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Abstract 
This paper introduces a novel discrete Self Organising 
Migrating Algorithm for the task of flowshop 
schedul¬ing with no-wait makespan. The new 
algorithm is tested with the small and medium Taillard 
benchmark problems and the obtained results are 
competitive with the best performing heuristics in 
literature. 
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1. Introduction 
Scheduling is an integral part of advanced 
manufacturing systems. Flowshop scheduling problems 
have an extensive background in industrial applications, 
including manufacturing, mining, logistics etc. The 
general assumption of a majority of flowshop 
applications is that the sequencing of jobs relies on 
buffers, either wise refereed to as intermediate storage 
between machines. 
However, a number of applications now exist where the 
jobs are not allowed to idle between machines, ie. the 
job proceeds continuously through all the machines. For 
instance, in the steel-making and continuous casting 
processes of iron and steel manufacturing enterprises, a 
no-wait scheduling can reduce the energy loss of high-
temperature molten steel and plays an important role in 
realizing the advanced production style of HCR/DHCR 
[2]. 
Therefore, it becomes essential to devise heuristics, 
which are able to resolve this type of scheduling 
problem. The heuristic used in this research is the novel 
Discrete Self Organising Migrating Algorithm (SOMA). 
SOMA is a class of swarm heuristic, which has been used 
to solve real domain problems. The discrete variant intro-
duced in the paper attempts to solve permutative variants 
of scheduling problems. 
This paper is structured as follows. Section 2 introduces 
SOMA and Section 3 introduces Discrete SOMA. No-
wait flowshop problem is described in Section 4, 
whereas the experimentation is given in Section 5. The 
paper is concluded in Section 6. 
 
2. Self Organising Migrating Algorithm 
SOMA [1] is a metaheuristic, which is based on the 
competitive-cooperative behavior of intelligent creatures 
solving a common problem. 
In SOMA, individual solutions reside in the optimized 
model's hyperspace, looking for the best individual. It 
can be said, that this kind of behavior of intelligent 
individuals allows SOMA to realize very successful 
searches. 

Because SOMA uses the philosophy of competition and 
cooperation, the variants of SOMA are called strategies. 
They differ in the way as to how the individuals affect 
all others. Taking t is the iterator for the migrations M (t 
= 1, 2,..., M), SOMA can be described as consisting of 
the following steps: 

1. Definition of parameters. Before execution, the 
SOMA parameters (PathLength, Step, PRT, 
Migrations see Table 1) are defined. 

2. Creating of population. The population 
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3. Migration loop. 

(a) Each individual Xi
t is evaluated for the cost 

function:  

Ci
t f Xi

tXiiX ;i 1,...SP  

(b) For each element xi, j
t  in an individual Xi

t , 
the PRT Vector A i, j is created (1). 

(c) All individuals, perform their run towards the 
selected individual (Leader), which has the 
best fitness for that migration according to 
(2). Each individual is selected piecewise. 
The movement consists of jumps determined 
by the step parameter (s) until the individual 
reaches the final position given by the Path-
Length parameter. For each step, the cost 
function for the actual position is evaluated 
and the best value is saved. Then, the 
individual returns to the position, where it 
found the best- cost value on its trajectory. 

SOMA, like other evolutionary algorithms, is controlled 
by a number of parameters, which are predefined. They 
are presented in Table 1. 

 
Table 1: SOMA Parameters 

Name Range Type 
PathLength (1.1-3) Control 
StepSize (0.11-PathLength) Control 
PRT (0 - 1) Control 
Migrations 10+ Termination 

 
2.1 Mutation 
Mutation, the random perturbation of individuals, is 
applied differently in SOMA compared with other 
evolutionary strategies. SOMA uses a parameter called 
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PRT to achieve perturbation. It is defined in the range 
[0, 1] and is used to create a perturbation vector (PRT 
Vector (A)) (1): 

A i, j

1   if rand PRT

0   otherwise

11  

0 0

     i 1,2,...,SP; j 1,2,..,IS

  (1) 

The novelty of this approach is that in its canonical 
form, the PRT Vector is created before an individual 
starts its journey over the search space. The PRT 
Vector defines the final movement of an active 
individual in search space. 
The randomly generated binary perturbation vector 
controls the allowed dimensions for an individual. If an 
element of the perturbation vector is set to zero, then the 
individual is not allowed to change its position in the 
corresponding dimension. 
 
2.2 Crossover 
In standard evolutionary strategies, the crossover 
operator usually creates new individuals based on 
information from the previous generation. 
Geometrically speaking, new positions are selected from 
an N - dimensional hyper-plane. In SOMA, which is 
based on the simulation of cooperative behavior of 
intelligent beings, sequences of new positions in the N-
dimensional hyperplane are generated. The movement of 
an individual is thus given as follows: 

                xi, j
t xi, j

t 1 xL, j
t 1 xi, j

t 1xL
t sA i, j             (2) 

where 

 xi, j
t : newcandidate solution

 xi, j
t 1: original individual 

 xL, j
t 1 : leader individual 

 s :  0,path length00, h  

 A: control vector for perturbation 

It can be observed from (2) that the PRT vector causes an 
individual to move toward the leading individual (the 
one with the best fitness) in N-k dimensional space. If 
all N elements of the PRT vector are set to 1, then the 
search process is carried out in an N dimensional hyper-
plane (i.e. on a N+l fitness landscape). If some elements 
of the PRT vector are set to 0, then the second terms on 
the right-hand side of (2) equals 0. This means those 
parameters of an individual that are related to 0 in the 
PRT vector are not changed during the search. The 
number of frozen parameters, k, is simply the number of 
dimensions that are not taking part in the actual search 
process. Therefore, the search process takes place in an 
N-k dimensional subspace. 
 
3. Discrete Self Organising Migrating Algorithm 
DSOMA is the discrete version of SOMA, developed to 
solve permutation based combinatorial optimization 

problem. The same ideology of the sampling of the space 
between two individuals is retained. 
 
3.1 Initialization 
The initial population is initialized as a permutative 
schedule representative of the size of the problem at 
hand. Each element within the individual is unique. 

 

         (3) 

 
Each individual is vetted for its fitness (4), and the best 
individual and its fitness its obtained as Xbest

t  and 
Cbest

t . The migration counter t is set to 1; 
t 1;t 1,..,M  and the individual index i = 1. 

                     Ci
t f Xi

tXiiX ;i 1,..,SP               (4) 
 
3.2 Jump Sequences 
DSOMA operates by calculating the number of discrete 
jump steps that each individual has to circumnavigate. In 
DSOMA, the parameter minimum jumps (Jmin) is used 
in lieu of PathLength which states the minimum number 
of individuals or sampling between the two individuals. 
Taking two individuals in the population, one as the 

incumbent ( Xi
t ) and the other as the leader ( XL

t ), the 
possible number of jump solutions Jmax is the mode of 
the difference between the adjacent values of the 
elements in the individual (5).                                                         
 

                                      (5) 
 
 

 
The step size (s) can now be calculated as the integer 
fraction between the required jumps and possible jumps 
(6). 

                           (6) 

The jump matrix J, which contains all the possible jump 
positions can be calculated as:  
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3.3 New Jump Individual Selection 
A total of Jmin new individuals can now be constructed 
from the jump positions. Each new individual 

Yw, j
t where w 1,..,Jmin is constructed piecewise from 
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the jump matrix J. Each element yw, j
t  in the individual, 

indexes its values from the corresponding jth array in 

the jump matrix J j,l
P .Each lth (I = 1,.., Jmin) position for 

a specific j th j 1,2,..,ISj S  element is sequentially 

checked to ascertain if it already exists in the current 

individual Yw, j
t .If this is a new element, it is then 

accepted in the individual, and the corresponding lth 
value in the jump matrix is set to zero J j,l

P 0 .This 

iterative procedure can be given as in (8). 

Yw, j
t J j,l

P

if J j ,l
P yw,1

t ,...,yw, j 1
tyyw,1

t

   and J j,l
P 0;l 1,..,Jmin

then J j ,l
P 0

if

   

if 

ththth

0             otherwise

jJ j
PJ j
P

0 0

w 1,..,Jmin

       (8) 

 
3.4 Population Update 
After each individual is evaluated for its fitness value as 
in (9). 

Cw
t f Yw

tYwwYY
tYY ;w 1,..,Jmin                    (9) 

2-OPT local search is applied to the best individual 
Ybest

t  obtained with the minimum fitness value 
min Cw

tn Cw
tmi . After the local search routine, the new 

individual is compared with the fitness of the incumbent 
individual Ci

t
om

1, and if it improves on the fitness, then 
the new individual is accepted in the population (10). 

             (10) 

 

3.5 Iteration 
Sequentially, each individual Xi 1

t 1 is selected from the 
population, and it begins its own sampling towards the 

designated leader XL
t 1. It should be noted that the This 

is generally considered the most constrained variant of 
flowshop scheduling. 
The following notations are used to formulate the no-
wait flowshop problems: n = number of jobs to be 
scheduled, m = number of machines in the no-wait 
flowshop, ti, j  = processing time for the ith job on the jth 
machine, di,k  = minimum delay on the first machine 
between the start of job i and job k due to the no-wait 

constraint, [i] = the job processed in position i, C iii
 = 

the completion time of the job processed in position. 
TFT = total flow time, i.e. the sum of flow times of all 
leader does not change during the evaluation of one 
migration. 
 
4. No Wait Flowshop Scheduling Problem 
A no-wait flowshop scheduling problem is one where 
once a job starts is cannot be buffered till it is completed. 
jobs. 
The minimum delay time di,k  and completion time 
C ii  can be calculated as: 
 

 

 (11) 

 

 

 
 
All jobs are assumed to be available at time zero, the 
total flow time can then be given as in (12). 

 

 

 

(12) 

 

 

 
 
where is the sum of the processing time of all jobs in all 
machines [2]. 
 
5. Experimentation 
Experimentation was carried out on the benchmark flow-
shop instances by DSOMA. The operating parameters of 
DSOMA is given in Table 2. All parameters were kept 
stagnant for all experiments.
The experimentation is done with the small and medium 
Taillard Benchmark Sets [3]. These benchmarks 
comprise of 12 different sets of problems ranging from 

 
 Table 2: Operating parameters for DSOMA 

 

 

 

 

 

 

 

 

Parameter Value 
Solutions (SP) 100 
Migrations 100 
Sampling (Jmin) 20 
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The small and medium sized problems can be designated 
from 20 jobs and 5 machines to 50 jobs and 20 machines; 
in a total of 6 data sets and 60 problem instances. 
Each instance has 10 independent replications and the 
percentage relative difference (PRD) is computed as 
follows: 

 

                   (13) 

 

 

where CF&V is the referenced makespan provided by [4], 
and CDSOMA is the makespan found by the DSOMA 
algorithm. Furthermore, average percentage relative 
difference (APRD), maximum percentage relative 
difference (MaxPRD), minimum percentage relative 
difference (MinPRD) and the standard deviation (SD) of 
PRD are calculated. The average execution time for each 
set (T(s)) is also provided. 
The results are given in Table 3. From the results, 
DSOMA is better performing than F&V algorithm, with 
an average APRD of 0.024. The paired t-test values at 
95% confidence interval for the medium sized problems 
is given in Table 4. 
From the t-test results, DSOMA is significantly better 
than F&V on the data set of 50 jobs 5 machines and 
identical on the data sets of 50 jobs 10 machines and 50 
jobs 20 machines. 
 
5.1 Comparison with Discrete Particle Swarm 

Algorithm 
Comparison of DSOMA is done with the Discrete 
Particle Swarm Algorithm (DPSOVND) of [5]. From 
current literature it has been shown as the most 
promising algorithm. The results are given in Table 5. 
From the results, DPSOVND is a better heuristic. For 
the first three data sets, the results are identical, as both 
algorithms obtain the optimal results. For the medium 
sized problems, DPSOVND is better performing with 
0.168 average PRD against 0.04 of DSOMA. 
The t-test values at 95% confidence interval is given in 
Table 6 for the medium sized problems. From the results 
of the t-test, DPSOVND is significantly better 
performing for the 50 jobs 5 machines and 50 jobs 10 
machines problem whereas DSOMA is comparable to 
DPSOVND for the 50 jobs 20 machines problem. 
 
6. Conclusion 
DSOMA is introduced in this paper as a novel approach 
to solve no-wait flowshop scheduling problems. From 
the results, we can state that while not the best algorithm 
for this class of problem from literature, DSOMA is very 
competitive. 
When comparing DSOMA with F&V algorithm, 
DSOMA is clearly a better performing heuristic, whereas 
it is competitive with the DPSOVND algorithm. 
The fallibility of DSOMA can be attributed to the fact 
that it didn't use an seed solution like NEH, and it uses 
the rudimentary 2-OPT local search routine. A seed 

solution and a tailor made local search would, it is 
believed improve the algorithm. 
A number of improvements are now envisioned for 
DSOMA, including extensive parameter testing and 
infusion of better local search routines. 
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Table 3: Computation comparison of DSOMA with F&V [4] 
 

JxM DSOMA 

 APRD MinPRD MaxPRD SD T(s) 

20x5 0 0 0 0 0.18 
20x10 0 0 0 0 0.32 
20x20 0 0 0 0 0.51 
50x5 0.152 0.0079 0.350 0.126 0.79 

50x10 0.028 -0.129 0.164 0.099 1.53 
50x20 -0.035 -0.252 0.055 0.085 2.25 

Average 0.024 -0.062 0.095 0.103 0.93 
 

Table 4: Paired t-test for DSOMA against F&V 
Set Ho H1 t -value p - value p < 0.005 Ho Ht 

50 x 5 DSOMA =F&V DSOMA ≠F&V -3.718 - 0.004 
 

Yes Reject Accept 

50 x 10 DSOMA =F&V DSOMA ≠F&V 0.864 0.4098 No Accept Reject 

50 x 20 DSOMA =F&V DSOMA ≠F&V 1.301 0.2252 No Accept Reject 

Table 5: Computation comparison of DSOMA with DPSOVND of [5] 
 

JxM DSOMA DPSOVND 

 APRD MinPRD MaxPRD SD T(s) PRD MinPRD MaxPRD SD 

20x5 0 0 0 0 0.18 0 0 0 0 
20x10 0 0 0 0 0.32 0 0 0 0 
20x20 0 0 0 0 0.51 0 0 0 0 
50x5 0.152 0.0079 0.350 0.126 0.79 0.333 0.022 0.634 0.176 

50x10 0.028 -0.129 0.164 0.099 1.53 0.116 -0.069 0.303 0.114 
50x20 -0.035 -0.252 0.055 0.085 2.25 0.057 -0.082 0.181 0.097 

Average 0.024 -0.062 0.095 0.103 0.93 0.168 -0.043 0.373 0.129 
 

Table 6: Paired t-test for DSOMA against DPSOVND 

Set H0 H1 t-value p-value p < 0.005 H0 H1 
50 x 5 DSOMA = 

DPSOVND 
DSOMA ≠ 
DPSOVND 

6.06521 0.000 Yes Reject Accept 

50 x 10 DSOMA = 
DPSOVND 

DSOMA ≠ 
DPSOVND 

5.2861 0.000 Yes Reject Accept 

50 x 20 DSOMA = 
DPSOVND 

DSOMA ≠ 
DPSOVND 

1.999 0.0766 No Accept Reject 
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