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Abstract. In this work, film blowing process analysis has been performed theoretically by using 
minimum energy approach for non-Newtonian polymer melts considering non-isothermal 
processing conditions and the obtained predictions were compared with both, theoretical and 
experimental data (bubble shape, velocity and temperature profiles) taken from the open 
literature. It has been found that model predictions are in very good agreement with the 
corresponding experimental data. 

Keywords: Non-isothermal film blowing, Polymer processing modeling, Variational principles.
PACS: 47.50.-d, 83.10.Gr, 83.50.Uv, 83.60.St, 83.80.Sg 
 

INTRODUCTION

The film blowing process is widely applied for a production of biaxially-oriented 
thin polymeric films. The film manufacture starts in extruder, where polymer pellets 
are transported from a hopper to an annular die by a screw. Subsequently, the polymer 
melt is formed to a continuous tube. At this moment, bubble is still in a molten state 
and it is oriented in two directions: in the machine direction by the nip rolls and in the 
circumferential direction by an internal air pressure. Simultaneously, bubble is cooled 
by a cooling ring situated around the bubble. This happens until a freeze line height is 
not achieved. Then, the film is in a solid state. The dimensions of the bubble are 
defined by the terms blow-up ratio, which is the ratio of the final bubble diameter at 
the freeze line height to the bubble diameter at the die exit, and the take-up ratio, 
which is the ratio of the film velocity above the freeze line to melt velocity through die 
exit. Further, the bubble is compound between two table flaps. Then, film is drawn to 
a wind-up device by nip and guide rolls. A description of the process is shown 
schematically in Figure 1. The final film created in this way, can be applied in a food 
processing, as well as, in a health service or waste industry. Although, the film 
blowing process has been continuously developing from latest 1930´s, even now the 
process is not fully understood yet because there are some problems, which bring 
significant processing limitations [1-12], such as bubble instabilities [1-27]. The most 
popular way to optimize the film blowing process is modeling. Many film blowing 
models are based on Pearson and Petrie formulation [18-20] which considers the film 
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as a thin shell in tension from internal air pressure and film drawing. Unfortunately, 
this formulation has limited capability in describing the full range of bubble shapes 
observed experimentally and may lead to variety of numerical instabilities. Thus, the 
Zatloukal-Vlcek model [28-31] has been developed and used to overcome these 
difficulties by the help of variational principles, where the stable bubble has to satisfy 
minimum energy requirements. The main idea of this paper is to test non-isothermal 
Zatloukal-Vlcek model considering non-Newtonian polymer melt by using 
experimental and theoretical data taken from the open literature. 

FIGURE 1.  The film blowing line. 
 

MATHEMATICAL MODELING 

Pearson and Petrie Formulation 

The first and probably the most important contribution to modeling of the film 
blowing process were given by Pearson and Petrie [16, 32] who developed basic and 
simple kinematic frame of the film blowing process. In their pioneering work, they 
have employed Newtonian model as the constitutive equation and the process has been 
assumed to be isothermal. Pearson and Petrie formulation [16] is based on the 
following assumptions (see Figure 2 for more details): 
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- Membrane theory: the bubble is described as a thin shell where the film 
thickness, h, is much smaller than the bubble radius, r (h << r). 

- The bubble movement is time steady and symmetrical around the bubble axis. 
- The surface and inertial stresses are neglected due to their low values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2. Film blowing variables. 
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The Pearson and Petrie have used a local Cartesian coordinate system where x1 
represents the tangential direction, x2 is the thickness direction, and x3 means the           
circumferential direction (Figure 3).  
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

FIGURE 3. Cartesian coordinate system. 

  
The mathematically, Pearson and Petrie formulation is given by the set of equations 

provided in Table 1. 
 
 
 
 

TABLE 1.  A full set of the Pearson and Petrie equations. 
Equation type Equation form Equation 

number 

Continuity equation � � � � � � � �� �xTxvxhxrm ?�2��  (1) 

Density 
 

(2) 

Internal bubble pressure  (3) 

Curvature radius - tangential  (4) 

Curvature radius  - circumferential 
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Equation type Equation form Equation 
number 

Term (6) 

Force balance  (7) 

Stress   (8) 

Tangential stress  at the freeze 
line height 

 (9) 

Stress in the circumferential direction  (10) 

Circumferential stress at the freeze 
line height 

 (11) 

Proportion between the total stresses,
, and the extra stresses,  

 (12) 

 
The meaning of the used symbols is following: x represents particular location at 

the bubble, m�  is the mass flow rate, r(x) the bubble radius, h(x) the film thickness, 
v(x) the film velocity, T(x) the temperature and �(T) is the density (which is described 
below in more detail), �P is the internal bubble pressure, �11 is the tangential 
directions of the stress, Rm is radius curvature, �33 is circumferential directions of the 
stress, Rt is radius  curvature , rf is the bubble radius at the freeze line height, F means 
the take-up force, G stands for the gravity, and H is the force created by the air flow. 
The bubble radius at the freeze line height is, R1 = BURR0, and H1 is the bubble 
thickness at the same place.  

It should be mentioned that Eq. 2 for temperature dependent density has been    
derived by Spencer and Gilmore [33] with following symbol meaning: w is the 
molecular weight, Rg represents the universal gas constant (Rg = 8.314 J·K-1.mol-1),    
P* is the cohesion pressure, and  means the specific volume. As has been shown by 
Hellwege et al. [34], these parameters for PEs, takes the following forms:                    
w = 28�10-3 kg�mol-1, = 8.75�10-4 m3.kg-1 and P* = 3.18�108 Pa. Putting all these 
numbers into the Eq. 2, the following equation for temperature dependent density 
raised:  

  (13)  

 
Main problem with the Pearson and Petrie formulation is the occurrence of 

numerical instabilities [24, 28, 31] and impossibility to represents real bubble shapes 
realistically [28, 31]. 
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Numerical Instabilities 

These types of instabilities are usually caused by inability of the numerical scheme 
to converge for certain polymer rheology, processing and boundary conditions or by          
existence of the multiple solutions. Moreover, the solution is very sensitive to the 
initial bubble angle at the die exit as well as to melt history which is related to the die 
flow. Due to that, the solution is available for only a small area of the operating 
conditions. This is discussed in more detail by Luo and Tanner [24]. 
 

Problems with the Bubble-Shape Description 

These problems are connected with high stalk bubbles, i.e. bubbles with a long 
neck. Here, the bubble shape with the original elongated neck is not described exactly 
– the predicted values are set in earlier than the elongated neck of the bubble in reality 
[28, 31]. The presented problems of Pearson and Petrie formulation can be eliminated 
by the application of Zatloukal-Vlcek´s formulation derived through variational 
principles, which is described in the following parts in more detail. 

 

Zatloukal-Vlcek Formulation 

The Zatloukal and Vlcek formulation regards existence of the stable film blowing 
process as a situation which satisfies minimum energy requirements; otherwise, the 
bubble is viewed as unstable. The bubble is viewed as static flexible membrane having 
initially element length equal to dx (Figure 4), which is consequently deformed   
during the process by the internal load, p, and the take-up force, F (Figure 5).  
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FIGURE 4. Membrane before deformation. FIGURE 5. Membrane after deformation.  
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After the bubble deformation the element length is given by the following   
equation [28, 31]: 

 

    (14) 

 
It has been shown in [28] that if the constant bubble compliance is assumed along 

the bubble, one can derive the analytical equation for the bubble shape satisfying the 
minimum-energy requirements by using variational principles. This model can be 
applied for description of different bubble types including high stalk bubbles [30]. In 
this work, bubble without neck will be considered only. 
 

Bubble without Neck 

The bubble without the neck is typical for LLDPE and LDPE polymers due to their 
higher melt strength [35]. Four parameters have to be known for the bubble shape 
description: freeze line height, L, bubble curvature, pJ (which is given by membrane 
compliance, J, and the internal load, p), the blow up ratio, BUR, and the die radius, R0. 
In this case, Zatloukal-Vlcek model is given by the set of equations, which are 
provided in Table 2 and Table 3.  
 

TABLE 2.  A. Summary of the Zatloukal-Vlcek model for the bubble without neck. 

Equation type Equation form Equation 
number 

Differential 
equation 

 (15) 

Bubble shape  (16) 

Parameter  (17) 

Parameter  (18) 

Parameter  (19) 

Take-up force  (20) 
 

Internal bubble 
pressure  (21) 
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compliance J=
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The symbol meaning is following: F is the take-up force, �1 stands for the Lagrange 
multiplier, p means the internal load. Parameter � is given by a parameter (Eq. 19)     
according to Table 3. 
 
 

TABLE 3.  Parameters A and � for different bubble shapes (y). 
Equation A � y 

1. 1 0  

2. 0 < A < 1 The form of Eq. 16 

3. 0 �/2  

4. -1 < A < 0  The form of Eq. 16 

5. -1 �  

  

Eqs. 9, 11, 16, 18-21 and Table 3 this work represents simple Zatloukal-Vlcek 
model for bubble without neck, which has to be combined with additional equations 
(energy equation, constitutive equation, Pearson and Petrie formulation for velocity 
calculation), which are described bellow in more detail.  

 

Energy Equation 

The assumption about the isothermal film blowing process is relaxed here by        
assuming the cross-sectionally average energy equation (the bubble is a quasicylinder 
at each point) taken from [36]:  
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where Cp stands for the specific heat capacity, � is the polymer density, R means the 
local bubble radius, h represents the heat transfer coefficient, T is the bubble 
temperature, Tair means the air temperature used for the bubble cooling , �B stands for 
the Stefan-Boltzmann constant, 	 represents the emissivity, � is the extra stress tensor, 
�v means velocity gradient tensor, �Hf indicates the heat of crystallization per unit 
mass and K is the average absolute degree of crystallinity of the system at the axial 
position, x.  

In order to reduce the problem complexity, the axial conduction, dissipation,         
radiation effects and crystallization are neglected. For such simplifying assumptions, 
the Eq. 23 is reduced in the following, the simplest version of the cross-sectionally 
averaged energy equation: 
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 � �
 �airp TThy
dx
dTCm �� �2�  (24) 

 
where y is the bubble shape (given by Eq. 16 in Table 2), m� represents the mass flow 
rate, h stands for the heat transfer coefficient, Cp is the specific heat capacity,  T means 
the value of the bubble temperature and Tair represents the air temperature used for the 
bubble cooling. The Eq. 24 applied for the first part of the bubble takes the following 
form: 
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where Tdie and Tsolid represents the temperature of the melt at the die exit and 
solidification temperature of the polymer, respectively. After integration from die 
temperature, Tdie, up to freezeline temperature, Tsolid, we can obtain equation defining 
the relationship between frezeline height, L, and heat transfer coefficient, h, which 
take the following simple analytical expression: 
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With the aim to get equations for the temperature profile along the bubble, it is      

necessary to apply the Eq. 24 for any arbitrary point at the bubble i.e. in the following 
way: 

 

 � � �� �
�

xT

T air

p ydxdT
TTh

Cm

die 0

2�
�

  (27) 

 
After the integration of Eq. 27, the temperature profile takes the following         

analytical expression: 
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Constitutive Equations  

Constitutive equations represent mathematical relationships which are derived from 
constitutive models containing various assumptions and idealizations about the 
molecular or structural forces and motions producing stress. Constitutive equations 
enable computing polymer melt stress response on the given flow field. Polymers, 
which lie between Newtonian liquids and Hookean solids, contain relatively long 
macromolecules and thus they cannot be described by simple physical laws [37-38]. 
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In this work, the recently proposed generalized Newtonian model will be 
considered [38] with the aim to minimize the complexity of the film blowing problem. 
The main advantage behind this model is possibility to express all stress components 
as the analytical function of deformation rate even for complex flows where shear and 
extensional flows are mixed together. Moreover, specific form of the generalized 
Newtonian model, described below, allows taking both shear thinning as well as 
extensional viscosity strain hardening/thinning behavior properly into account [38]. 
The model takes the following form: 

 
 D,* 2�  (29) 
 

where  means the extra stress, D represents the deformation rate tensor and               
, stands for the viscosity, which is not constant (as in the case of standard Newtonian 
law), but it is allowed to vary with second, IID, and third, IIID, invariants                     
of deformation rate tensor  according to Eq. 30 
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where � �DII,  and  are given by Eqs. 31 and 32 
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where ,0, ., a, n, �, � and 
 are adjustable parameters. Note that � is so called 
extensional strain hardening parameter. The uniaxial extensional viscosity, needed for 
model parameters identification process, is given by the following form:  

 

  (33) 
 

where +�  is extensional strain rate. 
It should be mentioned that the temperature effect on the polymer melt rheology is 

taken into account through shift factor, aT, defined through the following well known     
Arrhenius equation: 
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where Ea is the activation energy, R is the universal gas constant, Tr is the reference     
temperature and T is temperature given by the Eq. 28. 
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Velocity Profile 

With the aim to calculate the velocity profile and the film thickness in the            
non-isothermal film blowing process, the force balance in vertical direction (gravity 
and upward force due to the airflow are neglected) proposed by Pearson and Petrie is          
considered in the following form: 

� �
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where 11"  is the total stress in the machine direction and F and p<  are defined by Eqs. 
20 and 21 in Table 2. The deformation rate tensor in the bubble forming region takes 
the following form: 
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where the following deformation rate approximations have been used:  
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where v is velocity, vf  represents bubble velocity at the freezeline height, vd is bubble 
velocity at the die, L is freezeline height, H0 is bubble thickness at the die. Here, v  
and h  is velocity mean value along the bubble and thickness mean value along the 
bubble, respectively, which are defines as follows: 

 ��
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By combination of Eqs. 23, 34, 42, the 11"  takes the following form: 
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After substituting Eq. 43 into Eq. 34, the equation for the bubble velocity in the 
following form can be obtained.  
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Having the velocity profile, the deformation rates and the thickness can be properly 
calculated along the bubble. 
 

Numerical Scheme 

 First, model is focused on the non-isothermal film blowing process.                   
Non-isothermal conditions are expressed with the help of the Eq. 28, where the 
temperature profile is calculated for the constant heat transfer coefficient, h, stated 
inside the Eq. 26 for the constant freeze line height, L. Second, the polymer material is 
assumed as a non-Newtonian material. Viscosity is expressed by the representative 
'bubble viscosity - , ' considering average bubble temperature, (Tdie+Tsolid)/2, with 
corresponding average Arrhenius temperature shift factor, aTSj, and components of the 
deformation rate tensor through second and third invariant of deformation rate tensor 
(see Eqs. 45 and 46).  

 � �2
3

2
2

2
12 +++ ��� ���DII  (45) 

 IIID= �	1� �	2� �	3� � (46) 

Third, the velocity profile was proposed as a non-linear profile between the die and 
the freeze line height. Although, this is described in the previous section, to take the 
temperature profile correctly into account during velocity calculation, representative 
bubble viscosity is multiplied by the Arrhenius temperature shift factor, aT, in           
the Eq. 44. Last, the calculation is given only for bubble without neck.  

Two numerical schemes have been tested. In the first one, bubble shape, pJ, has 
been fixed and �p, F were unknown parameters whereas in the second one internal 
bubble pressure, �p, was fixed and bubble shape, pJ, and take-up force, F, were taken 
as unknown variables.  

In the case of a constant bubble shape, pJ, the calculation started by the initial 
proposal of viscosity for a linear velocity and thickness profile along the bubble. With 
this value of viscosity divided by a mean value of Arrhenius temperature shift factor 
(Eq. 47), aTS, the non-linear velocity, thickness and temperature profiles are counted 
for the drawn force, which satisfy the condition of equality between a velocity at the 
freeze line height, vF, and calculated velocity for non-linear profile, v.  

 
 aTS= 1

L � aT ��L
0 �  (47) 

As soon as the condition is reached, a new value of viscosity is obtained with the 
second and third invariants. In the case, where the viscosity is not stable and equal to 
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the previous value, the computational process is repeated to find out a new take-up 
force, otherwise, a new internal bubble pressure is adjusted. If the previous and new 
internal bubble pressures are not equal, the completely whole computational process is 
repeated. In an opposite case, the final bubble shape, velocity and temperature profiles 
are created.  

In the second numerical scheme, the procedure is almost the same, only with 
difference, that internal bubble pressure, �p, is fixed and bubble shape, pJ, and     
take-up force, F, are taken as unknown variables. It has been found that both 
numerical schemes yield almost the same results and thus the second numerical 
scheme has been utilized in this work. 

 

RESULTS AND DISCUSSION 

At the beginning of the research, it is necessary to check, whether Zatloukal-Vlcek 
non-isothermal model for non-Newtonian polymer melts has capability to describe 
experimental reality with respect to bubble shape, velocity and temperature profiles. 
For the film blowing model test, experimental data for LDPE (material L8 – 
experiment 29) provided in the Tas's Ph.D. thesis [16] were used. As the first step, the 
rheological characteristics of the LDPE material taken from [16] were fitted by the 
generalized Newtonian model (Eq. 30).  

 

FIGURE 6. Comparison between generalized Newtonian model fitting lines and experimental data 
for LDPE material taken from Tas's Ph.D. thesis [16]. 
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Figure 6 clearly shows that the used generalized Newtonian model can describe 
extensional as well as shear viscosity data very well. All model, LDPE material and 
processing parameters for chosen processing conditions are summarized in Tables 4-6.  

 
 

TABLE 4.  Zatloukal-Vlcek film blowing model parameters used in the model testing on the Tas's 
Ph.D. thesis data for LDPE L8 for exp. 29 [16]. 

BUR 
(-) 

L 
(m) 

<p 
(Pa) 

R0 
(m) 

H0 
(m) 

TUR 
(-) 

m�  
(kg.h-1)

2.749 0.138816 70 0.0178 0.0022 19.444 0.001 

 

 
TABLE 5.  Parameters of the generalized Newtonian constitutive equation. 
,0 

(Pa.s) 
a 
(-) 

n 
(-) 

� 
(s) 

� 
(-) 

� 
(s) 

	 
(-) 

2365 0.71597 0.37108 0.00001 9.70.10-7 0.17242 0.041915 

 
TABLE 6.  Temperature parameters. 

Tair 
(°C) 

Tsolid 
(°C) 

Tdie 
(°C) 

Tr 
(°C) 

Ea 
(J.mol-1) 

R 
(J·K-1·mol-1) 

Cp 
(J.kg-1.K-1) 

25 92 145 190 59000 8.314 2300 

 
For the above presented parameters, the Figures 7-9 were generated. In more detail, 

the Zatloukal-Vlcek model predictions for the bubble shape (Figure 7), velocity 
(Figure 8) and temperature profiles (Figure 9) are compared with Tas’s experimental 
data [16] together with theoretical predictions by Beaulne and Mitsoulis model [13] 
and Sarafrazi and Sharif [14] model. Based on the Figures 7-9 and Table 7, it is nicely 
visible that the predictions of the Zatloukal-Vlcek model are in very good agreement 
with the experimental data. 
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FIGURE 7. Comparison of the bubble shape between the Zatloukal-Vlcek model prediction [28], 
experimental data for the LDPE L8 taken from Tas´s Ph.D. thesis [16] and (a) the Beaulne and 

Mitsoulis model prediction [13]; (b) the Sarafrazi and Sharif model prediction [14]. 
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 a) 
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FIGURE 8. Comparison of the bubble velocity-profile between the Zatloukal-Vlcek model prediction 
[28], experimental data for the LDPE L8 taken from Tas´s Ph.D. thesis [16] and (a) the Beaulne and 

Mitsoulis model prediction [13]; (b) the Sarafrazi and Sharif model prediction [14]. 
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FIGURE 9. Comparison of the bubble temperature-profile between the Zatloukal-Vlcek model 

prediction [28], experimental data for the LDPE L8 taken from Tas´s Ph.D. thesis [16] and (a) the 
Beaulne and Mitsoulis model prediction [13]; (b) the Sarafrazi and Sharif model prediction [14]. 
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It is nicely visible that Zatloukal-Vlcek model bubble shape, velocity, temperature 
and lock in stresses at the freeze line �11, �33 predictions (see Figures 7-9 and Table 7) 
are in good agreement with experimental. 
 

TABLE 7.  Comparison between experimental data by Tas [16] and prediction data by the      
Zatloukal-Vlcek model [28] and two comparing models. 

Models 
p 
(Pa) 

F 
(N) 

"11 
(MPa) 

"33 
(MPa) 

Experimental data (Tas) 70.00 3.50 2.70 0.700 

Zatloukal-Vlcek 70.00 6.89 5.44 0.830 

Sarafrazi and Sharif 55.84 3.34 3.11 0.375 

Beaulne and Mitsoulis 168.00 2.13 2.06* 2.446* 
 * The values are calculated by our self according to the parameters provided in Beaulne and Mitsoulis 

work [13]. 
 
 

Complete set of calculated variables in Zatloukal-Vlcek model for the theoretical 
predictions depicted in Figures 7-9 is summarized in Table 8. Just note that for the die 
volume rate calculation (from the experimentally known mass flow rate), the 
following definition of the LDPE density was used 

 
 �= 1000

0.934·0.001·(273.15+TDIE)+0.875
  (48) 

 
TABLE 8.  Complete set of calculated variables in Zatloukal-Vlcek model. 

F 
(N) 

pJ 
(m) 

vD 
(m.s-1)

vF 
(m.s-1)

J 
(Pa-1)

h 
(W.m-2.K-1)

� 
(Pa.s)

�s 

(Pa.s)
aTS 

(-)
aTSj 

(-) 
6.89 0.0298178 0.0051 0.1 0.00198 42.752 4414.5 89758.9 20.33 16.39 

CONCLUSION

In this work, film blowing process analysis has been performed theoretically by 
using minimum energy approach for non-Newtonian polymer melts considering     
non-isothermal processing conditions and the obtained predictions were compared 
with both, theoretical and experimental data (bubble shape, velocity and temperature 
profiles) taken from the open literature.It has been found that model predictions are in 
very good agreement with the corresponding experimental data. 
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