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Abstract. In this work, novel rectangle and circular orifice dies have been utilized for 
temperature-strain rate dependent planar and uniaxial elongational viscosity measurements for 
the LDPE polymer melt by using standard twin bore capillary rheometer and Cogswell model 
and the capability of three different constitutive equations (novel generalized Newtonian model, 
modified White-Metzner model, modified Leonov model) to describe the measured experimental 
data has been tested. It has been shown that chain branching causes the strain hardening 
occurrence in both, unixial and planar elongational viscosities and its maximum is shifted to the 
higher strain rates if the temperature is increased. The level of uniaxial elongational strain 
hardening for the branched LDPE sample has been found to be higher in comparison with the 
planar elongational viscosity within wide range of temperatures.  

Keywords: Orifice die, Planar elongational viscosity, Uniaxial elongational viscosity, Cogswell 
model, Entrance pressure drop, Polymer melts, Capillary rheometer, Constitutive equations. 
PACS: 47.50.Ef, 83.50.Ha, 83.50.Jf, 83.60.Df, 83.80.Sg, 83.85.Cg, 83.85.Rx 

INTRODUCTION 

The elongational viscosity represents key rheological parameter allowing 
understanding the molecular structure of the polymers as well as polymer processing 
at which the polymer melts are stretched [1-16]. Due to the fact that generation and 
control of the extensional flow is difficult, experimental determination of the 
elongational viscosity is a problem [17-20]. Probably the most challenging rheological 
task is experimental determination of planar elongational viscosity as one can see from 
very small numbers of experimental data available in the open literature [1-2, 12-16, 
21]. With the aim to understand this important rheological parameter in more detail, in 
this work, novel rectangle and circular orifice dies have been utilized for planar and 
uniaxial elongational viscosity measurements for branched LDPE by using standard 
twin bore capillary rheometer and Cogswell model [6, 12] and the capability of three 
different constitutive equations [22-26] to describe the measured experimental data 
has been tested. 
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EXPERIMENTAL 

Extrusion coating, branched LDPE CA820 (Borealis Polyolefine) together with 
Rosand RH7-2 twin bore capillary rheometer have been utilized for the experimental 
determination of uniaxial and planar elongational viscosities by using long dies as well 
as novel orifice dies, which are depicted in Figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
FIGURE 1. Capillary dies with abrupt entry utilized in this work. Top: Set of rectangle dies (CZ UV 

23619) for planar elongational viscosity measurements developed in [27] (left – long die, right – orifice 
die). Bottom: Circular orifice die (CZ UV 19221) for uniaxial elongational viscosity measurements 

developed in [11]. 
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The main advantage of both utilized orifice dies is the open downstream region 
design which eliminates any possibility for artificial pressure increase due to polymer 
melt touching the downstream wall. The uniaxial and planar elongational viscosities 
have been determined through entrance pressure drop measurements by using the 
Cogswell model [6, 12] (see Table 1).  

 
Table 1. Cogswell model summarization for uniaxial/planar extensional viscosity determination [6, 12]. 
 Uniaxial extensional flow Planar extensional flow 
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In this table, P0,U and P0,P represents the entrance pressure drop measured on 

annular and rectangular orifice die, respectively, Q is the volume flow rate, R is the 
capillary die radius, w and h is the width and the gap size of the rectangle die, 
respectively, PL,U and PL,P represents the pressure drop through a long die having 
circular and rectangular shape, respectively, P0,U and P0,P is the orifice pressure drop 
having circular and rectangular shape, respectively, L is the length of the long die. It 
should be mentioned that the long die has L/(2R) = 16 (or L/h = 16) whereas the 
orifice die has L/(2R) = 0.1208 (or L/h = 0.1208) as suggested in [10]. 

THEORETICAL 

Generalized Newtonian Fluid Model 

In this work, recently proposed generalized Newtonian fluid model has been 
utilized [22-23]: 

 

 
DIII,II,I 





 DDD2  (1) 
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where   means the extra stress tensor, D represents the deformation rate tensor and  
stands for the viscosity, which is not constant (as in the case of standard Newtonian 
law), but it is allowed to vary with the first invariant of the absolute value of 
deformation rate tensor  DtrI D , (where D  is defined as the square root of D2) as 

well as on the second  2
D 2 DtrII  , and third,  DdetIII D , invariants of D 

according to Eq. 2 
 

 
       DDDDDD
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1

DDD
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(2) 

 
where  DII  is given by the well known Carreau-Yasuda model, Eq. 3 and 

 DDD III,II,If  is given by Eq. 4 
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here A, 0, , a, n, α, ψ, ,  are adjustable parameters and aT is temperature shift 
factor defined by the Arrhenius equation: 
 

 
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where Ea is the activation energy, R is the universal gas constant, Tr is the reference 
temperature and T is local temperature.  

Modified White–Metzner Model 

Modified White-Metzner model constitutive equation is a simple Maxwell model 
for which the viscosity and relaxation time are allowed to vary with the second 
invariant of the strain rate deformation tensor [24]. It takes the following form: 

 

    DIIII DD 2 


                   (6) 
   

where 


  is the upper convected time derivative of stress tensor, D is the deformation 
rate tensor, IID is the second invariant of the rate of deformation tensor, λ(IID) stands 
for the deformation rate-dependent relaxation time and η(IID) is the deformation rate-
dependent viscosity. Although this modification improves the behaviour in steady 
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shear flows, in elongational flows the model predicts unrealistic infinite elongational 
viscosity. This problem was overcome by Barnes and Roberts [24], who showed that, 
for specific functions of λ(IID) and η(IID) with (λ0/K2) < (√3/2) (see Eqs. (3) and (7)), 
the model does not predict infinite elongational viscosity and can be used for a very 
good description of elongational viscosity of a wide range of real polymer melts: 
 

  
DT2

T0
D 1 IIaK

a
II




  (7) 

 
where λ0 and K2 are constants. Eqs. (3, 6-7) together with the physical constraint for λ0 
and K2 mentioned above represent the modified White–Metzner model. 

Modified Leonov Model 

This constitutive equation is based on heuristic thermodynamic arguments resulting 
from the theory of rubber elasticity [25, 28-29]. Mathematically it is relating the stress 
and elastic strain stored in the material as: 
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where  is the stress, and W, the elastic potential, depends on the invariants I1 and I2 of  
the recoverable Finger tensor c, 
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where G denotes linear Hookean elastic modulus,  and n0 are numerical parameters. 
Leonov assumed that dissipative process act to produce irreversible rate of strain ep  
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which spontaneously reduces the rate of elastic strain accumulation. Here,  is the unit 
tensor and b stands for dissipation function defined by Eq. (12).This elastic strain c is 
related to the deformation rate tensor D as follows 
 

 0 2
0

 peccDDcc    (11) 
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where 
0

c  is the Jaumann (corotational) time derivative of the recoverable Finger strain 
tensor. In this work, the neo-Hookean potential (i.e.  = n0 = 0 in Eq. 9) and the 
dissipation function b proposed in [26] (see Eq. 12), have been employed. 
 

       
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





     (12) 

 
Here,  and  are adjustable parameters which are allowed to wary with relaxation 
time, .  

RESULTS AND DISCUSSION 

The measured temperature-strain rate dependent uniaxial and planar elongational 
viscosities, together with the shear viscosity and model predictions (model parameters 
are summarized in Tables 2-4), for the tested branched LDPE sample are provided in 
Figures 2-5.  

 
TABLE 2.  Generalized Newtonian model parameters for T = 170°C (A1=2.4.10-5 Pa,  = 8) 

0 
(Pa.s) 

λ 
(s) 

a 
(-) 

n 
(-) 

α 
(s) 

β 
(-) 

 
(-) 

4376.6 0.2151 0.4919 0.3464 0.051671 0.0675 0.056076 

 
TABLE 3.  Modified White-Metzner model parameters for T = 170°C 
0 

(Pa.s) 
λ 

(s) 
a 

(-) 
n 
(-) 

λ0 

(s) 
K2 
(s) 

4376.6 0.2151 0.4919 0.3464 0.936 1.1286 

 
TABLE 4.  Modified Leonov model parameters for T = 170°C 

 Maxwell parameters mLeonov model
i i (s) Gi (Pa)  
1 10-4 200000.00 0 1.0 
2 10-3 94678.18 0 1.0 
3 10-2 33507.164 1.7 0.06 
4 10-1 12114.745 0.530 0.02 
5 1 1329.345 0.14 0.02 
6 10 119.607 0 1.0 
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FIGURE 2.  Experimentally determined steady shear and elongational viscosities for LDPE sample at 
three different temperatures. Left: Uniaxial elongational viscosity. Right: Planar elongational viscosity. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIGURE 3.  Arrhenius plot for LDPE sample. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 4. Comparison between the utilized generalized Newtonian/modified White-Metzner model 
fits (solid lines) and measured steady shear viscosities (symbols) for LDPE sample. 
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FIGURE 5. Comparison between the utilized model fits/predictions (solid lines) and measured uniaxial 
and planar elongational viscosities (symbols) for LDPE sample at three different temperatures.        

Top: Generalized Newtonian model. Middle: Modified White-Metzner model. Bottom: Modified 
Leonov model. 
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First, the level of the strain hardening in uniaxial elongational viscosity is higher 
than in the planar elongational viscosity for the tested LDPE sample at all three 
temperatures (see Figure 2) which is in good agreement with the recent experimental 
work performed by D. Auhl et. al [21] on the cross-slot extensional rheometer. 
Second, the maximum in both viscosities is shifted to the higher strain rates for 
increased temperature. Third, the generalized Newtonian model has higher capability 
to describe temperature-strain rate dependent uniaxial and planar viscosities for both 
tested samples in comparison with modified White-Metzner model. This can be 
explained by the presence of additional parameter ψ in the generalized Newtonian 
model allowing to fit the deformation rate dependent planar elongational viscosity, 
which is not the case of the modified White-Metzner model. Interestingly, the 
modified Leonov model predictions, based on linear relaxation spectrum and non-
linear parameters ξ, ν identified on the steady uniaxial elongational viscosity only, are 
in the very good agreement with the measured steady planar elongational viscosity. 
This supports the physics behind the modified Leonov model as well as reliability of 
the performed measurements. 

CONCLUSION 

In this work, planar and uniaxial elongational viscosities for branched LDPE 
polymer melt has been determined through entrance pressure drop techniques on 
conventional twin bore capillary rheometer by using novel circular and rectangle 
orifice dies and the obtained experimental data has been described by three different 
constitutive equations. It has been showed that chain branching causes the strain 
hardening occurrence in both, uniaxial and planar elongational viscosities and its 
maximum is shifted to the higher strain rates if the temperature is increased. The level 
of uniaxial elongational strain hardening for the branched LDPE sample has been 
found to be higher in comparison with the planar elongational viscosity within wide 
range of temperatures. It has been found that recently proposed non-Newtonian fluid 
model [22-23] can represent steady shear, uniaxial and planar elongational viscosities 
for branched LDPE reasonably well. On the other hand, the modified White-Metzner 
model has failed in the prediction of the planar elongational viscosity. Interestingly, 
the modified Leonov model predictions for the planar elongational viscosities have 
been revealed to be in very good agreement with the experimental data, which 
supports physics behind the model and reliability of the performed measurements. 
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