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The comparison of calculated data from proposed mathematic model and experimentally obtained data of PP/clay nanocomposites
was done with the focus on the layered shape of MMT platelets. Based on the well-known Kerner’s model and the Halpin-Tsai’
equation with the use of some described presumption, the mathematic model for PP/clay nanocomposite was proposed. Data
from the measurement of prepared PP/clay samples were taken and compared with the calculated ones from the proposed model.
The good agreement was found.

1. Introduction

Firstly, the mathematical description of mechanical and
physical properties of composites based on a polymer matrix
has been studied in 1950s [1, 2]. These and also the next
studies are deduced only theoretically [3–7].

These models mainly describe the dependence of shear
modulus of elasticity on the content of the filler and spherical
or fibre type of filler is considered. They are named self-
consistent, it means that homogenous spherical particles are
placed in the homogenous continuous polymer matrix. With
the increasing use of composites as construction materials
in the industry models with cylindrical dispersed phase has
been proposed. This was used in order to simulate short or
long fibres.

The classical Kerner’s model is usually presented as:
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where K is a bulk modulus, G is shear modulus, φ is volume
fraction, ν is Poson ratio index m belongs to matrix, and
index f belongs to filler (fibre).

The equation of Halpin-Tsai is very often cited and
properly it is the conversion of Hill’s equation [5, 6] for long
and short fibres:
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where v f = Vf /V (ratio of the volume of filler (fibre) to
the whole volume), ζ is a parameter that depends on the
matrix Poisson ratio and on the particular elastic property, P
represents the composite moduli, and, again, indexes m and
f belong to matrix and fibre fraction.

In the literature one can find a lot of attempts of
simplification and specification in earlier models [8–10]. The
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problem of these models is the fact that they are based on the
simplified assumptions that do not correspond with the real
states. For example, the rigidity of prepared composites does
not only depend on the volume of filler and the geometry of a
stress, but also on the particle size, its shape, and the tendency
to agglomerate [11–13]. Moreover, in case of aspherical
particles it depends also on the particle orientation, especially
in the case of layered clay nanoparticles where they are
supposed to have the shape of platelets with significant aspect
ratio.

Nanocomposite materials based on the polymer matrix
have been studied more than twenty years. The main reason
is the unusual combination of properties. They are unique in
comparison with conventional composites because of their
large interphase surface (connecting with aspect ratio) and
very small distances between reinforcing particles [13]. In
this way a very rigid net is created.

The behaviour of polymer chains in the neighbourhood
of nanoparticles and the influence of the nanoparticles shape
on the nanocomposite properties have been studied in the
several next papers [14–16].

2. Theoretical

The proper model derivation (modelling).
At the majority of above-mentioned model is based on

the mixing principle when the slope of the curve increases
with the increasing filler content. Slope of curve represents
the elasticity modulus—and it is the function of the filler
content. This is valid till the composite modulus reaches for
VC = 1 of the value of the filler elasticity (VC is a volume
percent of filler particles, see later). This behaviour is valid
only in case of the composite filled with the long fibres
oriented in the longitudinal direction. In all other cases at the
condition VC = 1, (no matrix) the composite is fully non-
cohesive small pile of a filler with zero tensile modulus.

More complicated models have a disadvantage—the
dependence on stress or deformational fields. In the case of
our studied system PP/MMT the tensile modulus initially
grows very quickly, but with the increasing filler content the
slope of curve falls down. Figure 1 shows the comparison of
experimental data with the Kerner’s equation. Values used
for this calculation form (2) were chosen only approximately
based on the authors (Vc 0,004, 0,008, 0,016, 0,04) in order
to show how this model is far from the real data (taken from
Table 3) in case of layered mineral filler in polymer matrix.

Based on these observations mentioned above we tried
to deduce such an equation which at the use of the easiest
mathematical apparatus would correspond with obtained
experimental data and would be suitable for prognosis of
future research in the use of layered nanoclays. The interval
of filling was chosen between 0–10 wt. %.

The outgoing assumptions are as follows:

(1) the filler has an unlimited modulus → it has zero
deformability;

(2) the primary deformation is observed in case of
torque and strain modulus, after the created stress is
measured;
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Figure 1: The dependence of reduced elasticity modulus on the
filler content.

(3) particles are fixed in matrix with the perfect adhesion
(index p), either free in the vacancy with the zero
adhesion (index v), nothing else, thus their volume
percent VC = VCp + VCv.

When the particles are freely inserted into the vacancies in
the matrix, without any adhesion, the system behaves like
an expanded material. With the growing number of ratio of
VCv particles the stress at the constant deformation decreases
according to the equation:

σK = σM ∗VM , then σK = σM ∗ (1−VCv). (4)

On the other hand, at the deformation of the system with the
rigidly fixed components the deformation VM is higher by
a part of undeformed particles and by this also the stress is
higher:

σK = σM
VM

, then σK = σM(
1−VCp

) . (5)

However, in this case of rigid fixation of both components
the polymer matrix is not deformed equally. The defor-
mation of the polymer layer at the rigid particle is almost
zero. With the increasing distance from this particle the
deformation increases and with the approximation to the
next particle it goes to the zero again. By this the deformation
gradient is created. It is similar to the speed gradient at the
liquid flow along fixed plates (see Figure 2).

A complete spectrum of deformation matrix from zero at
the filler particle to the maximum somewhere along particles
is simplified into two values. After the layer at the thickness
h in the nearest neighbourhood has the zero deformation
and the more remote particles have the mentioned maximal
value of deformation. However, the total average value of
deformation must stay the same even after applying these
assumptions.

The consequence of this thought is the increasing of the
origin undeformable volume Vc by the undeformable layer
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Figure 2: The simple scheme of the deformation gradient at the
liquid flow along fixed plates.

of the matrix. This means, for example, in case of cubic
filler particles with the edge a the increasing by 6 ha2 at one
particle with the volume a3. For the total volume of particles
it is the value of 6 ha2VC/a3, that is, 6 hVC/a. By this train of
thought (5) changes into:

σK = σM(
1−VCp(1 + (6h/a))

) . (6)

The used constant “6” is valid only for the particles of
cubic shape. It will be different for different shape of the
filler particles. Moreover, this constant depends on the
shape of the deformation field (strength, shear), when the
rigid shell (standing only temporary during the composite
deformation) is not spread evenly on the whole particle
surface, thus, after simplifying, 6h = h0.

The next consequence based on the thought discussed
above, is that the created stress and by this the rigidity of the
composite depends on the size of filler particles.

At the observations it was found that the size of filler
particles a depends on VC . The content of aggregates
increases with the growing of VC . The reason is either
imperfect mixing or after aggregation. Thus,

a = a0(1 + kVC), (7)

where a0 is the size of particle for VC convergent to zero
The constant k will be discussed later.
After the summarization of the above-mentioned

thoughts (6) changes into

σK = σM(
1−VCp(1 + (ha/(1 + kVC)))

) , (8)

where ha = h0/a0.
With the growing content of filler at the same initial

deformation the stress inside composite is created and
increases according to (6). This causes that proportionally
to this stress the part of filler particles is breaking loose
(is delaminated) from the surface of the polymer matrix.
Consequently, its influence on the stress inside the composite

changes from the state (5) to the state (4). Thus, the VCv is
proportional to the filler content VC and to the existing stress
in the matrix. This stress we will mark as σ0. After

VCv = VC ∗ σ0

σd
, (9)

where σd is a critical stress, at which all the filler is
delaminated, thus VCv = VC .

Now we have all mathematical apparatus needed for the
calculation of the module of elasticity:

(1) firstly, we calculate the initial stress σ0 caused applied
deformation at zero delamination (according to (8)):

σ0 = σM
1−VC(1 + (ha/(1 + kVC)))

, (10)

(2) from the previous equation we can get the ratio of no
delaminated particles is (according to (9)):

VCv = VC ∗ σ0

σd
, (11)

(3) next we calculate the stress equal to free particles
(according to (4)):

σV = σM ∗ (1−VCv), (12)

(4) after we calculate the rest of fixed particles:

VCp = VC −VCv, (13)

(5) next the stress equal to bonded particles (according
to (8)):

σP = σM
1−VCp(1 + (ha/(1 + kVC)))

, (14)

(6) and the resulting stress:

σK = σP + σV − σM , (15)

(7) if the deformation at measurement is unit and it is
small enough (in order to be responding to Hook’s
principle), after

σM = EM and EK = σK . (16)

This system of equations contains only three unknown
parameters of physical merit which it is necessary to estimate
for the next calculation:

σd—critical stress (it has connection to an adhesion
degree of filler particles to the matrix);
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Figure 3: The simple scheme of the deformation gradient at the
liquid flow along fixed plates—with the filler in polymer melt.

ha—proportional thickness of undeformable layer of
matrix in the neighbourhood of filler particle, it is also
connected with the geometry of deformational field;

k—the velocity of the growing of the particle aggregation
degree with regard to VC , it decreases with the rising quality
of dispergation.

In order to obtain the real result of this calculation, the
particular parameters must be chosen in the values fulfilling
following conditions:

σd > σ0; VCv + VCp = VC ;
ha

1 + kVC
<

1
VC − 1

. (17)

From the influence of the mentioned three parameters it is
possible to see from the following three-dimensional graphs
(Figures 3, 4, and 5) the following.

The low value of the adhesion σd between the filler and
the matrix (resp. high value of σ0) causes more significant
validity of (4) at the cost of (5) and the rigidity of the sample
after the initial increase starts to decrease. This is visible also
in the next pictures.

In case of the microscopy observations of nanocomposite
samples it was found that with the growing content of
nanofiller the number of agglomerates increases; thus, the
average size of particles increases too. The velocity of this
increase is included in the constant k (see above). The
ideal requirement is to reach such a dispersion of filler
nanoparticle platelets in the polymer matrix that the size
of particles should not grow with the VC , the rising of the
rigidity should be maximal, thus, k = 0, respectively, k � 0
(Figure 6).

Parameter ha (Figure 5) represents the static part of the
matrix in the neighbourhood of the undeformable particle
relating to the size of the primary filler particle. After,
the rest of the polymer matrix transfers higher stress and
consequently the rigidity of the composite goes up. The value
of this stress depends on the shape, orientation, and size of
the surface of the particles dispersed during the mixing in
the kneader.

Time and conditions of the kneading, the technology of
the nanocomposite preparation are projected in the param-
eters k and ha (dispersion of agglomerates, the breaking of
lamellar particles bringing the change of the size and shape).
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Figure 4: Reduced modulus of elasticity as a function of parameters
k and Vc.
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Figure 5: Reduced modulus of elasticity as a function of parameters
Sd and Vc.

ha depends also on the method used for the measurement
of the modulus of elasticity. Parameter σd is connected with
material.

It is necessary to underline that the presented model
(like all models) is valid for the limited interval of layered
nanocomposite filling only.

3. Experimental

In order to verify the validity of the proposed model for
the layered type of nanofiller nanocomposite samples of
PP/modified MMT were prepared.
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Figure 6: Reduced modulus of elasticity as a function of parameters
ha and Vc.
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Figure 7: Reduced elasticity modulus as a function of nanofiller
content of prepared samples.

3.1. Materials. Polypropylene (PP) Mosten GB 003 produced
by Chemopetrol Litvı́nov, Czech Republic, was used as a
polymer matrix. The density of chosen PP was 907 kg/m3 and
melt flow index (MFI) was 3.2 g/10 min at 230◦C.

The density of maleated polypropylene (PP-Ma)
EXXELOR PO 1015 was 900 kg/m3, MFI was 22, and
contents of maleic groups were 1 wt. % (used as a com-
patibilizator). Maleated polypropylene was supplied by
ExxonMobil Chemical Europe, Belgium. Two types of
nanofiller Dellite were used (Dellite 72T and Dellite 67G);
their concentration was 2, 4, 6, and 10 wt. %. The nanofiller
were supplied by Laviosa Chemical Mineraria S.p.A., Italy.

3.2. Preparation of the Polymer-Clay Nanocomposites. All
nanocomposites in this work were prepared by melt blending
on a Brabender Plasticorder compounder at 40, 60, and

Table 1: Dynamic modulus as a function of speed of rotation of
kneader and volume ratio of nanofiller D72T.

D 72T Dyn. modulus

rpm. �VC 0 0,008 0,016 0,024 0,040

400 1626 1827 1796 1864 1843

600 1626 1864 1905 1911 1912

800 1626 1816 1843 1846 1905

1200 1626 1852 1827 1910 1912

1600 1626 1733 1844 1878 1950

1800 1626 1882 1854 1912 1915

2000 1626 1806 1806 1870 1874

2400 1626 1831 1884 1896 1958

2800 1626 1851 1860 1907 1901

3000 1626 1766 1824 1893 1880

3400 1626 1931 1971 2006 1991

4200 1626 1811 1885 1869 1911

Average 1626 1831 1858 1897 1913

Table 2: Summary of results of dynamic modulus and strength
modulus for both nanofiller types (data calculated by the same way
as in the case of Table 1).

rpm/V
Dynamic modulus Shear modulus

D 72T D 67G D 72T D 67G

0 1626 1626 733 733

0,008 1831 1807 1180 1099

0,016 1858 1830 1183 1055

0,024 1897 1862 1195 1009

0,040 1913 1888 1286 1221

80 rpm and 220◦C for 10, 20, 30, and 40 min. The samples
were prepared by pressuring at 220◦C at 9 min and cooling
was 7 min.

3.3. DMA Analysis. The measurement of E modulus was
done by DMA analysis on the equipment DMA DX04T
(company RMI) on FT TBU in Zlin. Values presented in this
work are values at 30◦C.

4. Results and Discussion

Resulting data of measurement of dynamic and strength
modulus of elasticity for both used nanofiller types are listed
in the Tables 1 and 2.

Table 3 summarizes data from Tables 1–4 averaged
through the speed of rotation, estimated values of parameter,
and with them corresponding calculated values of elasticity
modulus. In order to give the better approach the results are
listed in Figure 6.

Based on Figure 6 it is possible to say that the calculated
data form the proposed model correspond very well with
the experimental values. It is valid especially in case of the
dynamic modulus data. This is supported by the 2D graph
shown in Figure 7 where the comparison of measured (D
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Table 3: The summary of results from Tables 1 and 2.

VC
D72T-d D67G-d D67G-s M67dy Kerner

yn yn D72T-str tr M72dyn n M72str M67str r

0 1 1 1 1 1 1 1 1 1

0,001 1,024 1,019 1,054 1,043 0,002

0,005 1,086 1,071 1,243 1,189 0,009

0,008 1,126 1,111 1,610 1,499 1,114 1,094 1,358 1,276 1,015

0,016 1,143 1,125 1,614 1,440 1,152 1,128 1,572 1,441 1,03

0,024 1,167 1,145 1,630 1,377 1,170 1,145 1,687 1,546 1,046

0,040 1,176 1,161 1,754 1,666 1,182 1,160 1,745 1,662 1,077

ha 38,1 31,1 62,3 50

K 104 104 75 75

Sd 3,02 3,02 8,5 8,5

in the name) and calculated (M in the name) values for
dynamic modulus is presented (data are summarised in
Table 3). Modelled data were calculated with the calculated
values of parameters h0, k, and σd. It is possible to see that
real data correspond very well with the calculated ones how
it was already said. In case of dynamic modulus the data meet
the calculated curve almost in 100%.

The growing of the particle agglomeration with their
rising content makes it possible to observe qualitatively in
TEM pictures. The lowering of the parameter k is crucial for
the next improvement of the reinforcing effect of nanofiller.

5. Conclusion

Models and mathematical descriptions of the various com-
posite behaviours have been created for more than 50 years.
Nanofillers especially due to their relatively short time of
application and the specific shape and size, unique interface
surface, small distance of particles, and the tendency to the
agglomeration do not fit to these models.

In this work the authors tried to create a relatively simple
model which with the variation of three parameters allows
very nice well description of the dependency of the elasticity
modulus on the filler content for the layered nanofiller type
with the platelet shape of particles. This model is valid in the
interval of the clay nanofiller content at least to the 10 wt. %.

Model brings the better look at the material containing
particles and technological parameters influenced by the
rigidity of prepared composites and the more optimal
planning of the next experimental work in this field.
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