organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Ethyl-4-hydroxy-8-methoxyquinolin-2(1*H*)-one

Stanislav Kafka,^a Andrej Pevec,^b* Karel Proisl,^a Roman Kimmel^a and Janez Košmrlj^b

^aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin 76272, Czech Republic, and ^bFaculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia Correspondence e-mail: andrej.pevec@fkkt.uni-lj.si

Received 15 October 2012; accepted 17 October 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.077; wR factor = 0.272; data-to-parameter ratio = 15.9.

In the title compound, $C_{12}H_{13}NO_3$, the quinoline ring system is approximately planar with a maximum deviation from the least-squares plane of 0.058 (2) Å. In the crystal, $N-H \cdots O$ and $O-H \cdots O$ hydrogen bonds link the molecules into chains running along the *b*-axis direction. The chains also feature $\pi - \pi$ interactions between pyridine and benzene rings of inversionrelated molecules [centroid–centroid distance = 3.609(2) Å].

Related literature

For naturally occurring 3-alkyl-4-hydroxyquinolin-2-ones, see: Paul & Bose (1968); Faizutdinova et al. (1969); Jurd et al. (1983); Chen et al. (1994); Yamamoto & Harimaya (2004); Jain et al. (2006). For the first published synthesis of the title compound, see: Rapoport & Holden (1959). For recent synthetic utilization of 3-alkyl-4-hydroxyquinolin-2-ones, see, for example: Kimmel et al. (2010).

Experimental

Crystal data

C12H13NO3 $M_r = 219.23$ Monoclinic, $P2_1/c$ a = 11.4824 (4) Å b = 6.9072 (2) Å c = 14.4978 (5) Å $\beta = 113.1283 (15)^{\circ}$

V = 1057.42 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K0.35 \times 0.25 \times 0.08 mm

4558 measured reflections

 $R_{\rm int} = 0.025$

2403 independent reflections 1734 reflections with $I > 2\sigma(I)$

Data collection

Nonius KappaCCD area-detector
diffractometer
Absorption correction: multi-scan
(SCALEPACK; Otwinowski &
Minor, 1997)
$T_{\min} = 0.966, \ T_{\max} = 0.992$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.077$	H atoms treated by a mixture of
$wR(F^2) = 0.272$	independent and constrained
S = 1.14	refinement
2403 reflections	$\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$
151 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} N1 - H1N \cdots O1^{i} \\ D2 - H2 \cdots O1^{ii} \end{array}$	0.85 (2)	2.27 (3)	2.976 (4)	140 (3)
	0.82	1.94	2.665 (4)	147

Symmetry codes: (i) -x, -y + 2, -z; (ii) x, y - 1, z.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

This study was supported by the internal grant of TBU in Zlin (No. IGA/FT/2012/043), funded from the resources of specific university research, and the Slovenian Research Agency (Project P1-0230-0103 and Joint Project BI-CZ/07-08-018). This work was also partly supported through the infrastructure of the EN-FIST Centre of Excellence, Ljubljana.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5161).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Chen, I. S., Wu, S. J., Lin, Y. C., Tsai, I. L., Seki, H., Ko, F. N. & Teng, C. M. (1994). Phytochemistry, 36, 237-240.

- Faizutdinova, Z. Sh., Bessonova, I. A. & Yunusov, S. Yu. (1969). Khim. Prir. Soedin. 5, 455-456.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Jain, S. C., Pandey, M. K., Upadhyay, R. K., Kumar, R., Hundal, G. & Hundal, M. S. (2006). Phytochemistry, 67, 1005-1010.
- Jurd, L., Benson, M. & Wong, R. Y. (1983). Aust. J. Chem. 36, 759-768.
- Kimmel, R., Kafka, S. & Košmrlj, J. (2010). Carbohydr. Res. 345, 768-779.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Paul, B. D. & Bose, P. K. (1968). J. Indian Chem. Soc. 45, 552-553.
- Rapoport, H. & Holden, K. G. (1959). J. Am. Chem. Soc. 81, 3738-3743.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yamamoto, Y. & Harimaya, K. (2004). Chem. Lett. 33, 238-239.

supplementary materials

Acta Cryst. (2012). E68, o3198 [doi:10.1107/S1600536812043279]

3-Ethyl-4-hydroxy-8-methoxyquinolin-2(1H)-one

Stanislav Kafka, Andrej Pevec, Karel Proisl, Roman Kimmel and Janez Košmrlj

Comment

The title compound, (I) (Fig. 1), was recently prepared as an intermediate within the framework of a study focusing on glucosylation of *N*-unsubstituted 4-hydroxyquinolin-2(1*H*)-ones by thermal condensation of diethyl ethylmalonate with *o*-anisidine (Kimmel *et al.*, 2010). Some 3-alkyl-4-hydroxyquinolin-2-ones were isolated from plants *Ravenia spectabilis* (Paul & Bose, 1968), *Haplophylum bucharicum* (Faizutdinova *et al.*, 1969), *Euxylophora pareansis* (Jurd *et al.*, 1983), *Zanthoxylum simulans* (Chen *et al.*, 1994), *Toddalia aculeata* (Jain *et al.*, 2006) as well as from the fermentation broth of *Dactylosporangium sp.* (Yamamoto & Harimaya, 2004).

In the crystal structure of the title compound (I) (Fig. 2) two 3-ethyl-4-hydroxy-8-methoxyquinolin-2(1*H*)-one molecules are connected by two intermolecular N—H···O hydrogen bonds between protonated nitrogen atom and carbonyl group. These connections altogether with additional O—H···O hydrogen bonds between hydroxyl and carbonyl groups (Table 1) form linear chain along *b* axis. The chains are further stabilized by π - π interactions between pyridine and benzene rings of inversion-related pairs of quinoline molecules [centroid–centroid distance = 3.609 (2) Å].

Experimental

A mixture of *o*-anisidine (12.3 g, 100 mmol) and diethyl ethylmalonate (197.6 g, 105 mmol) was heated on a metal bath at 220–230 °C for 1 h and then at 260–270 °C for 6 h (until the distillation of ethanol stopped). The hot reaction mixture was cautiously poured into toluene (50 ml). After cooling, the precipitate was filtered. The residue was dissolved in aqueous sodium hydroxide solution (0.5 *M*, 300 ml) and the solution was filtered. The filtrate was washed with toluene (3 x 15 ml). The aqueous phase was filtered and acidified by addition of 10% hydrochloric acid to Congo red. The precipitated paste was triturated with a glass bar under an aqueous phase for several minutes and then the mixture was cooled in refrigerator for several hours, until the pasty substance hardened. The solid was filtered off, washed with water (100 ml), air dried and crystallized from ethanol affording 13.6 g (62% of theoretical yield) of the title compound (I), m. pt 496–498 K (benzene – ethanol). In the literature (Rapoport & Holden, 1959), a m. pt range of 498–499 K is reported.

Refinement

The N-bonded hydrogen atom was located in a difference map and refined with the using a distance restraint, N—H = 0.86 ± 0.02 Å, and with $U_{iso}(H) = 1.2U_{eq}(N)$. All other H atoms were included in the model at geometrically calculated positions and refined using a riding model, with C—H bond lengths constrained to 0.93 Å (aromatic H), 0.96 Å (methyl H), 0.97 Å (methylene H) and O—H = 0.82 Å, and with $U_{iso}(H)$ values of $1.2U_{eq}(C)$ [for aromatic and methylene H] or $1.5U_{eq}(C)$ [for oxygen and methyl H]. The exceptionally large value for the first parameter on the *SHELXL* weighting line altogether with large value for weighted *R* factor indicate possible twinning. The function TwinRotMat in *PLATON* (Spek, 2009) suggests that the structure could be twinned. However, applying the proposed twin law does not affect the refinement in the sense of better *R* values. Additionally, the BASF parameter has a value close to zero after refinement.

Hence, a twin model was not employed.

Computing details

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Figure 1

A view of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The supramolecular chain in the crystal structure of (I), with the O—H…O and N—H…O hydrogen bonds, and π - π interactions denoted by dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -*x*, -*y* + 2, -*z*; (ii) *x*, *y* - 1, *z*]

3-Ethyl-4-hydroxy-8-methoxyquinolin-2(1H)-one

Crystal data	
$C_{12}H_{13}NO_3$	Monoclinic, $P2_1/c$
$M_r = 219.23$	Hall symbol: -P 2ybc

Melting point = 496–498 K

 $\theta = 0.4 - 27.5^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Prism, colourless

 $0.35 \times 0.25 \times 0.08$ mm

T = 293 K

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 2554 reflections

a = 11.4824 (4) Å b = 6.9072 (2) Å c = 14.4978 (5) Å $\beta = 113.1283 (15)^{\circ}$ $V = 1057.42 (6) \text{ Å}^{3}$ Z = 4 F(000) = 464 $D_{x} = 1.377 \text{ Mg m}^{-3}$

Data collection

Nonius KappaCCD area-detector	4558 measured reflections
diffractometer	2403 independent reflections
Radiation source: fine-focus sealed tube	1734 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.025$
φ scans + ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SCALEPACK; Otwinowski & Minor, 1997)	$k = -8 \rightarrow 8$
$T_{\min} = 0.966, \ T_{\max} = 0.992$	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.077$	Hydrogen site location: inferred from
$wR(F^2) = 0.272$	neighbouring sites
S = 1.14	H atoms treated by a mixture of independent
2403 reflections	and constrained refinement
151 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1076P)^2 + 1.7454P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.0001$
direct methods	$\Delta ho_{ m max} = 0.37 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. 279 frames in 4 sets of φ scans + ω scans. Rotation/frame = 1.6 °. Crystal-detector distance = 32 mm. Measuring time = 150 s/°.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.0025 (3)	0.7822 (4)	0.0870 (2)	0.0373 (7)	
H1N	-0.045 (3)	0.880 (4)	0.064 (3)	0.045*	
01	0.1611 (2)	0.9727 (3)	0.0836 (2)	0.0482 (7)	
O2	0.2406 (2)	0.3155 (4)	0.1696 (2)	0.0506 (7)	
H2	0.1991	0.2151	0.1570	0.076*	
O3	-0.2344 (2)	0.7758 (4)	0.0700 (2)	0.0584 (8)	

C1	0.1260 (3)	0.8088 (5)	0.1009 (3)	0.0362 (7)
C2	0.2089 (3)	0.6432 (5)	0.1318 (3)	0.0370 (8)
C3	0.3448 (3)	0.6709 (6)	0.1462 (3)	0.0437 (9)
H3A	0.3497	0.7733	0.1020	0.052*
H3B	0.3757	0.5528	0.1275	0.052*
C4	0.4286 (4)	0.7222 (9)	0.2532 (4)	0.0740 (15)
H4A	0.4028	0.8447	0.2702	0.111*
H4B	0.5150	0.7303	0.2599	0.111*
H4C	0.4212	0.6241	0.2975	0.111*
C5	0.1612 (3)	0.4696 (5)	0.1440 (2)	0.0359 (7)
C6	0.0321 (3)	0.4481 (5)	0.1348 (2)	0.0356 (7)
C7	-0.0181 (3)	0.2749 (5)	0.1554 (3)	0.0407 (8)
H7	0.0325	0.1651	0.1758	0.049*
C8	-0.1418 (4)	0.2694 (6)	0.1450 (3)	0.0473 (9)
H8	-0.1749	0.1547	0.1580	0.057*
C9	-0.2195 (3)	0.4337 (6)	0.1151 (3)	0.0469 (9)
Н9	-0.3035	0.4269	0.1080	0.056*
C10	-0.1721 (3)	0.6033 (6)	0.0964 (3)	0.0412 (8)
C11	-0.0451 (3)	0.6117 (5)	0.1052 (2)	0.0353 (7)
C12	-0.3645 (4)	0.7815 (8)	0.0518 (4)	0.0780 (16)
H12A	-0.4091	0.6864	0.0022	0.117*
H12B	-0.3977	0.9078	0.0281	0.117*
H12C	-0.3753	0.7540	0.1129	0.117*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0334 (14)	0.0319 (14)	0.0455 (16)	0.0049 (11)	0.0145 (12)	0.0054 (12)
01	0.0463 (14)	0.0305 (13)	0.0695 (18)	-0.0029 (10)	0.0246 (13)	0.0036 (12)
O2	0.0354 (13)	0.0334 (13)	0.0717 (18)	0.0040 (10)	0.0091 (12)	-0.0001 (13)
O3	0.0389 (14)	0.0581 (18)	0.081 (2)	0.0121 (12)	0.0263 (14)	0.0145 (15)
C1	0.0368 (16)	0.0330 (17)	0.0390 (17)	-0.0012 (13)	0.0150 (14)	-0.0018 (13)
C2	0.0339 (16)	0.0361 (17)	0.0394 (17)	-0.0012 (13)	0.0127 (13)	-0.0042 (14)
C3	0.0351 (17)	0.0407 (19)	0.055 (2)	-0.0013 (14)	0.0170 (15)	-0.0026 (16)
C4	0.040 (2)	0.103 (4)	0.073 (3)	-0.020 (2)	0.016 (2)	-0.031 (3)
C5	0.0339 (16)	0.0325 (16)	0.0357 (16)	0.0027 (13)	0.0078 (13)	-0.0011 (13)
C6	0.0377 (16)	0.0358 (17)	0.0291 (15)	-0.0024 (13)	0.0084 (13)	-0.0026 (13)
C7	0.0445 (19)	0.0371 (18)	0.0388 (18)	-0.0023 (14)	0.0144 (14)	0.0037 (15)
C8	0.050 (2)	0.046 (2)	0.048 (2)	-0.0106 (17)	0.0208 (17)	0.0061 (17)
C9	0.0376 (18)	0.059 (2)	0.047 (2)	-0.0065 (16)	0.0197 (15)	0.0021 (18)
C10	0.0362 (17)	0.048 (2)	0.0388 (17)	0.0028 (15)	0.0143 (14)	0.0013 (15)
C11	0.0349 (16)	0.0359 (17)	0.0330 (16)	-0.0012 (13)	0.0110 (13)	-0.0006 (13)
C12	0.039 (2)	0.083 (4)	0.108 (4)	0.017 (2)	0.025 (2)	0.000 (3)

Geometric parameters (Å, °)

1.364 (4)	C4—H4B	0.9600
1.367 (4)	C4—H4C	0.9600
0.852 (19)	C5—C6	1.443 (4)
1.260 (4)	C6—C11	1.396 (5)
	1.364 (4) 1.367 (4) 0.852 (19) 1.260 (4)	1.364 (4) C4—H4B 1.367 (4) C4—H4C 0.852 (19) C5—C6 1.260 (4) C6—C11

O2—C5	1.355 (4)	C6—C7	1.409 (5)
O2—H2	0.8200	C7—C8	1.369 (5)
O3—C10	1.365 (5)	С7—Н7	0.9300
O3—C12	1.412 (5)	C8—C9	1.403 (6)
C1—C2	1.442 (5)	С8—Н8	0.9300
C2—C5	1.359 (5)	C9—C10	1.363 (5)
C2—C3	1.503 (4)	С9—Н9	0.9300
C3—C4	1.512 (6)	C10—C11	1.415 (5)
С3—НЗА	0.9700	C12—H12A	0.9600
С3—Н3В	0.9700	C12—H12B	0.9600
C4—H4A	0.9600	C12—H12C	0.9600
C1—N1—C11	123.9 (3)	C2—C5—C6	122.1 (3)
C1—N1—H1N	115 (3)	C11—C6—C7	119.3 (3)
C11—N1—H1N	121 (3)	C11—C6—C5	116.7 (3)
С5—02—Н2	109.5	C7—C6—C5	123.9 (3)
C10-03-C12	118 4 (3)	C8-C7-C6	1195(3)
01-C1-N1	119.1 (3)	C8—C7—H7	120.2
01-C1-C2	1234(3)	C6-C7-H7	120.2
N1 - C1 - C2	1174(3)	C7 - C8 - C9	120.2 121.2(3)
11 - 01 - 02	1193(3)	C7 - C8 - H8	119.4
C_{5} C_{2} C_{3}	119.5(3) 123.0(3)	C9 C8 H8	119.4
$C_1 = C_2 = C_3$	123.0(3) 117.7(3)	C_{10} C_{9} C_{8}	119.4 120.1(3)
$C_1 = C_2 = C_3$	117.7(3) 112.3(3)	$C_{10} = C_{9} = C_{8}$	120.1 (5)
$C_2 = C_3 = C_4$	112.3 (3)	$C_{10} C_{20} H_{0}$	120.0
$C_2 = C_3 = H_3 \Lambda$	109.1	$C_0 = C_1 = C_2$	120.0 126.0(3)
C_{4} C_{2} C_{3} $H_{3}P$	109.1	$C_{9} = C_{10} = C_{11}$	120.9(3)
$C_2 = C_3 = H_3 B$	109.1	C_{3} C_{10} C_{11}	113.7(3)
$C4 - C3 - \Pi 3D$	109.1	N1 C11 C6	113.4(3) 120.2(2)
H_{DA}	107.9	NI = CI1 = CI0	120.2(3)
C_{3} C_{4} H_{4} C_{2} C_{4} C_{4	109.5	NI = CII = CIO	119.0(3)
$C_3 - C_4 - \Pi_4 D$	109.5	$C_0 = C_{11} = C_{10}$	120.1 (5)
H4A - C4 - H4B	109.5	$O_3 = C_{12} = H_{12} P_{12}$	109.5
$C_3 - C_4 - H_4C$	109.5		109.5
H4A—C4—H4C	109.5	H12A - C12 - H12B	109.5
H4B - C4 - H4C	109.5	03—C12—H12C	109.5
02 - C5 - C2	11/.8 (3)	HI2A—CI2—HI2C	109.5
02	120.0 (3)	H12B—C12—H12C	109.5
	170.0 (2)		170 ((2)
CII = NI = CI = OI	-1/8.8(3)	$C_{5} = C_{6} = C_{7} = C_{8}$	1/9.6 (3)
CII = NI = CI = C2	3.3 (5)	$C_{0} = C_{1} = C_{0} = C_{1}$	-0.6(5)
01 - C1 - C2 - C5	-1/6./(3)	C/=C8=C9=C10	-0.4 (6)
NI - CI - C2 - C5	1.0 (5)	$C_8 - C_9 - C_{10} - O_3$	-17/.8(4)
01 - C1 - C2 - C3	1.6 (5)	C8—C9—C10—C11	1.4 (5)
NI-CI-C2-C3	179.4 (3)	C12—O3—C10—C9	-5.3 (6)
C5—C2—C3—C4	-89.5 (5)	C12—O3—C10—C11	175.5 (4)
C1 - C2 - C3 - C4	92.3 (4)	CI—NI—CII—C6	-3.5 (5)
C1 - C2 - C5 - O2	1//.8 (3)	CI—NI—CII—CI0	174.7 (3)
C3—C2—C5—O2	-0.5 (5)	C/C6C11N1	178.6 (3)
C1—C2—C5—C6	-5.1 (5)	C5-C6-C11-N1	-0.5(5)

supplementary materials

C2 C2 C5 C(17(7(2))	67 66 611 610	0.2 (5)
$C_3 = C_2 = C_5 = C_6$	1/6./(3)	C/C6C11C10	0.3 (5)
O2—C5—C6—C11	-178.1 (3)	C5—C6—C11—C10	-178.8(3)
C2—C5—C6—C11	4.8 (5)	C9—C10—C11—N1	-179.6 (3)
O2—C5—C6—C7	2.8 (5)	O3—C10—C11—N1	-0.3 (5)
C2—C5—C6—C7	-174.3 (3)	C9—C10—C11—C6	-1.3 (5)
C11—C6—C7—C8	0.6 (5)	O3—C10—C11—C6	178.0 (3)

Hydrogen-bond geometry (Å, °)

	D—H	Н…А	D····A	D—H···A
N1—H1 <i>N</i> ···O1 ⁱ	0.85 (2)	2.27 (3)	2.976 (4)	140 (3)
O2—H2…O1 ⁱⁱ	0.82	1.94	2.665 (4)	147

Symmetry codes: (i) –*x*, –*y*+2, –*z*; (ii) *x*, *y*–1, *z*.