to solve very 
difficult problems is now well established, and hence, GP 
today performs so well that it can be applied, e.g. to syn-
thesize highly sophisticated electronic circuits, [9]. In 
the last decade of the 20th century, C. Ryan developed a 
novel method for SR, called GE. GE can be regarded as 
an unfolding of GP due to some common principles, 
which are the same for both algorithms. One important 
characteristic of GE is that it can be implemented in any 
arbitrary computer language compared with GP, which 
is usually done (in its canonical form) in LISP. In 
contrast to other EA's, GE was used only with a few 
search strategies, for example with a binary representa-
tion of the populations in [10]. Another interesting in-
vestigation using symbolic regression was carried out by 
[11] working on Artificial Immune Systems or/and sys-
tems which are not using tree structures like linear GP 
(full text is at https://eldorado.uni-dortmund.de/bitstream 
/2003/20098/2/Brameierunt.pdf) and another similar al-
gorithm to Analytic Programming (AP), Multi Expres-
sion Programming (see http://www.mep.cs.ubbcluj.ro/). 
Put simply, EA simulates Darwinian evolution of indi-
viduals (solutions of given problem) on a computer and 
are used to estimate-optimize numerical values of defined 
cost function. Methods of GP are able to synthesize in 
an evolutionary way complex structures like electronic 
circuits, mathematical formulas etc. from basic set of 
symbolic (nonnumeric) elements. In this paper, AP is 
applied, see [12], [13], [14], [15], [16] for the identifica-
tion of selected chaotic system. Identification is not done 
on the "level" of the strange attractor reconstruction, but 
it produces a symbolic-mathematical description of the 
identified system. Investigation reported here is a contin-
uation of research done in [12]. 
Synthesis, identification and control of complex dy-
namical systems are usually extremely complicated. 
When classics methods are used, some simplifications 
are required which tends to lead to idealized solutions 
that are far from reality? In contrast, the class of meth-
ods based on evolutionary principles is successfully used 
to solve this kind of problems with a high level of preci-
sion. In this paper, an alternative method of EA's is used, 
which has been successfully proven in many 
experiments like chaotic systems synthesis, neural 
network synthesis or electrical circuit synthesis. This 
paper discusses the possibility of using EA's for the 
identification (reconstruction) of chaotic systems. The 
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main aim of this work is to show that EA's are capable 
of the reconstruction of chaotic systems without any 
partial knowledge of internal structure, i.e. based only 
on measured data. Self -Organizing Migrating Algorithm 
(SOMA) has been used for numerical study reported 
here. Systems selected for numerical experiments here is 
the well-known Lorenz at-tractor. For each algorithm and 
its version, repeated simulations were done, amounting 
to 20 simulations. According to obtained results it can be 
stated that evolutionary reconstruction is an alternative 
and promising way as to how to identify chaotic 
systems. 

2   Motivation 
Motivation of this research is quite simple. As men-
tioned in the introduction, EA's are capable of hard prob-
lem solving. A lot of examples about EA's can be easily 
found. EA's use with chaotic systems is done for example 
in [17] where EAs has been used on local optimization 
of chaos, [18] for chaos control with use of the multi-
objective cost function or in [19] and [20], where EA's 
have been studied on chaotic landscapes. Slightly dif-
ferent approach with EA's is presented in [12], selected 
algorithms were used to synthesize artificial chaotic sys-
tems. In [21], [22], EA's has been successfully used for 
real-time chaos control and in [23] and [24] EA's was 
used for optimization of Chaos Control. Another exam-
ples of EA's use can be found in [25] which developed 
statistically robust EA's, and on the opposite side [26] 
used EA's for fuzzy power system stabilizer which has 
been applied on single-machine infinite bus system and 
multi-machine power system. Other research was done 
by [27]. Parameters of permanent magnet synchronous 
motors has been optimized by Particle Swarm Algorithm 
(PSO) and experimentally validated on the servomotor. 
IIR filter synthesis has been used in swarm intelligence 
[28] and [29] applied in co-evolutionary Particle Swarm 
Optimization (CoPSO) approach for the design of con-
strained engineering problems, particularly for pressure 
vessel, compression spring and welded beam. The main 
question in the case of this paper is if EAs are able to 
identify chaos in symbolic i.e. mathematical description. 
All experiments here were designed to check and either 
confirm or reject this idea. 
 
3   Evolutionary Reconstruction of Chaotic systems 
Another approach completely different from classical 
methods, which is demonstrated in this paper is the use of 
EA's. They are applied on selected examples to demon-
strate how evolutions can be applied ton the reconstruc-
tion of chaotic systems. Experiments described here are 
focused on EA's use to reconstruct mathematical descrip-
tion of Lorenz attractor. Preliminary results has been 
reported in [30], where detailed described of the recon-
struction of discrete systems as well as the reconstruction 
of the z(t)  of Lorenz system, see Eq. (1). 

 
3.1    Continuous systems: Lorenz System 

Reconstruction 
Evolutionary reconstruction of chaotic systems was in 
our previous numerical studies restricted mainly to dis-
crete systems. Methods of symbolic regression are gen-

eral enough to be also used on the reconstruction of con-
tinuous chaotic systems, as demonstrated in [30]. To 
check this idea, a well known chaotic system has been 
selected - Lorenz equation, see Eq. (1). In order to 
simplify this experiment for the first time in [30], the 
third equation z(t)  has been selected to be synthesized, 

see Eq. (1). Here we demonstrate, that the whole system 
can be reconstructed by means of EA's, without pre-
liminary or auxiliary information excluding time series. 
The basic set of objects used in symbolic regression was 
{x(t), y(t), z(t),+, -, x, /}. The total number of simulation 
has been set to 20 and in this case (comparing with [30] 
where 5 algorithms (Differential Evolution (DE), 
SOMA, GA, Simulated Annealing (SA), Evolutionary 
Strategies (ES)) in all 12 versions were used) only one 
evolutionary algorithm (SOMA) has been used in order 
to identify (reconstruct) by synthesis a suitable solution. 
 
3.1.1    Experiment Setup 
The cost function was defined by Eq. (2), difference be-
tween the behavior of the original and identified system 
has been calculated in the interval t [0, 20] with ran-
domly selected initial conditions. Cost value has been 
calculated in the interval t [0, 20]. The objective was 
to minimize this function to 0. One version of SOMA 
(AllToOne), see [31], has been applied in order with AP 
and were used for all simulations in this paper. SOMA 
parameter setting is described in Table 1. Each simu-
lation, focused on the synthesis of x(t), y(t), z(t), has 
been repeated applied 20  in order to synthesize an ap-
propriate structure which can serve as models of the ob-
served chaotic system. 

 
Table 1: SOMA setting 

 

PathLength 3 
Step 0.11 
PRT 0.1 
PopSize 100 
Migrations 8 
MinDiv -0.1 
Individual Length 30 

 
Table 2: Cost Function Evaluations 

 

Maximum 40 759 
Average 18 549 
Minimum 5 402 

 
3.1.2   Continuous systems: Results 
Results of this case study are depicted in the Fig's. 1 -7, 
and Eq's. 3-7. the number of cost function evaluations, 
needed to get suitable solution is reported in Table 2. 
Some selected results are depicted in the following fig-
ures: Fig's 1-3 shows typical example of the difference 
between time series of the original Lorenz and identified 
system, Fig's 4 - gives another example of difference for 
another identified systems, this time in three dimensional 
space (E3) and Fig's 6-7 show Lorenz attractor in E3 in 
two different time slices. Selected results are also re-
ported in Eq's. 3-5 which shows selected identified parts 
of Lorenz systems and in Eq. 6, where is described as an 
identified equivalent of Lorenz system, also used to 
generate Fig's 6-7.
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Fig. 1: Difference between x(t) of the original Lorenz 

system (Eq. (1)) and identified x(t). 
 

 
 

Fig. 2: Difference between y(t) of the original Lorenz 
system (Eq. (1)) and identified y(t). 

 
It is clear that this approach is also usable, i.e. it can be 
used to synthesize continuous systems, and however 
more extensive study is needed. 

 
Fig. 3: Difference between z(t) of the original Lorenz 

system (Eq. (1)) and identified  z(t). 
 

 
Fig. 4: Difference in the trajectory in E3 between Eq. (1) 

and Eq. (6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Another difference in the trajectory in E3 between 

original and identified Lorenz system. 
 

4    Conclusion 
Based on recorded data and results, it may be stated that 
simulations provided promising results, which shows that 
EAs are capable of model reconstruction of continuous 
chaotic systems. In this participation the EA SOMA [31] 
in version AllToOne was used and tested. Descriptions 
of identified systems are reported in Eq. 3-5 and Eq. 6. 
Based on previously mentioned facts and all experimen-
tal results, conclusions and statements can be made for 
Lorenz system reconstruction as follows  
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• Number of successful reconstruction. In this 
research, all 20 numerical simulations has re-
turned acceptable reconstructions, which less 
or more has fitted the original Lorenz system 
behaviour. It is important to note that the be-
havior of Lorenz attractor was identical only 
in the interval t [0, 20]. Outside this 
interval behavior of synthesized "Lorenz 
system" has been less or more divergent, 
which is obvious. 

• Experiment overview. The cost function, 
defined by Eq. (2) has been used for the 
continuous case. This cost function calculates 
the difference between original behavior of 
Lorenz system and the just identified one. In 
the time interval [0,20] with sampling period 
0.01s, i.e. 2000 sampled points was used to 
calculate the differences. Simulation has been 
repeated 20 x and number of cost functions is 
depicted in the Table 2. 

• Number of successful reconstruction. In this 
research, all 20 numerical simulations has re-
turned acceptable reconstructions, which less 
or more has fitted the original Lorenz system 
behaviour. It is important to note that the be-
havior of Lorenz attractor was identical only 
in the interval t  [0, 20]. Outside this 
interval behavior of synthesized "Lorenz 
system" has been less or more divergent, 
which is obvious. 

• Behavior preciseness. Based on the figures 
depicted in this research, it seems that recon-
struction was not as successful, because differ-
ences (see Fig's 1 - 3 or 4 - 5) are sometimes 
large. However we would like to say that our 
aim was not absolute identification (if theoreti-
cally possible) but rather identification that re-
constructed system will fill state space by the 
same attractor as the original one. See for ex-
ample Fig's 6-7. In each of both figures is 
depicted attractor of the original as well as the 
reconstructed system. One can see that both 
attractors occupy the same state space. 

• Other evolutionary techniques. In this re-
search, the so-called AP has been used, how-
ever we have to say that another and more well 
known techniques like GP, see [5], [6] or GE, 
see [7], should give similar results as reported 
here. 
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Fig. 6: Chaotic attractors of original Lorenz system (Eq. 
(1)) and identified system Eq. (6).  

 
Note the position of two points (for t = 10s) on 
trajectories, compare with. Fig 7. Identified system 
generates an attractor filling the same space as Lorenz, 
however with phase shift, resulting in Fig 4 or Fig 5. 

Fig. 7: Chaotic attractors of original Lorenz system (Eq. 
(1)) and identified system Eq. (6).  

 
Note position of two points (for t = 16s) on trajectories, 
compare with Fig 6. Identified system generates an 
attractor filling the same space as Lorenz, however with 
phase shift, resulting in Fig 4 or Fig 5 
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