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Abstract. In this paper we generalize the concept of a Lepage form, introduced by Krupka, to
forms of arbitrary degree in mechanics. These forms allow us to find a suitable representation of the
classes of forms, appearing in variational sequences in mechanics. The structure of Lepage 2-forms
is discussed in detail. The Lepage equivalents of the dynamical forms are mentioned.
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1. INTRODUCTION

In this paper, a construction is introduced, allowing us to generalize the concept of a
Lepage form (Krupka [9, 10]) to forms of arbitrary degree in the higher order variational
sequences on fibered manifolds over one-dimensional bases (i.e., in mechanics).

Ther-th order variational sequence is by definition the quotient sequence of the De
Rham sequence on thejet prolongation of a fibered manifold, factored through its
contact subsequence (Krupka [12]). Basic general properties of the sequence, and in
particular, of the variational terms (lagrangians, Euler-Lagrange forms and Helmholtz-
Sonin forms) have been studied by several authors. A complete local representation of
the r-th order variational sequence in mechanics was found by Stefanek [19]. Another
representation of all classes in the first order variational sequence was given by Krupka
[11]. Musilova and Krbek [16] found a representation of the variational terms in higher
order variational sequence in mechanics. KaSparova [6] found a representation of classes
of n-forms, (n+ 1)-forms and(n+ 2)-forms of the variational sequence in the first
order field theory. Her results were extended to the general order by Krbek, Musilova
and KaSparova [8]. The representation of all terms inrttie order field theory were
found by Krbek, Musilova [7] by the use of a finite version of Anderson’s interior Euler
operator [1].

Francaviglia, Palese and Vitolo discussed, among others, such questions as the cor-
respondence of variational sequences and bicomplexes, and their relations to spectral
sequences ( [4, 5, 20]).

The need of global concepts in higher order variational theory led to the introduction
of the so called Lepage-forms in field theory, and Lepage equivalents of lagrangians.
The main idea, going back to Lepage and Dedecker, was that there should exist a
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close connection between the Euler-Lagrange mapping and the exterior derivative of
forms (Krupka [10]). Later, the concept of the Lepage form was extended to 2-forms in
mechanics and ton+ 1)-forms in field theory (Krupkové [14, 13]); the Lepage forms
have been introduced as closed counterparts of the Euler-Lagrange forms. In [14], the
Lepage forms have been applied to the inverse problem in higher order mechanics, and
to the order reducibility problem.

In our generalization of Lepage forms we use a slight (finite order) modification of an
operator.#, acting on forms on jet manifolds, given by Anderson [1] for the case of the
variational bicomplex and called by Anderson the interior Euler operator. This operator
was already used, and denoted by different symbols, by Kuperschmidt [15], Dedecker
and Tulczyjew [3], and Bauderon [2].

2. VARIATIONAL SEQUENCE

Let 7 : Y — X be a fibered manifold with fibered coordinate systeivisy), v =
(t,q°), onY and (U, @), ¢ = (t) on X, dimX = 1, dimY = m+ 1. Denote byx" :
J'Y — X or justJY the r-jet prolongation of the fibered manifold : Y — X, the
coordinate system i&v", y"), y" = (t,q°,q7,---,07) on J"Y. For smallr we denote
ag =9°,af =q°, g9 = (°.The canonical jet projections an&®: JY — J%, r > sand
m0:JY Y.

A differential k-form p on J'Y is calledcontact if it vanishes along the-jet prolon-
gationJ"y of every sectiory of «.

If (V,w), vw=(t,09°), is a fibered chart olY, then we often use theontact basis
dt, 0%, 0f,...,0f ,d, onV 1 = (z710)~1v given by the forms

of =ddgf —qf,dt,  0<j<r 1)

Recall that a form which contains exacltyexpressions (1) is callektcontact. Every
form p onJ"Y can be uniquely decomposed, after the liftingto'Y, as the sum of the
k-contact componentsgp.

Let Q| be the direct image of the sheaf of smoddfiorms overJ'Y by the jet
projectionz”C, wherek > 0. Denote

QB,C ={0}, Q. =kerpc1, Of= Qrk,c + erk—l,cv )

wherek > 1, anddQ]_, . is the image sheaf d®, , . by d. Then for every open set
vVay, Qv (resp.Qrk"CV) is the Abelian group ok-forms (resp k-contactk-forms)
onV" = (z"%)~L(V), dQ}_, .V is the Abelian group of forms which can be locally

expressed as differentials @¢— 1)-contact(k— 1)-forms onV', and®}V is a subgroup
of V. We get a sequence

0-0]—-05,-05—...-0y—0, 3

in which all arrows denote the exterior differentiationandM = mr+ 1. Sequence (3)
is a subsequence of the De Rham sequence

0—-Ry —-Q[—Q] - Qb —...— Q1 —Qy—0, 4
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whereN = dimJ"Y = 14+ m(r 4+ 1). The quotient sequence

O*)RY*)QBHQE/@EHQI’Z/@E—)... 5)
—Qu/Oy — Qg — - — Q1 — 2y —0

is also exact. Sequence (5) is called tktb order variational sequencd he class of a
differential formp € Q}V in the variational sequence (5) is denoted bl
The quotient mapping : Q| /0] — €, ,/6j, , is defined by

E([p]) = [dp]. (6)

This mapping satisfies the conditi&s = 0. The quotient mapping : Q}/0} — Q5 /6%
is called theEuler-Lagrange mappingThe quotient mapping : Q5,/05, — Q5/04 is
called theHelmholtz-Sonin mapping
A lagrangianof orderr is ax'-horizontaln-form A. In coordinates, the following can
be written
A =Ldt, (7

wherelL is a function onJ"Y calledLagrange function

Let p be a 1-form ond"Y. A form p is called aLepagel-formif p;dp is an't10-
horizontal 2-form. A Lepage forrp is called aLepage equivalerdf a lagrangiar. if
hp = A. It is known that in higher order mechanics, Lepage equivalents are uniquely
determined by lagrangians. We denotetjythe Lepage equivalent of a lagrangian
If r=1, 6, is the well knownPoincaré-Cartan formif r > 1, we have th@eneralized
Poincaré-Cartan formif in a fibered charfA = Ldt, then

p1d6; = Es(L)w° Adt, (8)
where ] |
d JL
_ =z Y=

The form (8) is called th&uler-Lagrange fornand it is denoted b, . The components
(9) are called th&uler-Lagrange expressions

3. THE INTERIOR EULER-LAGRANGE OPERATOR

We recall basic properties of the interior Euler-Lagrange operator rewritten in the
form presented in S&kova [18].

Let (V,y), v = (t,°), be a fibered chart ol and let (V¥ +1 y2+1) w2+l =
(t,9°,q5,...,03. ), be the associated fibered chartBBhi™tY. We set

P 2r - P
SZE-FE&QJ'H(}T]?; (10)
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Eis a vector field oV L If p € Qf ,V, k> 1, we define a form o1 by

r

T (p) = Z 1)iali 2 ka7 (11)

whereoz is the Lie derivative with respect to the vector f|éd8J is the j-th power of
Oz, and|,9/aqa denotes the contraction by the vectorﬂéLdi?qJ Fork=0andp € QV,
we define
vy (p)=hp. 12)
Note that the form# ., (p) depends only on thiecontact(k+ 1)-form pyp.
The following two lemmas and Theorem 1 can be proved in fibered coordinates.

Lemmal. Letp e Q) .V, k> 1 Then the following equation is satisfied

r 1 r J
C0%A Y (~1)19Li 2 pkp*pkp+722 O ATa, 2, pkp) (13)
k j=0 kj:ll=1
Lemma 2. Let (V,y), v = (t,0°), (V,¥), ¥ = (t,q°) be two fibered charts on Y

such that VNV # 0. Then for every € Q ., (V nv), k> 0,

v (P) =I5 (P) (14)

It follows from Lemma 2 that equations (11) define a global operafarQ] , , —

QZ’“ ¢ is called thanterior Euler-Lagrange operatorThe differential form.# (p) is
caITed thecanonical representativef a differential formp. The operators generates
new sequence

0—Ry - Qf— IO — Q) — ... — Q1 — IQy—0, (15)

which is isomorfic with the variational sequence (5).
The following theorem characterizes properties/fin particular, it turns out that the
kernels of.# coincide with the spaces in the subsequence (3) of the De Rham sequence

(4).
Theorem 1. Letr:Y — X be a fibered manifold over one-dimensional base X. Let
k>0.
(a) For every open set " Y and evenp € Q, .V, .#(p) lies in the same class as
(n2r+lr) p.
(b) The operator# satisfies#2 = .# (up to the canonical projection).
(c) For every open set\ Y, the kernels o coincide with®,V.
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4. LEPAGE FORMS
Letk> 0. Aformp € Q .V is called a_epage formif

Prr1dp = .7 (dp). (16)

Fork = 0, this definition reduces to the original one (Krupka [9, 10]; for more details
we refer to Sedéinkova [18]). Ifp is a Lepage form, then the forrdg andp +dn, where
n is arbitrary, are trivially also Lepage forms. The meaning of Lepage forms consists in
a generalization of formulas (8), (9); if= 1, thenpydp is the Helmholtz-Sonin form
(compare with Krupka [11] for the first order case).

We now analyze the structure of Lepage 2-forms in higher order mechanics. Because
of the lack of space, we restrict ourselves to preliminary results; more details as well as
proofs will be given elsewhere.

Theorem 2. Letp € QlV, letin afibered chart
p =as0° ANdt+bsdd® Adt+coy0° AV +dsydd° A @Y +e5,dg° AdGY,  (17)

the coefficients &,, 5y are antisymmetric iro, v. The following three conditions are
equivalent:

(a) p is a Lepage form
(b) p satisfies

desy  dey,  0des
o oq° I
dbs ~dby _desy  d€sy .,
aqv+aqc+2 p +28q’tq = 0, (19)
adcv advc adla adlv aelg ae;w _
o oq T aq o Coq Zage & O
aa\/ aao' abv abc adcv_advg

) (18)

dGV _dVG -

o o o o T ot ot
ddsy ., ddys .
+ m;lv q - aqvf q* +4coy = 0. (21)
(c) There exist functions A and a 1-formn such that
1/0 dA
p:AGw"/\dt+4(a'2‘v’—aq;)w"AwV+dn. (22)

Now we consider second order Lepage 2-forms. We have the following result.
Theorem 3. Letp € Q3V, letin a fibered chart

asw° ANdt+bg@® Adt+csdi° Adt+ dgy@0° A @Y + €5y ®° A ®Y

p =
+ fov@® A @Y +dovdf® A @Y + hgydd® A @Y +ig,dge AdgY

(23)
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and

p2dp = Psy@® A’ Adt+ Qgy@° A @Y Adt+ Ry @° A @Y Adt

. . . ) . . 24
+ Sov0° AoV Adt+T5y@0° AV Adt+Ug, @° A @Y Adt, (24)

the coefficients g, fsv, iov, Psv, Ssv, Ugy are antisymmetric iro, v. The following
three conditions are equivalent:

(a) p is a Lepage form

(b) The components oh@p satisfy

UGV - ch = 0; ch = 07 SGV - Svc = 07

(25)
Rsv +Rve =0, QO'V_QVO'_Z%RO'V =0.
(c) There exist functions Asatisfying
Jd (das Jda
st (G~ 5) =° (26)
and a 1-fornn such that
= o } a;ac _ @ _ aaﬁ 8a‘/ c v
p = a0 /\dt+4 g a5 T 0° Ao o
1(%8 98 o v g
26" " age ™

We note that the coefficients in (24) can be expressed in terms of the coefficients in
(23); then (25) become conditions for the coefficientp of
Analogous results can also be given feth order 2-forms.

Theorem 4. Letp € QV, letin a fibered chart

r-1
p = Za'(,a},"Adt—i-bE,dof/\dt
P 1 (28)

+ Zcde"ijV+Zd[,jvdcf/\a)jeredvdq"Adq
i,j=0 j=0

and

p2dp = %Hng"/\w}’/\dt+ Zle,a) A o) Adt. (29)
i i

the coefficients §, are antisymmetric inv, v, the coeff|C|ents(d, H are antisymmet-

ric in pairs (), (}). Thenp is Lepage if and only if
H”—HJJ,:O 1<ij<r
J ol . (30)
o 4 (—1)inY +2| (= 1)()dtl HYs =0, 1<j<r
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Finally, we define Lepage equivalents of the canonical representatives of differential
forms. LetB € Qf,,/6}, , be aclass, i.e., g8 = .7(n) for somen € Qf,,V. A form
p € Q .,V is said to be d epage equivalerdf j, if p is a Lepage form, and

pkp = B. (31)

In particular, this definition includes Lepage equivalentdyfamical formgi.e., the
canonical representatives of 2-forms). In particularHet E;0° A dt be the second
order dynamical form with the functiong; linear in coordinates). Then Lepage
equivalentog of the dynamical fornk has the form

JEs; JE, d (aEG aEV))a)U/\a)V

1
_ o
pe = Esondt 4(aqv 0Gg° dt\dg"  9ge

1B  IEN o,
2(8@”8@6)“’ he

(32)

(compare with second order Lepage form (27)).
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