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a b s t r a c t

This paper deals with the utilization of two evolutionary algorithms Self-Organizing
Migrating Algorithm (SOMA) and Differential Evolution (DE) for the optimization of the
control of chaos. This paper is aimed at an explanation on how to use evolutionary
algorithms (EAs) and how to properly define the advanced targeting cost function (CF)
securing fast, precise andmainly robust stabilization of selected chaotic systemonadesired
state for any initial conditions. The role of EA here is as a powerful tool for an optimal tuning
of control technique input parameters. As amodel of deterministic chaotic system, the one-
dimensional discrete Logistic equation was used. The four canonical strategies of SOMA
and six canonical strategies of DE were utilized. For each EA strategy, repeated simulations
were conducted to outline the effectiveness and robustness of used method and targeting
CF securing robust solution. Satisfactory results obtained by both heuristic and the two
proposed cost functions are compared with previous research, given by different cost
function designs.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The question of targeting (faster stabilization) with application to chaos control has attracted researchers since the first
method for controlling of chaos was developed. The several first approaches for targeting have used special versions of OGY
(Ott–Grebogi–York) control scheme [1,2] or collecting information about trajectories, which falls close to desired state [3].
Later, numerous methods were based on adaptive approach [4], center manifold targeting [5] or neural networks [6,7].
Currently, evolutionary algorithms (EAs) [8–13] are known as powerful tools for almost any difficult and complex

optimization problem. But the quality of obtained results through optimization mostly depends on proper design of the
used cost function, especially when the EAs are used for optimization of chaos control. The results of numerous simulations
lend weight to the argument that deterministic chaos in general and also any technique to control of chaos are sensitive to
parameter setting, initial conditions and in the case of optimization, they are also extremely sensitive to the construction of
used cost function.
This research utilized Pyragas’ delayed feedback control technique ETDAS (Extended Time Delay Auto Synchroniza-

tion) [14–16]. Unlike the original OGY control method [17], it can be simply considered as a targeting and stabilizing al-
gorithm together in one package [18]. Another big advantage of the Pyragas method is the amount of accessible control
parameters. This is very advantageous for successful use of optimization of parameter setting by means of EA, leading to
improvement of system behavior and better and faster stabilization to the desired periodic orbits. Some research in this
field has recently been done using EAs for optimization of local control of chaos [19,20], however our approach is different.
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Fig. 1. Bifurcation diagram of Logistic equation.

The role of EA in this instance is as a powerful tool for an optimal tuning of control technique input parameters based
on advanced targeting cost functions securing the stabilization to desired UPO (unstable periodic orbit) for any initial
conditions. Numerous applications either of canonical DE or special version of DE [21–23] and SOMA [24] have proven
that these heuristics are suitable for solving a difficult class of problems [25].
This work presents an accumulation of research [26] and also collates and elaborates the experiences with application of

EA to chaos control [27,28] in order to reach better results and decrease the influence of negative phenomenon which can
occur in such a challenging task, which is chaos control.
The main aim of this paper is not to show, which heuristic or its strategy is better or worse, but to test the selected EAs

in such a challenging task, which is optimization of chaos control.

2. Problem design

2.1. Problem selection and case studies

The chosen example of a chaotic system was the one-dimensional Logistic equation as in form (1).

xn+1 = rxn (1− xn) . (1)

The Logistic equation (Logistic map) is a one-dimensional discrete-time example of how a complex chaotic behavior can
arise from very simple nonlinear dynamical equation. This chaotic system was introduced and popularized by the biologist
Robert May [29]. It was originally introduced as a demographic model of a typical predator–prey relationship. The chaotic
behavior can be observed by varying the parameter r . When r = 3.57, this is the beginning of chaos, at the end of the
period-doubling behavior. When r > 3.57, the system exhibits chaotic behavior.
The example of this behavior can be clearly seen from the bifurcation diagram in Fig. 1.
This work primarily consists of three case studies. All of them are focused on an estimation of three accessible control

parameters for ETDAS control method to stabilize desired UPO, and a comparison of obtained results for used cost function.
Desired UPOs are the following: p-1 (a fixed point) in the first case, p-2 (higher periodic orbit—oscillation between 2 values)
in the second case and p-4 (also high periodic orbit—oscillation between 4 values) in the last case. All simulations were 50
times repeated for each EA strategy. The control method—ETDAS in the discrete form suitable for Logistic equation has the
form (2).

xn+1 = rxn (1− xn)+ Fn
Fn = K [(1− R) Sn−m − xn]
Sn = xn + RSn−m

(2)

where K and R are adjustable constants, F is the perturbation, S is given by a delay equation utilizing previous states of the
system andm is the period ofm-periodic orbit to be stabilized. The perturbation Fn in Eqs. (2) may have an arbitrarily large
value, which can cause diverging of the system outside the interval {0, 1}. Therefore, Fn should have a value between,−Fmax
and Fmax, and EA should find an appropriate value of this limitation to avoid diverging of the system.
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2.2. The basic cost function

The proposal of the basic cost function (CF) is in general based on the simplest CF, which could be used only for the
stabilization of p-1 orbit. The idea was to minimize the area created by the difference between the required state and the
real system output on the whole simulation interval—τi.
However, another cost function had to be used for stabilizing of the higher periodic orbit. It was synthesized from the

simple CF and other terms were added. In this case, it is not possible to use the simple rule of minimizing the area created
by the difference between the required and actual state on the whole simulation interval—τi, due to many serious reasons,
for example: degrading of the possible best solution by a phase shift of periodic orbit.
This CF, is in general based on the searching for desired stabilized periodic orbit and thereafter calculation of the

difference between desired and found actual periodic orbit on the short time interval—τs (approx. 20–50 iterations) from
the point, where the first minimum value of difference between desired and actual system output is found. Such a design of
CF should secure the successful stabilization of p-1 and higher periodic orbit anywise phase shifted. The CFBasic has the form
(3).

CFBasic = penalization1+
τ2∑
t=τ1

|TSt − ASt | (3)

where:

TS—target state,
AS—actual state
τ1—the first minimum value of difference between TS and AS
τ2—the end of optimizing interval (τ1 + τs)
penalization1 = 0 if τi − τ2 ≥ τs;
penalization1 = 10 ∗ (τi − τ2) if τi − τ2 < τs

(i.e. late stabilization).

2.3. The advanced targeting cost function

It was necessary to modify the definition of CF in order to decrease the average number of iteration required for the
successful stabilization and avoidance of any associated problem. The CFBasic is suitable for adding some term of penalization
for slowly stabilizing solutions, thus itwasmodified for the use of all requiredUPOs. The CF value ismultiplied by the number
of iterations (NI) of the first foundminimal value of difference between desired and actual system output (i.e. the beginning
of fully stabilized UPO). To avoid problems associated with CF returning value 0 and to put the penalization to similar level
as the non-penalized CF value, the small constant (SC) is added to CF value before penalization (multiplying by NI).
Generally, there exist two possible approaches for defining the SC value. The first one capitalizes the previous simulation

results with CF basic and experiences, whereas the second approach uses the automatically computed value.
The next two proposals of CF design are based on the second approach, which should avoid any problems associatedwith

defining the value of small constant, SC in advance (especially for stabilization of higher periodic orbit). The SC value (5) is
computed with the aid of power of non-penalized basic part of CF (4).

ExpCF = log10

(
τ2∑
t=τ1

|TSt − ASt | + 10−15
)

(4)

SC = 10ExpCF. (5)

In general, there exists two possible ways for applying the multiplication by number of iterations required for
stabilization (NI). The first version of final design of targeting CF (CFT1-ADV) has the form (6). Here the sum of basic part of
CF and automatically computed SC is multiplied by NI. Finally, to avoid the problems with fast stabilization, only for limited
range of initial conditions, the final CF value is computed as a sum of n repeated simulations for different initial conditions.
Consequently, the EA should find the robust solutions securing the fast targeting into desired behavior of system for almost
any initial conditions.

CFT1-Adv =
n∑
1

NI

(
SC+ penalization1+

τ2∑
t=τ1

|TSt − ASt |

)
(6)

where: xinitial is from the range 0.05–0.95 and uses step 0.1.
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Fig. 2. Dependence of CF value on parameter K and Fmax (left); and parameter K (right), p-1 orbit, xinitial = 0.8, CFT1-ADV , R = 0.50, Fmax = 0.49.

Fig. 3. Dependence of CF value on parameter K and Fmax (left); and parameter K (right), p-1 orbit, xinitial = 0.8, CFT2-ADV , R = 0.50, Fmax = 0.50.

In the second version of targeting CF (CFT2-ADV), there is only a slight change in comparison with the previous proposal.
Here the number of steps for stabilization (NI) multiplies only the small constant (SC) which is counted in the same way as
in the previous case (5). This version of targeting CF (CFT2-ADV) has the form (7).

CFT2-Adv =
n∑
1

(
(NI · SC)+ penalization1+

τ2∑
t=τ1

|TSt − ASt |

)
. (7)

3. Graphical overview

The difference between the proposed CFs can be clearly seen in Figs. 2–5, which shows the dependence of CF values
on the adjustable parameters K and Fmax (left part of figures — 3D diagrams) and the dependence of CF values on the
adjustable parameters K (right part of figures — 2D diagrams). Remaining parameters were set at the best values reached
in optimizations; consequently the two-dimensional diagram always shows the section of global minimum. From these
figures, it is obvious as to how a small change in the CF design can influence the nonlinearity and unpredictability of CF
surface and how the nonlinearity of CF surface increase together with growing order of UPO to be stabilized.

4. Optimization algorithms

The experimentation utilized the stochastic optimization algorithms DE [12,30] and SOMA [13]. They were chosen due
to their proven ability to converge towards the global optimum.
DE is a population-based optimization method that works on real-number-coded individuals. For each individual Exi,G in

the current generation G, DE generates a new trial individual Ex′i,G by adding the weighted difference between two randomly
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Fig. 4. Dependence of CF value on parameter K and Fmax (left); and parameter K (right), p-2 orbit, xinitial = 0.8, CFT1-ADV , R = 0.24, Fmax = 0.21.

Fig. 5. Dependence of CF value on parameter K and Fmax (left); and parameter K (right), p-2 orbit, xinitial = 0.8, CFT2-ADV , R = 0.19, Fmax = 0.28.

Table 1
Description of used DE strategies.

Strategy Formulation

DERand1Bin ui,G+1 = xr1,G + F • (xr2,G − xr3,G)
DERand2Bin ui,G+1 = xr5,G + F • (xr1,G − xr2,G − xr3,G − xr4,G)
DEBest2Bin ui,G+1 = xBest,G + F • (xr1,G − xr2,G − xr3,G − xr4,G)
DELocalToBest ui,G+1 = xi,G+FRand(xBest,G−xi,G)+F • (xr1,G−xr2,G)
DERand1DIter ui,G+1 = xr1,G + FNormRand • (xr2,G − xr3,G)
DEBest1JIter ui,G+1 = xBest1,G + FNormRand • (xr1,G − xr2,G)

selected individuals Exr1,G and Exr2,G to a randomly selected third individual Exr3,G. The resulting individual Ex′i,G is crossed-
over with the original individual Exi,G. The fitness of the resulting individual, referred to as a perturbed vector Eui,G+1, is then
compared with the fitness of Exi,G. If the fitness of Eui,G+1 is greater than the fitness of Exi,G, then Exi,G is replaced with Eui,G+1;
otherwise, Exi,G remains in the population as Exi,G+1. DE is quite robust, fast, and effective, with global optimization ability. It
does not require the objective function to be differentiable, and it works well evenwith noisy and time-dependent objective
functions. Please refer to Table 1 for the description of six used strategies.
Scaling vector F is replaced with a randomly generated vector FRand in the DELocalToBest strategy and with a randomly

generated vector FNormRand with normal distribution in strategies DEBest1JIter and DERand1DIter.
SOMA works with groups of individuals (population) whose behavior can be described as a competitive–cooperative

strategy. The construction of a new population of individuals is not based on evolutionary principles (two parents produce
offspring) but on the behavior of social group, e.g. a herd of animals looking for food. This algorithm can be classified as an
algorithm of a social environment. To the same group of algorithms, Particle Swarm Optimization (PSO) algorithm can also
be put in, sometimes called swarm intelligence. In the case of SOMA, there is no velocity vector as in PSO, only the position
of individuals in the search space is changed during one generation, here called ‘migration loop’.
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Fig. 6. Basic principle of SOMA.

Table 2
Used versions of SOMA.

Index Algorithm/Version

1 SOMA AllToOne
2 SOMA AllToRandom
3 SOMA AllToAll
4 SOMA AllToAllAdaptive

The rules are as follows: In every migration loop the best individual is chosen, i.e. individual with the minimum cost
value, which is called the Leader. An active individual from the population moves in the direction towards the Leader in
the search space. At the end of the crossover, the position of the individual with minimum cost value is chosen. If the cost
value of the new position is better than the cost value of an individual from the old population, the new one appears in new
population. Otherwise the old one remains there. The crossover is described by Eq. (8) and the main principle is depicted in
Figs. 6 and 7.

xML+1i,j = xMLi,j,START + (x
ML
L,j − x

ML
i,j,START) ∗ t ∗ PRTVectorj (8)

where

xML+1i,j —value of i-individual’s j-parameter, in step t in migration loop ML+ 1
xMLi,j,START—value of i-individual’s j-parameter, Start position in actual migration loop
xMLL,j —value of Leader’s j-parameter in migration loop ML
t-step ∈ 〈0, by Step to, PathLength〉
PRTVector—is vector of ones and zeros dependent on PRT. If random number from interval 〈0, 1〉 is less than PRT, then 1
is saved to PRTVector, otherwise it is 0.

5. Experimental results

Four strategies of SOMA and six strategies of DE were used for all simulations. (See Tables 2 and 3). See also Tables 4
and 5 for parameter settings of the used EAs. The parameter setup for both heuristic was based on the previous numerous
experiments with chaos and nonlinear systems and on the recommendations proposed by the authors of these evolutionary
algorithms.
Parameters for the optimizing algorithm were set up in such a way in order to reach the same value of maximal CF

evaluations for all used strategies. Each SOMA andDE strategy has been applied 50 times in order to find the actual optimum.
Both evolutionary algorithms are terminated after reaching the maximal value of CFE—Cost Function Evaluation. This

value is evaluated from the number of generations and population size (DE); and number of migration loops, population
size, step size and PathLength (SOMA).
Here is the list of desired UPOs for r = 3.8:

p-1 (fixed point): xF = 0.73842.
p-2 orbit: x1 = 0.3737, x2 = 0.8894.
p-4 orbit: x1 = 0.3038, x2 = 0.8037, x3 = 0.5995, x4 = 0.9124.
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Table 3
Used strategies of DE.

Index Algorithm/Version

5 DERand1Bin
6 DERand2Bin
7 DEBest2Bin
8 DELocalToBest
9 DERand1DIter
10 DEBest1JIter

Table 4
Parameter settings for SOMA.

Parameter ATO/ATR ATA/ATAA

PathLength 3 3
Step 0.33 0.33
PRT 0.1 0.1
PopSize 25 10
Migrations 25 7
Max. CF Evaluations (CFE) 5400 5670

Table 5
Parameter settings for DE.

Parameter Values

F 0.9
Cr 0.2
PopSize 25
Generations 215
Max. CF Evaluations (CFE) 5375

The optimization interval for p-1 orbit was τi = 100 iterations, for higher periodic orbits (p-2 and p-4) it was mostly
τi = 150 iterations.
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Table 6
Results for p-1 orbit, CFT1-ADV and CFT2-ADV .

CF version CFT1-ADV CFT2-ADV
EA version SOMA DE SOMA DE

K −0.9351 −0.9323 −0.9336 −0.9307
Fmax 0.4888 0.4842 0.4957 0.4995
R 0.4990 0.4985 0.4994 0.4973
CF val. 2.57× 10−14 2.56× 10−14 2.54× 10−14 2.56×10−14
Avg. IStab 34 33 32 32

Fig. 8. Best solution: p-1 orbit, CFBasic , DERand1Bin.

The ranges of all estimated parameters were these:

−2 ≤ K ≤ 2, 0 ≤ Fmax ≤ 0.5 and 0 ≤ R ≤ 0.99.

The best solution for each strategy of SOMA and DE and both versions of CF are shown in Tables 6–8. Presented results in
these three tables include estimated optimal values of three parameters for ETDASmethod (K , Fmax, R) and final CF Value for
the best individual solution together with other important optimization result like average number of iterations required
for successful stabilization for 50 repeated simulations (Avg. IStab). The best individual solutions are highlighted by bold
numbers.
The Figs. 8–16 show simulation of chaos control by means of ETDAS method adjusted using the best individual solution

given either by SOMA or DE. These figures consists of two parts—simulation with identical initial conditions for variables
x of the logistic equation as for the optimization (left part of the image) and the complex simulation of the best individual
solution with distributed initial conditions in the range 0 < xinitial < 1 (100 samples — right part of the image), which gives
weight to the argument that presented CFs (6) and (7) are able to give optimal parameter setup for robust control of chaotic
system for any initial condition x.
Each section dealing with the different target state of stabilized chaotic system (different order of UPO) consists of series

of three figures. The first one shows the results from previous research given by CFBasic (4) [19]. It is followed by two figures
depicting the simulation output by means of optimal parameter setup given by EAs and presented targeting CFs (6) and (7).
From these three figures, it is obvious the positive influence of presented targeting cost functions to the faster stabilization
of chaotic system and, of course, also the influence of a small change in CF design to the quality of stabilization.

5.1. Control of chaos, p-1 orbit

For the best individual solutions given by CFT1-ADV (DELocalToBest) and CFT2-ADV (SOMAATO), please refer to Table 6. Each
EA strategy gave almost identical result of CF value for the best solution. From the series of complex simulations depicted in
Figs. 8–10, it is obvious, that the control parameters estimated in the optimizations ensured very fast and precise reaching
of a desired state for any initial conditions.

5.2. Control of chaos, p-2 orbit

This case is focused on the stabilization of p-2 orbit.
The best results given by both evolutionary algorithms are shown in Table 7. The outputs of simulations are depicted in

Figs. 11–13.
The results given by CFT1-ADV show the following attributes: rapid achievement of desired UPO in comparisonwith CFBasic

(see Table 9)—only 13 iterationswere required for the stabilization of the best solution, togetherwith very poor performance
of EA, i.e. the proportion of the solutionswith either perfect stabilization or temporary or possibly none at all. Also, relatively
considerable period doubling or oscillating in the close neighborhood of desired UPO arose (Fig. 12).
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Fig. 9. Best solution: p-1 orbit, CFT1-ADV , DELocalToBest.

Fig. 10. Best solution: p-1 orbit, CFT2-ADV , SOMA ATO.

Table 7
Results for p-2 orbit, CFT1-ADV and CFT2-ADV .

CF version CFT1-ADV CFT2-ADV
EA version SOMA DE SOMA DE

K 0.4236 0.4047 0.4093 0.4092
Fmax 0.2086 0.4271 0.2824 0.2794
R 0.2421 0.1819 0.1949 0.1847
CF val. 15.0221 19.7431 0.6392 0.2353
Avg. IStab 60 56 31 38

Fig. 11. Best solution: p-2 orbit, CFBasic , SOMA ATR.

In the case of CFT2-ADV, the twomain above mentioned problems with period doubling (i.e. low-quality stabilization) and
very poor performance of EAs in finding the stabilizing securing solutions were noticeably suppressed.

5.3. Control of chaos, p-4 orbit

See Table 8 for the results of this optimization. The simulations of the best individual solutions are depicted in Figs. 14–16.
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Fig. 12. Best solution: p-2 orbit, CFT1-ADV , SOMA ATA.

Fig. 13. Best solution: p-2 orbit, CFT2-ADV , DERand1DIter.

Fig. 14. Best solution: p-4 orbit, CFBasic , SOMA ATO.

Table 8
Results for p-4 orbit, CFT1-ADV and CFT2-ADV .

CF version CFT1-ADV CFT2-ADV
EA version SOMA DE SOMA DE

K −0.6394 −0.6176 −0.5132 −0.5355
Fmax 0.1107 0.0906 0.1249 0.1267
R 0.7255 0.7049 0.5960 0.6508
CF val. 0.1229 0.6302 2.1906 0.0031
Avg. IStab 450 463 194 199

As a conclusion of this case study, it is possible to say that also in the case of p-4 orbit and optimizations by means of
CFT1-ADV, the phenomenon of faster targeting of desired UPO (only 31 iterations for the best individual solution) for a wide
range of initial conditions occurs at the cost of very poor performance of both DE and SOMA (only 2% of given solutions led
to stabilization).
In the case of CFT2-ADV, the presented results show positive features as in the case of p-2 orbit and from the comparison

with CFBasic (Fig. 14—not successful stabilization), it follows that stabilization was reached precisely.
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Fig. 15. Best solution: p-4 orbit, CFT1-ADV , SOMA ATR.

Fig. 16. Best solution: p-4 orbit, CFT2-ADV , DERand1Bin.

Table 9
Comparison of results for five CFs.

UPO p-1 p-2 p-4

CF Basic 97 123 ∞(208)
CF Targ1 32 112 ∞(205)
CF Targ2 31 112 ∞(190)
CF Targ1 Adv. 36 58 396 (450)
CF Targ2 Adv. 33 64 196 (248)

The results for CFT1-ADV were in the first instance better (Figs. 15 and 16) however, in the case of CFT2-ADV, more than
50% of the samples were stabilized within the first 150 iterations. This is apparent from the notable difference of Avg. IStab
values.

6. Investigation on results of chaos control

This section presents the combination of research [26–28] and the results presented here. Please refer to Table 9 for the
comparison of average number of iterations required for stabilization, which was elaborated for five CFs and all desired
UPOs. The infinity value and the number in braces represent the case, where the stabilization was reached only for the best
solution and this solution failed within complex simulation. Here, a gradual decrease of average IStab value together with
development and testing of complex targeting cost functions can be clearly seen.
The first CF Basic gives satisfactory results and can be used wherever the good quality of stabilization is expected and the

speed of stabilization and ‘‘universality of this solution’’ for a wider range of initial conditions are not decisive.
In case of targeting cost functions, the results for p-1 orbit are significantly better, however, on the other hand the slightly

better results for higher periodic orbits were achieved at the cost of arising of problem with worse performance of EAs and
obtaining of solutions with only temporary stabilization or none at all. This negative phenomenon culminates in the case
of CFT1-ADV. Finally, CFT2-ADV design suppresses all mentioned problems and gives excellent performance from the point of
view of quickness and quality of stabilization for any initial conditions.
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7. Conclusion

From the optimization results it follows, that they are extremely sensitive to the construction of used CF and any small
change in the design of CF can cause radical improvement of the system behavior (as in case of CF Targ2 Advanced), but of
course, on the other hand can cause a worsening of observed parameters and behavior of chaotic system as well.
When comparing both used heuristics, it is obvious, that the performance of four SOMA strategies and six canonical

strategies of DE is very similar and satisfactory.
The results for CF Targ1 were for the first view satisfactory, but two very momentous problems arose—period doubling

and very poor performance of EAs. These problems uncovered hidden non-optimal structure of CF Targ1.
In the last proposal of CF Targ2, there were only slight changes in CF design, but from the presented results it can be seen,

how such a small change can influence the performance of a controlled system, especially when it is an extremely sensitive
chaotic system. CF Targ2 advanced gives excellent results for simulations with a wide range of initial conditions and seem to
be the choice for the task of finding of ‘‘universal and robust solution’’. The problems with poor EA performance and period
doubling were mostly suppressed here. The only disadvantage of this proposal is the relatively big computational-time
demands.
According to all results presented here, it is planned that the main activities will be focused on testing of evolutionary

deterministic chaos control in continuous-time and high-order systems and finally testing of evolutionary real-time chaos
control.
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