

DISCRETE SELF-ORGANISING MIGRATING ALGORITHM FOR FLOW SHOP
SCHEDULING WITH NO WAIT MAKESPAN

Donald Davendra, Ivan Zelinka, Roman Senkerik and Roman Jasek

Department of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, Zlin 76001, Czech Republic
{davendra,zelinka,senkerik,jasek}@fai.utb.cz

Abstract
This paper introduces a novel discrete Self Organising
Migrating Algorithm for the task of flowshop
schedul¬ing with no-wait makespan. The new
algorithm is tested with the small and medium Taillard
benchmark problems and the obtained results are
competitive with the best performing heuristics in
literature.

Key words: Self Organising Migrating Algorithm, Flow

shop, Scheduling

1. Introduction
Scheduling is an integral part of advanced
manufacturing systems. Flowshop scheduling problems
have an extensive background in industrial applications,
including manufacturing, mining, logistics etc. The
general assumption of a majority of flowshop
applications is that the sequencing of jobs relies on
buffers, either wise refereed to as intermediate storage
between machines.
However, a number of applications now exist where the
jobs are not allowed to idle between machines, ie. the
job proceeds continuously through all the machines. For
instance, in the steel-making and continuous casting
processes of iron and steel manufacturing enterprises, a
no-wait scheduling can reduce the energy loss of high-
temperature molten steel and plays an important role in
realizing the advanced production style of HCR/DHCR
[2].
Therefore, it becomes essential to devise heuristics,
which are able to resolve this type of scheduling
problem. The heuristic used in this research is the novel
Discrete Self Organising Migrating Algorithm (SOMA).
SOMA is a class of swarm heuristic, which has been used
to solve real domain problems. The discrete variant intro-
duced in the paper attempts to solve permutative variants
of scheduling problems.
This paper is structured as follows. Section 2 introduces
SOMA and Section 3 introduces Discrete SOMA. No-
wait flowshop problem is described in Section 4,
whereas the experimentation is given in Section 5. The
paper is concluded in Section 6.

2. Self Organising Migrating Algorithm
SOMA [1] is a metaheuristic, which is based on the
competitive-cooperative behavior of intelligent creatures
solving a common problem.
In SOMA, individual solutions reside in the optimized
model's hyperspace, looking for the best individual. It
can be said, that this kind of behavior of intelligent
individuals allows SOMA to realize very successful
searches.

Because SOMA uses the philosophy of competition and
cooperation, the variants of SOMA are called strategies.
They differ in the way as to how the individuals affect
all others. Taking t is the iterator for the migrations M (t
= 1, 2,..., M), SOMA can be described as consisting of
the following steps:

1. Definition of parameters. Before execution, the
SOMA parameters (PathLength, Step, PRT,
Migrations see Table 1) are defined.

2. Creating of population. The population
P X1

t ,X2
t ,...,XSP

t ,
g

X1XX
t

p
,P

p
 is generated consisting of a

number of individuals (SP), where each individual

X1
t xi,1

t ,xi,2
t ,...,xi,IS

txix ,1
t contains a number of

 elements (IS).

3. Migration loop.

(a) Each individual Xi
t is evaluated for the cost

function:

Ci
t f Xi

tXiiX ;i 1,...SP

(b) For each element xi, j
t in an individual Xi

t ,
the PRT Vector A i, j is created (1).

(c) All individuals, perform their run towards the
selected individual (Leader), which has the
best fitness for that migration according to
(2). Each individual is selected piecewise.
The movement consists of jumps determined
by the step parameter (s) until the individual
reaches the final position given by the Path-
Length parameter. For each step, the cost
function for the actual position is evaluated
and the best value is saved. Then, the
individual returns to the position, where it
found the best- cost value on its trajectory.

SOMA, like other evolutionary algorithms, is controlled
by a number of parameters, which are predefined. They
are presented in Table 1.

Table 1: SOMA Parameters

Name Range Type
PathLength (1.1-3) Control
StepSize (0.11-PathLength) Control
PRT (0 - 1) Control
Migrations 10+ Termination

2.1 Mutation
Mutation, the random perturbation of individuals, is
applied differently in SOMA compared with other
evolutionary strategies. SOMA uses a parameter called

Proceedings of the Fourth Global Conference on Power Control and Optimization
AIP Conf. Proc. 1337, 285-289 (2011); doi: 10.1063/1.3592479

© 2011 American Institute of Physics 978-0-7354-0893-7/$30.00

285

PRT to achieve perturbation. It is defined in the range
[0, 1] and is used to create a perturbation vector (PRT
Vector (A)) (1):

A i, j

1 if rand PRT

0 otherwise

11

0 0

 i 1,2,...,SP; j 1,2,..,IS

 (1)

The novelty of this approach is that in its canonical
form, the PRT Vector is created before an individual
starts its journey over the search space. The PRT
Vector defines the final movement of an active
individual in search space.
The randomly generated binary perturbation vector
controls the allowed dimensions for an individual. If an
element of the perturbation vector is set to zero, then the
individual is not allowed to change its position in the
corresponding dimension.

2.2 Crossover
In standard evolutionary strategies, the crossover
operator usually creates new individuals based on
information from the previous generation.
Geometrically speaking, new positions are selected from
an N - dimensional hyper-plane. In SOMA, which is
based on the simulation of cooperative behavior of
intelligent beings, sequences of new positions in the N-
dimensional hyperplane are generated. The movement of
an individual is thus given as follows:

 xi, j
t xi, j

t 1 xL, j
t 1 xi, j

t 1xL
t sA i, j (2)

where

 xi, j
t : newcandidate solution

 xi, j
t 1: original individual

 xL, j
t 1 : leader individual

 s : 0,path length00, h

 A: control vector for perturbation

It can be observed from (2) that the PRT vector causes an
individual to move toward the leading individual (the
one with the best fitness) in N-k dimensional space. If
all N elements of the PRT vector are set to 1, then the
search process is carried out in an N dimensional hyper-
plane (i.e. on a N+l fitness landscape). If some elements
of the PRT vector are set to 0, then the second terms on
the right-hand side of (2) equals 0. This means those
parameters of an individual that are related to 0 in the
PRT vector are not changed during the search. The
number of frozen parameters, k, is simply the number of
dimensions that are not taking part in the actual search
process. Therefore, the search process takes place in an
N-k dimensional subspace.

3. Discrete Self Organising Migrating Algorithm
DSOMA is the discrete version of SOMA, developed to
solve permutation based combinatorial optimization

problem. The same ideology of the sampling of the space
between two individuals is retained.

3.1 Initialization
The initial population is initialized as a permutative
schedule representative of the size of the problem at
hand. Each element within the individual is unique.

 (3)

Each individual is vetted for its fitness (4), and the best
individual and its fitness its obtained as Xbest

t and
Cbest

t . The migration counter t is set to 1;
t 1;t 1,..,M and the individual index i = 1.

 Ci
t f Xi

tXiiX ;i 1,..,SP (4)

3.2 Jump Sequences
DSOMA operates by calculating the number of discrete
jump steps that each individual has to circumnavigate. In
DSOMA, the parameter minimum jumps (Jmin) is used
in lieu of PathLength which states the minimum number
of individuals or sampling between the two individuals.
Taking two individuals in the population, one as the

incumbent (Xi
t) and the other as the leader (XL

t), the
possible number of jump solutions Jmax is the mode of
the difference between the adjacent values of the
elements in the individual (5).

 (5)

The step size (s) can now be calculated as the integer
fraction between the required jumps and possible jumps
(6).

 (6)

The jump matrix J, which contains all the possible jump
positions can be calculated as:

J j, l
P

xi, j
t 1 sl if xi, j

t 1 sl xL, j
t 1

 and xi, j
t 1 xL, j

t 1;

xi, j
t 1 sl if xi, j

t 1 sl xL, j
t 1

 and xi, j
t 1 xL, j

t 1;

0 otherwise

xix
t

xix

i,xix ,

xt
i,

0 0

j 1,...,IS; l 1,..,Jmin

 (7)

3.3 New Jump Individual Selection
A total of Jmin new individuals can now be constructed
from the jump positions. Each new individual

Yw, j
t where w 1,..,Jmin is constructed piecewise from

P Xi
t xi, j

t
1 randd IS 1IS

if xi, j
t xi,1

t ,...,xi, j 1
txxixx ,1

t

1

ififif

J xi, j
t 1 xL, j

t 1xi, j
t 1

Jmax modeJeJ

s int
Jmin

Jmax

J
J

tt
J

t
J

286

the jump matrix J. Each element yw, j
t in the individual,

indexes its values from the corresponding jth array in

the jump matrix J j,l
P .Each lth (I = 1,.., Jmin) position for

a specific j th j 1,2,..,ISj S element is sequentially

checked to ascertain if it already exists in the current

individual Yw, j
t .If this is a new element, it is then

accepted in the individual, and the corresponding lth
value in the jump matrix is set to zero J j,l

P 0 .This

iterative procedure can be given as in (8).

Yw, j
t J j,l

P

if J j ,l
P yw,1

t ,...,yw, j 1
tyyw,1

t

 and J j,l
P 0;l 1,..,Jmin

then J j ,l
P 0

if

if

ththth

0 otherwise

jJ j
PJ j
P

0 0

w 1,..,Jmin

 (8)

3.4 Population Update
After each individual is evaluated for its fitness value as
in (9).

Cw
t f Yw

tYwwYY
tYY ;w 1,..,Jmin (9)

2-OPT local search is applied to the best individual
Ybest

t obtained with the minimum fitness value
min Cw

tn Cw
tmi . After the local search routine, the new

individual is compared with the fitness of the incumbent
individual Ci

t
om

1, and if it improves on the fitness, then
the new individual is accepted in the population (10).

 (10)

3.5 Iteration
Sequentially, each individual Xi 1

t 1 is selected from the
population, and it begins its own sampling towards the

designated leader XL
t 1. It should be noted that the This

is generally considered the most constrained variant of
flowshop scheduling.
The following notations are used to formulate the no-
wait flowshop problems: n = number of jobs to be
scheduled, m = number of machines in the no-wait
flowshop, ti, j = processing time for the ith job on the jth
machine, di,k = minimum delay on the first machine
between the start of job i and job k due to the no-wait

constraint, [i] = the job processed in position i, C iii
 =

the completion time of the job processed in position.
TFT = total flow time, i.e. the sum of flow times of all
leader does not change during the evaluation of one
migration.

4. No Wait Flowshop Scheduling Problem
A no-wait flowshop scheduling problem is one where
once a job starts is cannot be buffered till it is completed.
jobs.
The minimum delay time di,k and completion time
C ii can be calculated as:

 (11)

All jobs are assumed to be available at time zero, the
total flow time can then be given as in (12).

(12)

where is the sum of the processing time of all jobs in all
machines [2].

5. Experimentation
Experimentation was carried out on the benchmark flow-
shop instances by DSOMA. The operating parameters of
DSOMA is given in Table 2. All parameters were kept
stagnant for all experiments.
The experimentation is done with the small and medium
Taillard Benchmark Sets [3]. These benchmarks
comprise of 12 different sets of problems ranging from

 Table 2: Operating parameters for DSOMA

Parameter Value
Solutions (SP) 100
Migrations 100
Sampling (Jmin) 20
Local Search 2 OPT

di, k ti,1 max
2
ma

j
ax
m

tip
p 2

j

tiptt
22

j

tkp
p 1

j 1

tkptt
1

jj 1jjj

p

C iii t 1 , j,
j 1

m

tt 11 ,
j 1

m

C ii d k 1k , kk
k 2

i

dd k
k 22

i

t 1 , j ,i 2,3,..,n.
j 1

m

ttt 1 ,
j 1

m

TFT d[k 1], kk t[1], j
j 1

m

t[[tt1],]
j 1

m

k 2

i

d[[dd k
22

iii

k

t[1], j
j 1

m

t[[tt1],]
j 1

m

i 2

n i

ki 22

n

d[k 1],[k]
k 2

i

dd[dd k
2i 2

n

k 22

i

i 22

n

t[i], j
j 1

m

tt[tt i],
i 1

n

j 1

m

i 1

n

n 1 i d[i 1],[i]
i 2

n

n
i 22

n

ti, j
j 1

m

tit , j
i 1

n

j 1

m

i 1

n

ti, j
j 1

m

titt , j
i 1

n

j 1

m

i 1

n

Xi
t

Ybest
t if f Ybest

tYbYY
t Ci

t 1

Xi
t 1 otherwise

YbYYbYbYY

XX

287

The small and medium sized problems can be designated
from 20 jobs and 5 machines to 50 jobs and 20 machines;
in a total of 6 data sets and 60 problem instances.
Each instance has 10 independent replications and the
percentage relative difference (PRD) is computed as
follows:

 (13)

where CF&V is the referenced makespan provided by [4],
and CDSOMA is the makespan found by the DSOMA
algorithm. Furthermore, average percentage relative
difference (APRD), maximum percentage relative
difference (MaxPRD), minimum percentage relative
difference (MinPRD) and the standard deviation (SD) of
PRD are calculated. The average execution time for each
set (T(s)) is also provided.
The results are given in Table 3. From the results,
DSOMA is better performing than F&V algorithm, with
an average APRD of 0.024. The paired t-test values at
95% confidence interval for the medium sized problems
is given in Table 4.
From the t-test results, DSOMA is significantly better
than F&V on the data set of 50 jobs 5 machines and
identical on the data sets of 50 jobs 10 machines and 50
jobs 20 machines.

5.1 Comparison with Discrete Particle Swarm

Algorithm
Comparison of DSOMA is done with the Discrete
Particle Swarm Algorithm (DPSOVND) of [5]. From
current literature it has been shown as the most
promising algorithm. The results are given in Table 5.
From the results, DPSOVND is a better heuristic. For
the first three data sets, the results are identical, as both
algorithms obtain the optimal results. For the medium
sized problems, DPSOVND is better performing with
0.168 average PRD against 0.04 of DSOMA.
The t-test values at 95% confidence interval is given in
Table 6 for the medium sized problems. From the results
of the t-test, DPSOVND is significantly better
performing for the 50 jobs 5 machines and 50 jobs 10
machines problem whereas DSOMA is comparable to
DPSOVND for the 50 jobs 20 machines problem.

6. Conclusion
DSOMA is introduced in this paper as a novel approach
to solve no-wait flowshop scheduling problems. From
the results, we can state that while not the best algorithm
for this class of problem from literature, DSOMA is very
competitive.
When comparing DSOMA with F&V algorithm,
DSOMA is clearly a better performing heuristic, whereas
it is competitive with the DPSOVND algorithm.
The fallibility of DSOMA can be attributed to the fact
that it didn't use an seed solution like NEH, and it uses
the rudimentary 2-OPT local search routine. A seed

solution and a tailor made local search would, it is
believed improve the algorithm.
A number of improvements are now envisioned for
DSOMA, including extensive parameter testing and
infusion of better local search routines.

Acknowledgement
This work was supported by grant No. MSM
7088352102 of the Ministry of Education of the Czech
Republic and by grants of the Grant Agency of the Czech
Republic GACR 102/09/1680.

REFERENCES
[1] I. Zelinka and J. Lampinen, "Soma - self-organizing

migrating algorithm," in Mendel, 6th International
Conference on Soft Computing, Brno, Czech
Republic, (Brno, Cesch Republic), 2000.

[2] J. lin CHANG, D. wei GONG, and X. ping MA, "A
heuristic genetic algorithm for no-wait flowshop
scheduling problem," Journal of China University of
Mining and Technology, vol. 17, no. 4, pp. 582 - 586,
2007.

[3] E. Taillard, "Benchmarks for basic scheduling
problems," European Journal of Operations
Research, vol. 64, pp. 278-285, 1993.

[4] A. Fink and S. Vo, "Solving the continuous flow-
shop scheduling problem by metaheuristics,"
European Journal of Operational Research, vol.
151, no. 2, pp. 400-414, 2003.

[5] Q.-K. Pan, M. Fatih Tasgetiren, and Y.-C. Liang, "A
discrete particle swarm optimization algorithm for
the no-wait flowshop scheduling problem," Comput.
Oper. Res., vol. 35, no. 9, pp. 2807-2839, 2008.

PRD
100 CF&V CDSOMACCF

CF&V

288

Table 3: Computation comparison of DSOMA with F&V [4]

JxM DSOMA

 APRD MinPRD MaxPRD SD T(s)

20x5 0 0 0 0 0.18
20x10 0 0 0 0 0.32
20x20 0 0 0 0 0.51
50x5 0.152 0.0079 0.350 0.126 0.79

50x10 0.028 -0.129 0.164 0.099 1.53
50x20 -0.035 -0.252 0.055 0.085 2.25

Average 0.024 -0.062 0.095 0.103 0.93

Table 4: Paired t-test for DSOMA against F&V
Set Ho H1 t -value p - value p < 0.005 Ho Ht

50 x 5 DSOMA =F&V DSOMA ≠F&V -3.718 - 0.004

Yes Reject Accept

50 x 10 DSOMA =F&V DSOMA ≠F&V 0.864 0.4098 No Accept Reject

50 x 20 DSOMA =F&V DSOMA ≠F&V 1.301 0.2252 No Accept Reject

Table 5: Computation comparison of DSOMA with DPSOVND of [5]

JxM DSOMA DPSOVND

 APRD MinPRD MaxPRD SD T(s) PRD MinPRD MaxPRD SD

20x5 0 0 0 0 0.18 0 0 0 0
20x10 0 0 0 0 0.32 0 0 0 0
20x20 0 0 0 0 0.51 0 0 0 0
50x5 0.152 0.0079 0.350 0.126 0.79 0.333 0.022 0.634 0.176

50x10 0.028 -0.129 0.164 0.099 1.53 0.116 -0.069 0.303 0.114
50x20 -0.035 -0.252 0.055 0.085 2.25 0.057 -0.082 0.181 0.097

Average 0.024 -0.062 0.095 0.103 0.93 0.168 -0.043 0.373 0.129

Table 6: Paired t-test for DSOMA against DPSOVND

Set H0 H1 t-value p-value p < 0.005 H0 H1
50 x 5 DSOMA =

DPSOVND
DSOMA ≠
DPSOVND

6.06521 0.000 Yes Reject Accept

50 x 10 DSOMA =
DPSOVND

DSOMA ≠
DPSOVND

5.2861 0.000 Yes Reject Accept

50 x 20 DSOMA =
DPSOVND

DSOMA ≠
DPSOVND

1.999 0.0766 No Accept Reject

289

Copyright of AIP Conference Proceedings is the property of American Institute of Physics and its content may

not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.

