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Abstract. In this paper we generalize the concept of a Lepage form, introduced by Krupka, to
forms of arbitrary degree in mechanics. These forms allow us to find a suitable representation of the
classes of forms, appearing in variational sequences in mechanics. The structure of Lepage 2-forms
is discussed in detail. The Lepage equivalents of the dynamical forms are mentioned.
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1. INTRODUCTION

In this paper, a construction is introduced, allowing us to generalize the concept of a
Lepage form (Krupka [9, 10]) to forms of arbitrary degree in the higher order variational
sequences on fibered manifolds over one-dimensional bases (i.e., in mechanics).

The r-th order variational sequence is by definition the quotient sequence of the De
Rham sequence on ther-jet prolongation of a fibered manifold, factored through its
contact subsequence (Krupka [12]). Basic general properties of the sequence, and in
particular, of the variational terms (lagrangians, Euler-Lagrange forms and Helmholtz-
Sonin forms) have been studied by several authors. A complete local representation of
the r-th order variational sequence in mechanics was found by Štefánek [19]. Another
representation of all classes in the first order variational sequence was given by Krupka
[11]. Musilová and Krbek [16] found a representation of the variational terms in higher
order variational sequence in mechanics. Kašparová [6] found a representation of classes
of n-forms, (n+ 1)-forms and(n+ 2)-forms of the variational sequence in the first
order field theory. Her results were extended to the general order by Krbek, Musilová
and Kašparová [8]. The representation of all terms in ther-th order field theory were
found by Krbek, Musilová [7] by the use of a finite version of Anderson’s interior Euler
operator [1].

Francaviglia, Palese and Vitolo discussed, among others, such questions as the cor-
respondence of variational sequences and bicomplexes, and their relations to spectral
sequences ( [4, 5, 20]).

The need of global concepts in higher order variational theory led to the introduction
of the so called Lepagen-forms in field theory, and Lepage equivalents of lagrangians.
The main idea, going back to Lepage and Dedecker, was that there should exist a
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close connection between the Euler-Lagrange mapping and the exterior derivative of
forms (Krupka [10]). Later, the concept of the Lepage form was extended to 2-forms in
mechanics and to(n+ 1)-forms in field theory (Krupková [14, 13]); the Lepage forms
have been introduced as closed counterparts of the Euler-Lagrange forms. In [14], the
Lepage forms have been applied to the inverse problem in higher order mechanics, and
to the order reducibility problem.

In our generalization of Lepage forms we use a slight (finite order) modification of an
operatorI , acting on forms on jet manifolds, given by Anderson [1] for the case of the
variational bicomplex and called by Anderson the interior Euler operator. This operator
was already used, and denoted by different symbols, by Kuperschmidt [15], Dedecker
and Tulczyjew [3], and Bauderon [2].

2. VARIATIONAL SEQUENCE

Let π : Y → X be a fibered manifold with fibered coordinate systems(V,ψ), ψ =
(t,qσ ), on Y and (U,ϕ), ϕ = (t) on X, dimX = 1, dimY = m+ 1. Denote byπ r :
JrY → X or just JrY the r-jet prolongation of the fibered manifoldπ : Y → X, the
coordinate system is(Vr ,ψ r), ψ r = (t,qσ ,qσ

1 , · · · ,qσ
r ) on JrY. For smallr we denote

qσ
0 = qσ , qσ

1 = q̇σ , qσ
2 = q̈σ .The canonical jet projections areπ r,s : JrY → JsY, r > sand

π r,0 : JrY →Y.
A differential k-form ρ on JrY is calledcontact, if it vanishes along ther-jet prolon-

gationJrγ of every sectionγ of π.
If (V,ψ), ψ = (t,qσ ), is a fibered chart onY, then we often use thecontact basis

dt,ωσ ,ωσ
1 , . . . ,ωσ

r ,dqσ
r+1 onVr+1 = (π r+1,0)−1V given by the forms

ωσ
j = dqσ

j −qσ
j+1dt, 0≤ j ≤ r. (1)

Recall that a form which contains exactlyk expressions (1) is calledk-contact. Every
form ρ onJrY can be uniquely decomposed, after the lifting toJr+1Y, as the sum of the
k-contact componentspkρ.

Let Ωr
k be the direct image of the sheaf of smoothk-forms overJrY by the jet

projectionπ r,0, wherek≥ 0. Denote

Ωr
0,c = {0}, Ωr

k,c = kerpk−1, Θr
k = Ωr

k,c +dΩr
k−1,c, (2)

wherek ≥ 1, anddΩr
k−1,c is the image sheaf ofΩr

k−1,c by d. Then for every open set
V ⊂ Y, Ωr

kV (resp.Ωr
k,cV) is the Abelian group ofk-forms (resp.k-contactk-forms)

on Vr = (π r,0)−1(V), dΩr
k−1,cV is the Abelian group of forms which can be locally

expressed as differentials of(k−1)-contact(k−1)-forms onVr , andΘr
kV is a subgroup

of Ωr
kV. We get a sequence

0→ Θr
1 → Θr

2 → Θr
3 → . . . → Θr

M → 0, (3)

in which all arrows denote the exterior differentiationd, andM = mr+1. Sequence (3)
is a subsequence of the De Rham sequence

0→ RY → Ωr
0 → Ωr

1 → Ωr
2 → . . . → Ωr

N−1 → Ωr
N → 0, (4)
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whereN = dimJrY = 1+m(r +1). The quotient sequence

0→ RY → Ωr
0 → Ωr

1/Θr
1 → Ωr

2/Θr
2 → . . .

. . . → Ωr
M/Θr

M → Ωr
M+1 → . . . → Ωr

N−1 → Ωr
N → 0 (5)

is also exact. Sequence (5) is called ther-th order variational sequence. The class of a
differential formρ ∈ Ωr

kV in the variational sequence (5) is denoted by[ρ ].
The quotient mappingE : Ωr

k/Θr
k → Ωr

k+1/Θr
k+1 is defined by

E([ρ]) = [dρ ]. (6)

This mapping satisfies the conditionE2 = 0. The quotient mappingE : Ωr
1/Θr

1 →Ωr
2/Θr

2
is called theEuler-Lagrange mapping. The quotient mappingE : Ωr

2/Θr
2 → Ωr

3/Θr
3 is

called theHelmholtz-Sonin mapping.
A lagrangianof orderr is aπ r -horizontaln-form λ . In coordinates, the following can

be written
λ = Ldt, (7)

whereL is a function onJrY calledLagrange function.
Let ρ be a 1-form onJrY. A form ρ is called aLepage1-form if p1dρ is a π r+1,0-

horizontal 2-form. A Lepage formρ is called aLepage equivalentof a lagrangianλ if
hρ = λ . It is known that in higher order mechanics, Lepage equivalents are uniquely
determined by lagrangians. We denote byθλ the Lepage equivalent of a lagrangianλ .
If r = 1, θλ is the well knownPoincaré-Cartan form, if r > 1, we have thegeneralized
Poincaré-Cartan form. If in a fibered chartλ = Ldt, then

p1dθλ = Eσ (L)ωσ ∧dt, (8)

where

Eσ (L) =
r

∑
l=0

(−1)l dl

dtl
∂L

∂qσ
l

. (9)

The form (8) is called theEuler-Lagrange formand it is denoted byEλ . The components
(9) are called theEuler-Lagrange expressions.

3. THE INTERIOR EULER-LAGRANGE OPERATOR

We recall basic properties of the interior Euler-Lagrange operator rewritten in the
form presented in Šeděnková [18].

Let (V,ψ), ψ = (t,qσ ), be a fibered chart onY and let (V2r+1,ψ2r+1), ψ2r+1 =
(t,qσ ,qσ

1 , . . . ,qσ
2r+1), be the associated fibered chart onJ2r+1Y. We set

Ξ =
∂
∂ t

+
2r

∑
j=0

qσ
j+1

∂
∂qσ

j
, (10)
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Ξ is a vector field onV2r+1. If ρ ∈ Ωr
k+1V, k≥ 1, we define a form onV2r+1 by

I(V,ψ)(ρ) =
1
k

ωα ∧
r

∑
j=0

(−1) j∂ j
Ξ i ∂

∂qα
j

pkρ, (11)

where∂Ξ is the Lie derivative with respect to the vector fieldΞ, ∂ j
Ξ is the j-th power of

∂Ξ, andi∂/∂qα
j

denotes the contraction by the vector field∂/∂qα
j . Fork= 0 andρ ∈Ωr

1V,
we define

I(V,ψ)(ρ) = hρ. (12)

Note that the formI(V,ψ)(ρ) depends only on thek-contact(k+1)-form pkρ.
The following two lemmas and Theorem 1 can be proved in fibered coordinates.

Lemma 1. Let ρ ∈ Ωr
k+1V, k≥ 1. Then the following equation is satisfied

1
k

ωα ∧
r

∑
j=0

(−1) j∂ j
Ξ i ∂

∂qα
j

pkρ = pkρ +
1
k

r

∑
j=1

j

∑
l=1

(−1)l
(

j
l

)
∂ l

Ξ(ωα
j−l ∧ i ∂

∂qα
j

pkρ). (13)

Lemma 2. Let (V,ψ), ψ = (t,qσ ), (V̄, ψ̄), ψ̄ = (t̄, q̄σ ) be two fibered charts on Y
such that V∩V̄ �= 0. Then for everyρ ∈ Ωr

k+1(V ∩V̄), k≥ 0,

I(V,ψ)(ρ) = I(V̄,ψ̄)(ρ). (14)

It follows from Lemma 2 that equations (11) define a global operatorI : Ωr
k+1 →

Ω2r+1
k+1 . I is called theinterior Euler-Lagrange operator. The differential formI (ρ) is

called thecanonical representativeof a differential formρ. The operatorI generates
new sequence

0→ RY → Ωr
0 → I Ωr

1 → I Ωr
2 → . . . → I Ωr

N−1 → I Ωr
N → 0, (15)

which is isomorfic with the variational sequence (5).
The following theorem characterizes properties ofI . In particular, it turns out that the

kernels ofI coincide with the spaces in the subsequence (3) of the De Rham sequence
(4).

Theorem 1. Let π : Y → X be a fibered manifold over one-dimensional base X. Let
k≥ 0.

(a) For every open set V⊂ Y and everyρ ∈ Ωr
k+1V, I (ρ) lies in the same class as

(π2r+1,r)∗ρ.
(b) The operatorI satisfiesI 2 = I (up to the canonical projection).
(c) For every open set V⊂Y, the kernels ofI coincide withΘr

k+1V.
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4. LEPAGE FORMS

Let k≥ 0. A form ρ ∈ Ωr
k+1V is called aLepage form, if

pk+1dρ = I (dρ). (16)

Fork = 0, this definition reduces to the original one (Krupka [9, 10]; for more details
we refer to Šeďenková [18]). Ifρ is a Lepage form, then the formsdρ andρ +dη , where
η is arbitrary, are trivially also Lepage forms. The meaning of Lepage forms consists in
a generalization of formulas (8), (9); ifk = 1, thenp2dρ is theHelmholtz-Sonin form
(compare with Krupka [11] for the first order case).

We now analyze the structure of Lepage 2-forms in higher order mechanics. Because
of the lack of space, we restrict ourselves to preliminary results; more details as well as
proofs will be given elsewhere.

Theorem 2. Let ρ ∈ Ω1
2V, let in a fibered chart

ρ = aσ ωσ ∧dt+bσ dq̇σ ∧dt+cσνωσ ∧ων +dσνdq̇σ ∧ων +eσνdq̇σ ∧dq̇ν , (17)

the coefficients cσν , eσν are antisymmetric inσ ,ν . The following three conditions are
equivalent:

(a) ρ is a Lepage form
(b) ρ satisfies

∂eσν

∂ q̇λ +
∂eνλ
∂ q̇σ +

∂eλσ
∂ q̇ν = 0, (18)

dσν −dνσ − ∂bσ
∂ q̇ν +

∂bν
∂ q̇σ +2

∂eσν
∂ t

+2
∂eσν

∂qλ q̇λ = 0, (19)

∂dσν

∂ q̇λ − ∂dνσ

∂ q̇λ +
∂dλσ
∂ q̇ν − ∂dλν

∂ q̇σ +2
∂eλσ
∂qν −2

∂eλν
∂qσ = 0, (20)

∂aν
∂ q̇σ − ∂aσ

∂ q̇ν +
∂bν
∂qσ − ∂bσ

∂qν +
∂dσν

∂ t
− ∂dνσ

∂ t

+
∂dσν

∂qλ q̇λ − ∂dνσ

∂qλ q̇λ +4cσν = 0. (21)

(c) There exist functions Aσ , and a 1-formη such that

ρ = Aσ ωσ ∧dt+
1
4

(
∂Aσ
∂ q̇ν − ∂Aν

∂ q̇σ

)
ωσ ∧ων +dη . (22)

Now we consider second order Lepage 2-forms. We have the following result.

Theorem 3. Let ρ ∈ Ω2
2V, let in a fibered chart

ρ = aσ ωσ ∧dt+bσ ω̇σ ∧dt+cσ dq̈σ ∧dt+dσνωσ ∧ων +eσνω̇σ ∧ων

+ fσνω̇σ ∧ ω̇ν +gσνdq̈σ ∧ων +hσνdq̈σ ∧ ω̇ν + iσνdq̈σ ∧dq̈ν (23)
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and

p2dρ = Pσνωσ ∧ων ∧dt+Qσνω̇σ ∧ων ∧dt+Rσνω̈σ ∧ων ∧dt
+ Sσνω̇σ ∧ ω̇ν ∧dt+Tσνω̈σ ∧ ω̇ν ∧dt+Uσνω̈σ ∧ ω̈ν ∧dt,

(24)

the coefficients dσν , fσν , iσν , Pσν , Sσν , Uσν are antisymmetric inσ ,ν . The following
three conditions are equivalent:

(a) ρ is a Lepage form
(b) The components of p2dρ satisfy

Uσν −Uνσ = 0, Tσν = 0, Sσν −Sνσ = 0,

Rσν +Rνσ = 0, Qσν −Qνσ −2 d
dtRσν = 0.

(25)

(c) There exist functions Aσ satisfying

∂
∂ q̈τ

(
∂aσ
∂ q̈ν − ∂aν

∂ q̈σ

)
= 0 (26)

and a 1-fornη such that

ρ = aσ ωσ ∧dt+
1
4

(
∂aσ
∂ q̇ν − ∂aν

∂ q̇σ − d
dt

(
∂aσ
∂ q̈ν − ∂aν

∂ q̈σ

))
ωσ ∧ων

− 1
2

(
∂aσ
∂ q̈ν +

∂aν
∂ q̈σ

)
ω̇σ ∧ων +dη ,

(27)

We note that the coefficients in (24) can be expressed in terms of the coefficients in
(23); then (25) become conditions for the coefficients ofρ .

Analogous results can also be given forr-th order 2-forms.

Theorem 4. Let ρ ∈ Ωr
2V, let in a fibered chart

ρ =
r−1

∑
i=0

ai
σ ωσ

i ∧dt+br
σ dqσ

r ∧dt

+
r−1

∑
i, j=0

c i
σ

j
νωσ

i ∧ων
j +

r−1

∑
j=0

d r
σ

j
νdqσ

r ∧ων
j +er

σ
r
νdqσ

r ∧dqν
r

(28)

and

p2dρ =
r

∑
j=0

H0 j
σνωσ ∧ων

j ∧dt+
r

∑
i, j=1

H i j
σνωσ

i ∧ων
j ∧dt. (29)

the coefficients erσ
r
ν are antisymmetric inσ ,ν , the coefficients ciσ

j
ν , H i j

σν are antisymmet-
ric in pairs

( i
σ
)
,
( j

ν
)
. Thenρ is Lepage if and only if

H i j
σν −H j i

νσ = 0, 1≤ i, j ≤ r,

H0 j
σν +(−1) jH0 j

νσ +∑r
l= j+1(−1)l

(l
j

)
dl− j

dtl− j H
0l
νσ = 0, 1≤ j ≤ r.

(30)
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Finally, we define Lepage equivalents of the canonical representatives of differential
forms. Letβ ∈ Ωs

k+1/Θs
k+1 be a class, i.e., letβ = I (η) for someη ∈ Ωs

k+1V. A form
ρ ∈ Ωr

k+1V is said to be aLepage equivalentof β , if ρ is a Lepage form, and

pkρ = β . (31)

In particular, this definition includes Lepage equivalents ofdynamical forms(i.e., the
canonical representatives of 2-forms). In particular, letE = Eσ ωσ ∧ dt be the second
order dynamical form with the functionsEσ linear in coordinates ¨qν . Then Lepage
equivalentρE of the dynamical formE has the form

ρE = Eσ ωσ ∧dt+
1
4

(
∂Eσ
∂ q̇ν − ∂Eν

∂ q̇σ − d
dt

(
∂Eσ
∂ q̈ν − ∂Eν

∂ q̈σ

))
ωσ ∧ων

− 1
2

(
∂Eσ
∂ q̈ν +

∂Eν
∂ q̈σ

)
ω̇σ ∧ων

(32)

(compare with second order Lepage form (27)).
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18. J. Šeďenková,Representations of variational sequences and Lepage forms, Ph.D. Thesis, Palacky
University, Olomouc, 2004.

19. J. Štefánek,A representation of the variational sequence in higher order mechanics, J. Janyska,
(ed.) et al., Diff. Geom. Appl., Proc. of the 6th Int. Conf., Brno, Czech Republic, 1995, (Masaryk
University, Brno, 1996), 469-478.

20. R. Vitolo,On different geometric formulations of Lagrangian formalism, Diff. Geom. Appl.,10, No.
3, (1999), 225-255.

288




	copyright: 


