Structure Reports

Online
ISSN 1600-5368

Di- μ-chlorido-bis[diacetonitrilechloridooxidovanadium(IV)]

Dalibor Dastych, ${ }^{\text {a }}{ }^{\text {P Pavel Rotter, }}{ }^{\text {b }}$ Gabriel Demo ${ }^{\text {b }}$ and Lenka Dastychováa
${ }^{\text {a }}$ Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nam. T. G. Masaryka 275 Zlin, 762 72, Czech Republic, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5 Brno-Bohunice, 625 00, Czech Republic
Correspondence e-mail: dastych@gmail.com

Received 18 August 2011; accepted 13 September 2011
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.031 ; w R$ factor $=0.103$; data-to-parameter ratio $=16.5$.

The title compound, $\left[\mathrm{V}_{2} \mathrm{Cl}_{4} \mathrm{O}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]$, is a centrosymmetric dinuclear V^{IV} complex associated with four molecules of acetonitrile. The coordination around both V^{IV} atoms is essentially square-planar, involving three Cl atoms and one O atom [maximum deviation $=0.017$ (3) \AA for the O atom]. The augmented octahedral coordination of the metal atom is completed by the N atoms of acetonitrile ligands. The $\mathrm{V}^{\text {IV }}$ atoms are linked by two Cl atoms, acting as bridging atoms. The crystal studied was a non-merohedral twin with a ratio of the two twin components of 0.8200 (3):0.1800 (3). Although Cl and O atoms are present as potential acceptors in the title compound, no hydrogen bonds were observed in the crystal structure.

Related literature

For the biological activity of vanadium(IV) compounds, see: D'Cruz et al. (2003); Lopez et al. (1976); Lu et al. (2001); Shi et al. (1996). For Ziegler-Natta catalysts, see: Hagen et al. (2002). For the synthesis of chloridooxidovanadium(IV) complexes, see: du Preez \& Sadle (1967); Homden et al. (2009); Kern (1962); Papoutsakis et al. (2004); Priebsch \& Rehder (1990).

Experimental

Crystal data
$\left[\mathrm{V}_{2} \mathrm{Cl}_{4} \mathrm{O}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{4}\right]$
$\gamma=74.374(7)^{\circ}$
$M_{r}=439.90$
$=440.28$ (6) \AA^{3}
Triclinic, $P \overline{1}$
$a=7.0242$ (6) A
$b=8.1388$ (6) \AA
$Z=1$
Mo $K \alpha$ radiation
$\mu=1.67 \mathrm{~mm}^{-1}$
$c=8.7118$ (5) \AA
$T=120 \mathrm{~K}$
$\alpha=86.536(6)^{\circ}$
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$
$\beta=66.806(7)^{\circ}$

Diffraction, 2009)
$T_{\text {min }}=0.804, T_{\text {max }}=1.000$
1550 measured reflections
1550 independent reflections
1432 reflections with $I>2 \sigma(I)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.103$
$S=1.25$
1550 reflections

94 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}$

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2013).

References

D’Cruz, O. J., Dong, Y. H. \& Uckun, F. M. (2003). Biochem. Biophys. Res. Соттип. 302, 253-264.
Hagen, H., Boersma, J. \& van Koten, G. (2002). Chem. Soc. Rev. 31, 357-364.
Homden, D., Redshaw, C., Warford, L., Hughes, D. L., Wright, J. A., Dale, S. H. \& Elsegood, M. R. J. (2009). Dalton Trans. pp. 8900-8910.
Kern, R. J. (1962). J. Inorg. Nucl. Chem. 24, 1105-1109.
Lopez, V., Stevens, T. \& Lindquist, R. N. (1976). Arch. Biochem. Biophys. 175, 31-38.
Lu, B., Enni, D., Lai, R., Bogdanovic, E., Nikolov, R., Salamon, L., Fantus, C., Le-Tien, H. \& Fantus, I. G. (2001). J. Biol. Chem. 276, 35589-35598.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.
Papoutsakis, D., Ichimura, A. S., Young, V. G., Jackson, J. E. \& Nocera, D. G. (2004). Dalton Trans. pp. 224-228.

Preez, J. G. H. du \& Sadle, F. G. (1967). Inorg. Chim. Acta, 1, 202-204.
Priebsch, W. \& Rehder, D. (1990). Inorg. Chem. 29, 3013-3019.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shi, X., Wang, P., Jiang, H., Mao, Y., Ahmed, N. \& Dalal, N. (1996). Ann. Clin. Lab. Sci. 26, 39-49.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, m1398 [doi:10.1107/S1600536811037184]

Di- μ-chlorido-bis[diacetonitrilechloridooxidovanadium(IV)]

D. Dastych, P. Rotter, G. Demo and L. Dastychová

Comment

Vanadium(IV) compounds exert biological activity such as inhibition for some phosphatases (D'Cruz et al., 2003; Lopez et al., 1976), modulation of cell's redox potential (Lu et al., 2001) or catalysis of the generation of reactive oxygen species (Shi et al., 1996). The oxovanadium(IV) complexes exhibit rapid selective spermicidal effects and their anti-HIV activity was studied too (D'Cruz et al., 2003). Chlorovanadium(IV) compounds are also used for catalysis in homogenous Ziegler-Natta polymerizations to prepare high-molecular-weight polymers with narrow molecular weight distribution (Hagen et al., 2002).

The dichloro(oxo)vanadium(IV) complex with acetonitrile was prepared for the first time by the reaction of VOCl_{2} with dry acetonitrile (du Preez et al., 1967). The structure characteristic of the reaction product was performed only by means of UV, IR and conductivity measurements. The constitution of this reaction product was determined as $\mathrm{VOCl}_{2} \cdot 2.5 \mathrm{CH}_{3} \mathrm{CN}$. The only known crystal structure of acetonitrile adduct with dichloro(oxo)vanadium complex is to our knowledge $\left[\mathrm{H}_{3} \mathrm{~Np}\right.$ tolyl $]\left[\mathrm{VOCl}_{3}(\mathrm{MeCN})_{2}\right]$, which was prepared by the refluxing of $\left[\mathrm{V}(\mathrm{Np}\right.$-tolyl $\left.) \mathrm{Cl}_{3}\right]$ in acetonitrile (Homden et al., 2009).

It is known a lot of VOCl_{2} adducts with organic solvents, namely $\mathrm{VOCl}_{2} .2 \mathrm{THF}$ (Kern, 1962) and transVOCl_{2} (THF) $)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (Papoutsakis et al., 2004; Priebsch et al., 1990), cis- $\mathrm{VOCl}_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{3}($ Papoutsakis et al., 2004), trans$\mathrm{VOCl}_{2}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Papoutsakis et al., 2004) or $\mathrm{VOCl}_{2}(\mathrm{HMPA})_{2}$ (du Preez et al., 1967). These adducts are presented in the known crystal structures as monomers in all cases (Papoutsakis et al., 2004; Priebsch et al., 1990). All of these complexes pick up very easily to the vanadium coordination sphere water molecules, therefore there are known only as water adducts (Papoutsakis et al., 2004). On this account, it is necessary to keep strictly nonaqueous solution to obtain dichloro(oxo)vanadium complexes without water in the vanadium coordination sphere.

The asymmetric unit of the title compound consists of a single vanadium(IV) complex molecule associated with four molecules of acetonitrile (Fig. 1). Both of chlorine bridge atoms are situated essentially in the same plane with vanadium atoms, as demonstrated by torsion angles $\mathrm{V} 1-\mathrm{Cl} 1-\mathrm{V} 1 \mathrm{~A}-\mathrm{Cl1A} 0.0^{\circ}$ and $\mathrm{O} 1-\mathrm{V} 1-\mathrm{Cl} 1-\mathrm{V} 1 \mathrm{~A}$, which is $179.36(11)^{\circ}$, respectively. The angle describing the triple bond in acetonitrile is $\mathrm{N} 2 \equiv \mathrm{C} 3-\mathrm{C} 4179.6(4)^{\circ}$ and $\mathrm{N} 1 \equiv \mathrm{C} 1-\mathrm{C} 2179.1(4)^{\circ}$, respectively. The crystal packing is showed in Fig. 2.

Experimental

The title compound was obtained by the reaction of VOCl_{3} with N, N^{\prime}-bis(trimethylsilyl)urea in acetonitrile. N, N^{\prime} $\operatorname{bis}\left(\right.$ trimethylsilyl) urea $(3.0 \mathrm{mmol})$ was dissolved in $100 \mathrm{~cm}^{3}$ of dry acetonitrile at $70^{\circ} \mathrm{C}$. The solutoin of $\mathrm{VOCl}_{3}(2.6 \mathrm{mmol})$ in in dry acetonitrile $\left(50 \mathrm{~cm}^{3}\right)$ was quickly added to the solution of N, N^{\prime}-bis(trimethylsilyl)urea and the reaction mixture was refluxed for 17 h . The solvent was partially distilled off after the reaction and the total volume was reduced to $25 \mathrm{~cm}^{3}$. Dry $\mathrm{CCl}_{4}\left(25 \mathrm{~cm}^{3}\right)$ was consequently added to the concentrated acetonitrile solution and two liquid phases were formed.

supplementary materials

Blue crystals of $\left[(\mu-\mathrm{Cl})_{2}\left(\mathrm{VOCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right)_{2}\right]$ grew up from the surface of the denser phase after 4 days standing at room temperature.

Refinement

The investigated crystal was a non-merohedral twin [twin law: rotation of 180° around the [101] direction].. The twin law was determined using TwinRotMat implemented in PLATON (Spek, 2009). The twinning coefficient of the crystal is 0.180040. The description of twin law in transformation matrix is: $(0.397-0.3640 .603)(0.000-1.0000 .000)(1.397-0.364$ - 0.397) The detwinned data were obtained by HKLF 5 option in the SHELXL97 program (Sheldrick, 2008) and the final refinement was carried out against the detwinned data set.

Figures

Fig. 1. Crystal structure of the title compound. Thermal elipsoids are drawn with 50% probability level, hydrogen atoms are represented as arbitrary spheres.

Di- μ-chlorido-bis[diacetonitrilechloridooxidovanadium(IV)]

Crystal data

$\left[\mathrm{V}_{2} \mathrm{Cl}_{4} \mathrm{O}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{4}\right]$
$M_{r}=439.90$
Triclinic, $P \mathrm{~T}$
Hall symbol: -P 1
$a=7.0242$ (6) \AA
$b=8.1388$ (6) \AA
$c=8.7118(5) \AA$
$\alpha=86.536(6)^{\circ}$
$\beta=66.806(7)^{\circ}$
$\gamma=74.374(7)^{\circ}$
$V=440.28(6) \AA^{3}$

$$
Z=1
$$

$F(000)=218$
$D_{\mathrm{x}}=1.659 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.7107 \AA$
Cell parameters from 5307 reflections
$\theta=3.3-25.0^{\circ}$
$\mu=1.67 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, blue
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur Sapphire2
diffractometer
Radiation source: Enhance (Mo) X-ray Source graphite

$$
R_{\mathrm{int}}=0.000
$$

Detector resolution: 8.4 pixels mm^{-1}

$$
\theta_{\max }=25.0^{\circ}, \theta_{\min }=3.3^{\circ}
$$

ω scans

Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.804, T_{\text {max }}=1.000$
1550 independent reflections

$$
1432 \text { reflections with } I>2 \sigma(I)
$$

$h=-7 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-9 \rightarrow 10$
1550 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.103$
$S=1.25$
1550 reflections
94 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0397 P)^{2}+1.0484 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.51 \mathrm{e} \AA^{-3}$

Special details

Experimental. empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
V1	$0.58161(10)$	$0.06353(8)$	$0.67541(8)$	$0.0141(2)$
C11	$0.71230(14)$	$-0.15703(11)$	$0.46017(11)$	$0.0172(2)$
C12	$0.38000(14)$	$0.30593(12)$	$0.85537(12)$	$0.0201(2)$
O1	$0.7642(4)$	$-0.0069(3)$	$0.7454(3)$	$0.0192(6)$

N2	$0.7440(5)$	$0.2175(4)$	$0.5012(4)$	$0.0197(7)$
C4	$0.9873(6)$	$0.3945(5)$	$0.3008(5)$	$0.0228(8)$
H4A	0.8981	0.5071	0.2916	0.034^{*}
H4B	1.0645	0.3351	0.1901	0.034^{*}
H4C	1.0911	0.4083	0.3448	0.034^{*}
C2	$0.1588(7)$	$-0.2589(5)$	$1.0454(5)$	$0.0241(9)$
H2A	0.0118	-0.2274	1.0500	0.036^{*}
H2B	0.1555	-0.2385	1.1563	0.036^{*}
H2C	0.2258	-0.3801	1.0105	0.036^{*}
N1	$0.3766(5)$	$-0.0747(4)$	$0.8326(4)$	$0.0190(7)$
C3	$0.8514(6)$	$0.2950(5)$	$0.4132(5)$	$0.0193(8)$
C1	$0.2821(6)$	$-0.1565(5)$	$0.9263(5)$	$0.0190(8)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
V1	$0.0142(3)$	$0.0150(3)$	$0.0125(3)$	$-0.0029(2)$	$-0.0051(3)$	$-0.0007(2)$
C11	$0.0173(4)$	$0.0172(5)$	$0.0155(5)$	$-0.0002(3)$	$-0.0071(4)$	$-0.0039(3)$
C12	$0.0191(5)$	$0.0192(5)$	$0.0197(5)$	$-0.0014(4)$	$-0.0066(4)$	$-0.0054(4)$
O1	$0.0197(14)$	$0.0202(14)$	$0.0188(14)$	$-0.0028(11)$	$-0.0100(11)$	$-0.0016(11)$
N2	$0.0180(16)$	$0.0195(17)$	$0.0177(17)$	$-0.0033(14)$	$-0.0039(14)$	$-0.0002(14)$
C4	$0.025(2)$	$0.024(2)$	$0.020(2)$	$-0.0099(17)$	$-0.0079(17)$	$0.0039(16)$
C2	$0.025(2)$	$0.024(2)$	$0.023(2)$	$-0.0136(17)$	$-0.0040(17)$	$0.0005(17)$
N1	$0.0219(16)$	$0.0209(17)$	$0.0135(16)$	$-0.0070(14)$	$-0.0051(14)$	$-0.0010(14)$
C3	$0.0182(19)$	$0.019(2)$	$0.020(2)$	$0.0008(16)$	$-0.0096(17)$	$-0.0040(16)$
C1	$0.0200(19)$	$0.0182(19)$	$0.019(2)$	$-0.0030(16)$	$-0.0087(16)$	$-0.0028(16)$

Geometric parameters (\AA, ${ }^{\circ}$)

V1-O1	1.588 (3)
V1-N1	2.085 (3)
V1-N2	2.086 (3)
V1-Cl2	2.3399 (10)
V1-Cl1	2.3969 (10)
$\mathrm{V} 1-\mathrm{Cl1} 1^{\text {i }}$	2.6836 (10)
$\mathrm{Cl} 1-\mathrm{V} 1^{\text {i }}$	2.6836 (10)
N2-C3	1.139 (5)
C4-C3	1.453 (6)
O1-V1-N1	94.79 (14)
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{N} 2$	95.52 (14)
N1-V1-N2	169.69 (13)
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{Cl} 2$	99.62 (10)
N1-V1-Cl2	89.60 (9)
N2-V1-Cl2	88.90 (9)
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{Cl1}$	96.44 (10)
N1-V1-Cl1	89.01 (9)
N2-V1-Cl1	89.61 (9)
$\mathrm{Cl} 2-\mathrm{V} 1-\mathrm{Cl1}$	163.95 (4)

$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9800
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9800
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9800
$\mathrm{C} 2-\mathrm{C} 1$	$1.448(6)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 1$	$1.138(5)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{V} 1$	$171.8(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5

sup-4

supplementary materials

$\mathrm{O} 1-\mathrm{V} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$174.92(10)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{~N} 1-\mathrm{V} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$84.57(9)$	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{~N} 2-\mathrm{V} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$85.15(9)$	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{C} 12-\mathrm{V} 1-\mathrm{Cl1} 1^{\mathrm{i}}$	$85.42(3)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{V} 1$	$172.0(3)$
$\mathrm{Cl} 1-\mathrm{V} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$78.53(4)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.6(4)$
$\mathrm{V} 1-\mathrm{Cl}-\mathrm{V} 1^{\mathrm{i}}$	$101.47(4)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$179.1(4)$
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{Cl} 1-\mathrm{V} 1^{\mathrm{i}}$	$179.36(11)$	$\mathrm{Cl} 2-\mathrm{V} 1-\mathrm{Cl} 1-\mathrm{V} 1^{\mathrm{i}}$	$-0.47(16)$
$\mathrm{N} 1-\mathrm{V} 1-\mathrm{Cl} 1-\mathrm{V} 1^{\mathrm{i}}$	$84.66(9)$	$\mathrm{Cl1}-\mathrm{V} 1-\mathrm{Cl} 1-\mathrm{V} 1^{\mathrm{i}}$	0.0

supplementary materials

Fig. 1

Fig. 2

