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Abstract: - The aim of this paper is to introduce, in detail, a novel approach for tuning of anisochronic single-
input single-output controllers for infinite-dimensional feedback control systems. A class of Linear Time-
Invariant Time Delay Systems (LTI TDSs) is taken as a typical representative of infinite-dimensional systems. 
Control design to obtain the eventual controller structure is made in the special ring of quasipolynomial 
meromorphic functions (RMS). The use of this algebraic approach with a simple feedback loop for unstable or 
integrating systems leads to infinite-dimensional (delayed) controllers as well as the whole feedback loop. A 
natural task is to set tunable controller parameters in order to form the crucial area of the infinite closed-loop 
spectrum. It is worth noting that not only poles yet also zeros are taken into account. The prescribed positions 
of the right-most reference-to-output poles and zeros are given on the basis of the desired overshoot for a 
simple finite-dimensional matching model the detailed analysis of which is provided. The dominant poles and 
zeros are shifted to the prescribed positions using the Quasi-Continuous Shifting Algorithm (QCSA) followed 
by the use of an advanced optimization algorithm. The whole methodology is called the Pole-Placement 
Shifting based controller tuning Algorithm (PPSA). The PPSA is demonstrated on the setting of parameters of 
delayed controller for an unstable time delay plant of a skater on the controlled swaying bow. This example, 
however, shows a treachery of the algorithm and a natural feature of an infinite-dimensional system – namely, 
that its spectrum or even its dominant part can not be placed arbitrarily. Advantages and drawback as well as 
possible modification of the algorithm are also discussed.

Key-Words: - Infinite-dimensional systems, Time delay systems, Algebraic control design, Controller tuning, 
Pole-assignment, Pole-shifting, Desired overshoot, Optimization

1 Introduction
Infinite-dimensional systems constitute a huge class 
of complex systems usually expressed and 
mathematically formulated by Partial Differential 
Equations (PDAs). These systems and models are 
characterized by an infinite spectrum, i.e. with 
infinite many modes of the solution of and PDA. A 
family of Time Delay Systems (TDSs) stands for a 
quintessential representative of infinite-dimensional 
systems. Analytic solutions of many PDAs for 
systems with distributed parameters lead to a TDS 
in the form of Ordinary Differential Equations 
(ODEs) with deviated parameters or Difference-
Differential Equations (DDEs), which ought to be –
more precisely – include in the set of Functional 
Differential Equations (FDEs) [1] - [4], or a PDA 
can be equivalently expressed by convolutions or 
Riemann-Stieltjes integrals [5] - [6].

Linear time-invariant (LTI) TDSs, that are the 
matter of this contribution, are modelled in the state 
space by the linear FDEs which can be formulated 
using the Laplace transform in the form of transfer 
functions as well. However, these functions are no 
more rational but fractions of so-called 
quasipolynomials. Some authors, e.g. [7], pointed 
out that pointed out that the use of quasipolynomials 
does not permit to effectively handle some 
stabilization and control tasks, thus other rings 
based on quasipolynomials [8], [9] or its 
approximation [10], [11] for LTI TDS were 
introduced,. The ring of quasipolynomial 
meromorphic functions (RMS), originally developed 
in [12] and revised and extended in [13], is another 
option. The development of the ring has been 
motivated by the endeavor not to loose dynamic 



information and the finding that Laplace and delays 
operators might not be seen as independent. 
Controller design in the ring employs the Bézout 
identity to obtain stable and proper controllers along 
with the Youla-Kučera parameterization to meet 
other control requirements.

In many cases, namely, for stable controlled 
plants or using a more advanced control system for 
even unstable ones [14], control design in RMS

ensures that the feedback loop is finite-dimensional 
in the sense that at least the reference-to-output 
transfer function (i.e. the complementary sensitivity 
function) has a finite number of poles. Note that 
even if the number of transfer function poles is 
finite, the number of system (characteristic) roots 
can be infinite – this is what we call "quasi-finite 
pole assignment". However, these latter poles are 
given by the dynamics of the controlled plant and 
their distribution can not be influenced by the 
feedback.

Hence, in other cases – especially for unstable 
LTI TDS, the control algorithm must deal with 
infinitely (countable) many feedback characteristic 
(transfer function) poles the positions of which 
depend on the selectable controller parameters. The 
use of pole-placement (pole-assignment, root-locus) 
tuning algorithms for LTI TDS can be a possible 
way how solve the problem, see e.g. [15] - [17].
However, these algorithms deal with poles only 
ignoring closed-loop zeros and they have been 
derived for state-space controllers.

In this paper, we concentrate on a procedure how 
to reach the desired dominant part of the spectrum 
and closed-loop zeros distribution as close as 
possible to a prescribed finite-dimensional model of 
the feedback control system. The idea is based on 
the analysis of a simple finite-dimensional model
where the relative maximum overshoot, relative 
dumping and relative time-to-overshoot (i.e. a phase 
in some sense) are calculated and serve as a control 
performance indicators. Then, according to the 
selected values, the desired positions of dominant 
(i.e the rightmost) poles and zeros are calculated, 
and poles and zeros of a feedback system are shifted 
to the prescribed positions while the rest of the 
spectrum is pushed to the left (i.e. to the "stable" 
region). Moreover, the initial solution obtained 
using the Quasi-Continuous Shifting Algorithm 
(QCSA) [15], [16] is improved by an advanced 
numerical optimization algorithm, such as the 
Nelder-Mead (NM) algorithm [18], (Extended) 
Gradient Sampling Algorithm (EGSA) [19], [20] or 
the Self-Organizing Migration Algorithm (SOMA)
[21]. The method is similar to that independently 

developed in [17]; however, essential differences 
are explained in this contribution.

The presented methodology is called Pole-
Placement Shifting based controller tuning Algorithm
(PPSA) and its basic ideas were formulated in [22]. 
A detailed analysis and a thorough simulation 
example extending the primordial study is provided 
in this contribution. Moreover, a different 
modification of the algorithm, which gives better 
results, is chosen here. The demonstrative example 
is dedicated to controller parameters tuning for an 
unstable TDS of a skater on the controlled swaying 
bow [23], where the controller is designed in an 
algebraic way using the RMS ring. However, the 
obtained solution exposes an important feature of 
pole-placement methods for infinite-dimensional 
systems that it is not always possible to reach the 
desired spectrum even its finite part.

The paper is organized as follows. A concise 
introductory general description of LTI TDS, as a 
representative of infinite-dimensional systems, is 
presented in Section 2. Problem formulation and 
basic steps of the PPSA (and its modification 
utilized here) is the matter of Section 3. In Section 
4, a detailed analysis of a selected finite-
dimensional matching model is introduced. A 
complex Matlab-Simulink demonstrative example 
of control design of an unstable LTI TDS and its 
tuning using PPSA is presented in Section 5. 
Finally, Section 6 provides results analysis and 
discussion on the PPSA.

2 LTI TDS Description
Since the description of (LTI) TDS was the matter 
of many books, journal and conference 
contributions, a very short overview is given here.

A LTI TDS, no matter if a plant or a feedback 
loop, can be formulated by state and output FDEs in 
the following form [2], [24]
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where x n is a vector of state variables, u m

stands for a vector of inputs, y l represents a 

vector of outputs, Ai,  A
~

, Bi,  B
~

, C,  C
~

, Hi

are matrices of compatible dimensions, Li 0
are lumped (discrete) delays and convolution 
integrals express distributed delays. If 0H i for 
any i = 1,2,...NH, model (1) is called neutral; on the 
other hand, if 0H i for every i = 1,2,...NH, a so-
called retarded model is obtained.

Another, operator-based description of LTI TDS 
has been introduced in [25], [26]. Some other 
models can be found in a brilliant overview [24].

Considering model (1) and zero initial 
conditions, a general multi-input multi-output 
(MIMO) system in the form of the following 
transfer matrix is obtained
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All transfer functions in G(s) - or a transfer 
function in a single-input single output (SISO) case 
- have the identical denominator in the form
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which is called the characteristic quasipolynomial
of the system.

Poles ii ,  of TDS are solutions of the 

equation      0det  sssM AI , whereas zeros 

 ,...2,1, ii , in a SISO case are given by the 

solution of            0adj1   sssssMsG BAIC . 

Due to transcendental character of  sM caused by 
functionality of its exponential terms, the number of 
poles is infinite.

Asymptotic stability agrees with that notion 
known from finite-dimensional systems, i.e. all 

poles are to be located in the open left-half plane, 

 
0 .

3 Problem Formulation and PPSA
Many control design procedures for (LTI) TDS -
principally, those except the class of Finite 
Spectrum Assignment resulting in extremely 
complex control law - yield the infinite-dimensional 
feedback as well. The eventual controller(s) 
naturally include(s) tunable parameters which have 
to be appropriately set. The controller design 
procedure in the RMS ring, used in this paper, gives 
rise to a set K of mostly bounded real-valued 
parameters. In the light of the asymptotic stability 
requirement, it is necessary to get the feedback 

spectrum in 
0 , which means to obtain the so-

called spectral abscissa

    0:;Remax:  iPiiP M  K (4)

strictly negative, as solved e.g. in [15].
However, we are going beyond this basic claim, 

in this paper. A sub-optimal controller tuning idea 
based on the desired or ultimate position of the 
right-most feedback poles is presented. The
algorithm stems from the dependence of the 
maximum relative step response overshoot, the 
relative dumping factor and the relative time-to-
overshoot on the position of poles and zeros of a 
finite-dimensional model. Thus, the goal is to match 
the dominant (i.e. the right-most) region of the 
feedback spectrum with that of the desired finite-
dimensional model. The procedure has been called 
PPSA and its basic steps follows. As first, the 
original scheme presented in [22] is provided
(version 1); then, as second, its modification for a 
limit case is suggested (version 2). Finally, the 
version utilized in this paper (version 3) is given to 
the reader. 

3.1 PPSA (version 1)
Input: Closed-loop reference-to-output transfer 
function  sGWY with the number of r selectable 
(tunable) parameters in the set 

  dennumrkkk KKK  ,...,, 21 (4)

where numnumnum r KKK , are parameters in the 

numerator, whereas dendenden r KKK , means 

selectable parameters in the denominator and let 
  nddennumnumndr KKKK  \ .



Step 1: Choose a simple model of a stable finite-
dimensional system with the unit static gain with the 
transfer function  sG mWY , with the numerator of 

degree ndnum rn  and the denominator of degree

dennumdenden nnrn  , . Calculate step response 
maximum overshoots, relative dumping factors and 
relative times-to-overshoot of the model as 
performance measures for a suitable range of its numn

zeros and denn poles (including their multiplicities).
Step 2: Prescribe all poles of the model with 

respect to the calculated performance factors and 
place the number of denn closed-loop poles of the 
system to these desired positions. If the placed poles 
are dominant (i.e. the rightmost), go to Step 6; 
otherwise, go to Step 3.

Step 3: Initialize the counter of currently shifted 
poles as densp nn  .

Step 4: Shift the rightmost feedback system poles 
towards the prescribed locations successively using 
the QCSA [15], [16]. If necessary, increase spn . If 

denspden rnn  , try to move the rest of dominant 

(rightmost) poles to the left, again e.g. using QCSA.
Step 5: If all prescribed poles are dominant, the 

procedure is finished. Otherwise, select a suitable 
cost function reflecting the distance of dominant 
poles from prescribed positions and the spectral 
abscissa. Minimize the cost function using an 
advanced (genetic, direct-search, etc.) iterative 
algorithm, e.g. see [18] - [21].

Step 6: Do Steps 3-5 for prescribed zeros, where 
it holds for the number szn of currently shifted zeros 

that ndsznum rnn  , to update the values of ndK .
Output: The vector of controller parameters K

and positions of the rightmost poles and zeros.

The presented original version of the PPSA 
prefers the positions of feedback poles at the 
expense of zeros since poles are placed primarily
due to their more significant affect to the dynamics. 
Once the set denK is found, these values are fixed in

the numerator and ndK is to be found subsequently. 

In the limit case 0ndr , positions of feedback 
system zeros can not be influenced at all and Step 1 
of the algorithm allows to have only a constant 
numerator of  sG mWY , . To be more flexible, if it 

holds that 0numr , the following modification of 
the PPSA can be performed.

3.2 PPSA (version 2)
Input: See the PPSA version 1.

Step 1: If 0ndr , 0numr , choose a simple 
model of a stable finite-dimensional system with the
unit static gain with the transfer function  sG mWY ,

with the numerator  of degree numnum rn  and the 

denominator of degree numdennumden nrnrn 
and, moreover, 2/rnnn numdennum  . Calculate 
step response maximum overshoots, relative dumping 
factors and relative times-to-overshoot of the model 
as performance measures for a suitable range of its 

numn zeros and denn poles.

Steps 2: Fix the number of numn controller 

parameters so that zeros of  sGWY are prescribed 
exactly. Hence, other parameters from K are 
dependent on these fixed ones.

Step 3-6: See Steps 2-5 of the PPSA version 1.
Output: The vector of controller parameters K

and positions of the rightmost poles.

Note that there is not guaranteed that zeros are 
dominant in this version, yet they are placed exactly. 
Therefore, if at least holds that 0numr , the third 
version of the PPSA is suggested.

3.3 PPSA (version 3)
Input: Closed-loop reference-to-output transfer 
function  sGWY with the number of r selectable 

(tunable) parameters in the set  dennum KKK 

where numnumnum r KKK , are parameters in the 

numerator, whereas dendenden r KKK , .

Step 1: If 0numr , choose a simple model of a 
stable finite-dimensional system with the numerator 
of degree numn , the denominator of degree denn and 
unit static gain governed by the transfer function 

 sG mWY , where rnnnn dennumdennum  , .

Step 2: Prescribe all poles and zeros of  sG mWY ,

with respect to the calculated performance factors 
and place the number of denn closed-loop poles and 

the number of numn zeros of the system to these 
desired positions. If the placed positions are 
dominant, the algorithm is finished; otherwise, go to 
Step 3.

Step 3: Initialize counters of currently shifted 
poles as densp nn  and zeros as numsz nn  .

Step 4: Shift the rightmost feedback system poles 
and zeros towards the prescribed locations. If 
necessary, increase spn and/or szn . If denspden rnn 

or  numsznum rnn  try to move the rest of dominant 
poles or zeros, respectively, to the left.



Step 5: If all prescribed poles and zeros are 
dominant, the procedure is finished. Otherwise, 
select a suitable cost function reflecting the distance 
of dominant poles and zeros from prescribed 
positions and the (spectral) abscissa of both, poles 
and zeros. Minimize the cost function.

Output: The vector of controller parameters K
and positions of the rightmost poles and zeros.

This version does not guarantee that either 
positions of the rightmost system poles and zeros 
are dominant, or they are placed exactly; however, 
poles are not preferred to zeros. Nevertheless, 
different weights on poles and zeros can be included 
in the definition of the cost function (see Step 5).

Note that (LTI) TDS of neutral type [3] requires 
including the restriction to so-called strong stability 
in the cost function [20]. 

4 Selected Model Analysis
The tuning algorithm presented in the previous 
subsection stems from the dependence of the 
maximum relative step response overshoot, the 
relative dumping and the relative time-to-overshoot 
(phase lag) on the position of poles and zeros of a
desired finite-dimensional model. The methodology 
will be demonstrated on a second order model.

Hence, let the prescribed (desired) closed-loop 
model be
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Calculate the model impulse function  tg mWY ,

of  sG mWY , as
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Since    thti mWYmWY ,,  , where   th mWY , is the 

step response function, the necessary condition for 
the existence of  a step response overshoot at time tO

is

  0,0,  OOmWY tti (8)
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when considering       0,,0arctan,arccos   . 
Obviously, (9) has infinitely many solutions. If 

0,0 1  z , the maximum overshoot occurs at 
time

 Ott minmax  (10)

One can further calculate the step response 
function   th mWY , as
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Define now the maximum relative overshoot as

   
 




mWY

mWYmWY
mWY h

hth
h

,

,max,
max,, : (12)

see Fig. 1.

Fig. 1. Reference-to-output step response 
characteristics and the maximum overshoot



The overshoot then reads
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and the normalized maximum-overshoot time (i.e. a 
phase lag) is
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z
z  (16)

Note that normtmax, has the meaning of a phase 

delay.
We can successfully use e.g. Matlab to display 

functions  zmWYh  ,max,, and  znormt  ,max,

graphically, for suitable ranges of z , as can be 
seen, for instance, from Figs. 2 and 3.

To sum up, a user chooses the values of 

max,,mWYh ,  (i.e. a relative dumping) and maxt . 

Consequently, z is calculated from (13) and (15),

which gives a triplet 1,, z from (16). Example 
given in Chapter 5 elucidates the procedure.

Fig. 2. Maximum overshoots  zmWYh  ,max,,    

for  2,1.0 ,  1,8.0,6.0,4.0,2.0z

Fig. 3. Normalized maximum-overshoot times
(phase lags)  znormt  ,max, for  2,1.0 , 

 1,8.0,6.0,4.0,2.0z

5 Demonstrative Example
The presented example demonstrates controller 
parameters tuning using the PPSA with the 
algebraic controller design in the RMS ring for an 
unstable retarded LTI TDS plant. 

Consider an unstable system as in Fig. 4
expressing a roller skater the controlled swaying 
bow. It has been stated in [23] that the transfer 
function of the system reads

   
 

  
  sass

sb

sU

sY
sG








exp

exp
22

(17)



Fig. 4. Roller skater on the controlled swaying 
bow

In the model,  ty means the skater’s deviation 

from the desired position,  tu expresses the slope 
angle of a bow caused by force the external force, 
delays  , are the skater’s and servo latencies, 
respectively, and b, a stand for positive real 
parameters. Skater controls the servo driving by 
remote signals into servo electronics. As presented 
in the literature, let b = 0.2, a = 1, 3.0 s, 

1.0 s.

5.1 Controller structure design
Consider the well-know simple negative feedback 
loop with the controller given by the transfer 
function      sPsQsGR / . The first stage of the 
algebraic controller design (in the broader meaning) 
is the determination of the controller structure by 
plant transfer function factorization, calculation of 
all stabilizing controllers, parameterization of their 
structures etc. Since this task is not the aim of this 
paper, the reader is referred to [27] for details.

As a result of this stage, the following controller 
transfer function can be obtained

   
 

     
      smpmspspspsb

sassmpmsqsqsqsqb

sP

sQ
sGR











exp

exp
4
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4
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2
2
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224
00

4
001

2
2

3
3

(18)

(18)

Then the reference-to-output transfer function is 
given by (19). Notice that the characteristic 
quasipolynomial (i.e. the denominator of  sGWY ) 
has two factors – a quasipolynomial and a 
polynomial one. Since the placement of a multiple 
(quadruple) real pole is trivial, we can concentrate 
on the quasipolynomial factor  sgDEN with infinite 
number of its roots and seven selectable controller 
parameters, i.e. p2, p1, p0, q3, q2, q1, q0.
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5.2 Application of PPSA for controller 
parameterization
It is obvious from (19) that

0,5,7

],,,,,,[ 0120123




ndnumden

T

rrrr

pppqqqqK
(20)

Since 0ndr , i.e. there is no free parameter in 
the numerator of (19) that is not included in the 
denominator, version 1 of the PPSA can no be used 
with model (5). This version allows only having 
zero-order numerator. The use of version 2 was the 
issue of paper [22]. Therefore, in this paper, we 
decided to test and verify version 3 of the PPSA, i.e. 
simultaneous shifting of feedback poles and zeros.

Recall that there are two factors in the 
characteristic quasipolynomial of the feedback 
system. Thus, to cancel the impact of the quadruple 
real pole 01 ms  , it must hold that

 KPm 0 .
Let us make the following option:  

5.0max,,  mWYh , 5.0 and 10max t s. Note that 

it is not apriori guaranteed that the desired 
performance measures will be meet. From Fig. 2  
we have 9.0z . By taking consideration of these 

values, Fig. 3 gives rise to 2max, normt which results 

in 1.0,18.0,2.0 1   z . Since    KP , 

choose 50 m .
Initial direct pole placement, see e.g. [6], yileds

controller parameters

T








 


2411.0,7.0,113.1

,0171.0,0113.0,9852.0,1014.1
0K (21)

which gives the right-most spectrum of poles













0114.1,j5029.05201.0

,j2.01.0,1445.0,8959.0
0,P (22)



and zeros













j4523.8.03507.2,0822.1

,18.0,j1536.01373.0
0,Z (23)

Obviously, the prescribed poles and zeros are not 
dominant ones. The process of the PPSA is 
described by the evolution of controller parameters
K, the spectral abscissa  KP (i.e. the real part of 

the rightmost pole pair 11, ), the abscissa of 

zeros,  KZ , defined as

    0:;Remax:  iWYZiiZ G  K (24)

the distance of the dominant pole from the 
prescribed one, 11 s , and that of the dominant 

zero, 1 , from the prescribed one 11 z , which is 

displayed in Figs. 5 – 9, respectively.
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Fig. 7. Evolution of  KZ using the PPSA
(Steps 1-4)
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Eventual controller parameters obtained from the 
use of the QCSA in the PPSA are

T











866.954,7838.1,3117.32

,9573.278,105.1046,946.9734,788.5051
20636K

(25)

The obtained spectra read













,j0275.5118.0

j0697.01168.0,j1778.100945.0
20636,P

(26)

and










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
j2997.87809.2

,7546.0,j1187.022.0,1804.0
20636,Z

(27)

Obviously, the algorithm tried to keep the 
rightmost zero as close to the prescribed one as 
possible, while to shift the rightmost pole. However, 
the distance is cyclically changed so that there is not 
possible to get closer without exceeding values of 
controller parameters.

Step 5 of the algorithm described in Subchapter 
3.3 follows, in order to improve the obtained result. 
Let us define the objective function

     KKK ZrPrzsΦ ,2,11111  
(28)

where  KPr , means the spectral abscissa of the 

rest of poles except the dominant pair,  KZr , has 

the same meaning yet for zeros, and 1 , 2 are 
weighting parameters.

For the minimization of (28), the SOMA [21]
belonging to genetic algorithms has been chosen. If 

01.021   , results are then the following
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,20636,

,20636,

,20636

optZ

optP

T
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(29)

As can be seen, the obtained results do not 
significantly differ from the ones introduced in (25) 
– (27). However, unfortunately, final poles and 
zeros positions are quite far from the desired ones, 
which has decisive impact to feedback dynamic 
properties and proves the fact about (LTI) TDS that 
the desired spectrum can not be chosen arbitrarily 
but the “energy” of the system has to be taken into 
consideration. Here, the proposed controller 
structure allows only a poor stabilization (or pole-
zero assignment) for the unstable controlled plant. 

6 Discussion
Some aspects of the proposed PPSA methodology 
and particularly, its version have to be mentioned.

As first, in contrast to a similar idea 
independently introduced [17], there are some 
differences in the PPSA. Firstly, the PPSA uses the 
input-output space of meromorphic Laplace transfer 
functions, whereas the one in [17] deals purely with 
the state space. Moreover, poles are initially placed 
in desired positions unambiguously according to the 
estimated maximal overshoot; however, they can 
leave their positions during the shifting. In [17], the 
can not leave the prescribed positions which may 
yield to a lengthy trial-and-reset procedure. Here, in 
the PPSA, the dominant poles move to the 
prescribed ones and the rest of the spectrum is 
pushed to the left again by minimization of an 
objective function (including the spectral abscissa), 
without the requirement of resetting the selection of 
assigned poles. Last but not least, an optimization 
algorithm (SOMA) is utilized as a minimization 
technique, instead of a simple shifting by the QCSA
or the HANSO algorithm used in [17].

As second, the initial shifting may be improved 
by the use of other “approaching” strategies. In the 



current versions, the dominant closed-loop poles 
and zeros are shifted to the rightmost prescribed 
ones in such way that a complex conjugate pair is 
considered as a one point of attraction. In other 
words, a real pole moves to a prescribed pole from a 
complex conjugate pair and viceversa. It is not 
problem if the convergence is sufficient since, at the 
end, a pair “prescribed-true” pole (zero) is of the 
same type, i.e. “real-real” or “complex-complex”. 
However, the convergence and speed of the PPSA 
might be improved by the strategy that only poles 
(zeros) of the same type (real, complex) are 
approaching to each other, or by thorough 
consideration that a complex conjugate pair means 
two separate roots instead one.

As third, better optimization procedures can be 
utilized in Step 5 of the PPSA (version 3), e.g. the 
well-known and efficient NM algorithm [18]. In 
fact, the SOMA requires a quantity of cost function 
(zero/pole location) calculations, in the worst case
we have   StepPathLengthPopSize /1round 
spectrum enumerations in an iterative step where 
PopSize is the size of the population, PathLength
agrees with the path length on the way to the leader 
and Step means the discretization step; see details 
in [21]. In contrast to that, the NM algorithm needs 
only (at most) 1r spectrum evolutions.

There are also other arguable topics about the 
PPSA, as another evaluation of pole (zero) 
dominancy, selection of another cost function etc. 
These problems and task can be touched or even 
solved in the further research. 

6 Conclusion
The presented paper has introduced a novel version 
of an original iterative algorithm for pole-
assignment and spectral optimization of infinite-
dimensional systems (LTI TDS) by shifting of 
dominant poles and zeros to the prescribed 
positions. The method is based on the desired 
feedback step response overshoot, the relative 
dumping factor and a phase lag based on a selected 
finite-dimensional model. The eventual controller 
structure with real selectable parameters has been 
designed in the recently revised ring of 
meromorphic functions. The subsequent example 
has demonstrated the usability of the method, yet, it 
has pointed out its weaknesses. Some ideas in the 
last section of this contribution have suggested ways 
how the results can be improved and extended. It 
gives rise to future efforts to enhance the 
methodology.
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