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Abstract: - The majority of processes met in the industrial practice have stochastic characteristics and 
eventually they embody non-linear behaviour. Traditional controllers with fixed parameters are often unsuitable 
for such processes because their parameters change. The changes of process parameters are caused by changes 
in the manufacturing process, in the nature of the input materials, fuel, machinery use (wear) etc. Fixed 
controllers cannot deal with this. One possible alternative for improving the quality of control for such 
processes is the use of adaptive control systems. Different approaches were proposed and utilized. One 
successful approach is represented by self-tuning controller (STC). This approach is also called system with 
indirect adaptation (with direct identification). The main idea of an STC is based on the combination of a 
recursive identification procedure and a selected controller synthesis. Presently, most of the STCs are based on 
the Certainty Equivalence (CE) Principle, which is only suboptimal. One of the possibilities to improve the 
quality of these adaptive control methods is usage of an Adaptive Dual Control (the bicriterial approach). In 
this paper, the bicriterial approach is verified and compared with some other adaptive control approaches based 
on the CE Principle by the real-time control of a highly non-linear laboratory model, the DR300 Speed Control 
with Variable Load. 
 
 
Key-Words: - Self-tuning control; Dual control; Bicriterial approach; ARX model; Recursive least squares; 
Non-linear system; Servo motor; Real-time control  
 
1 Introduction 
One approach to adaptive control is based on 
recursively estimating the unknown system 
characteristics, gradually specifying them, and then 
monitoring possible changes. Using this knowledge, 
appropriate methods can be employed to design the 
optimal controller. This kind of controllers, which 
identifies unknown processes and then synthesizes 
control law (adaptive control with recursive 
identification), is referred to in the literature as a 
self-tuning controller (STC) – see e. g. [1] – [5]. 
This approach is generally suitable also for a control 
of the time delay systems [6] – [9]. The self-tuning 
[10], [11], auto-tuning [12], predictive [13] and 
adaptive predictive [14] control of the time-delay 
systems is designed in the above mentioned papers.   

It is clear that to reach these goals the 
identification of the static and dynamic 
characteristics of a controlled process plays an 
important role, together with the optimal control 
strategy itself. It is known from parameter 
estimation theory that the determination of 
parameters is always burdened by a degree of 

uncertainty or error. This uncertainty not only 
depends on the number of identification steps (i.e., 
the amount of sampled data) and the choice of 
structure for the mathematical model of the 
controlled process, but is also dependent on the 
behaviour of the controller output, the sampling 
period, and the choice of filter for the controller and 
process outputs. This means that every realized 
change in the controller output except the required 
control result also excites the controlled system and 
thus creates the condition for its identification; in 
other words, for the best identification of the 
controlled process, it is necessary to impose certain 
conditions on the sequence of controller inputs. 

The controller output signal of an optimal 
adaptive system should have two main properties: 
♦ It must ensure that the process output follows 

the reference signal value and responds to its 
changes. 

♦ It must excite the controlled process sufficiently 
to allow identification. 

These properties are introduced in the literature 
as dual properties (or dual features) and adaptive 
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control systems with these two properties are called 
adaptive dual control systems. 

The exact solution to the optimal dual adaptive 
control problem was presented by Feldbaum [15], 
[16] using dynamic programming. Unfortunately, 
because of the complexity of calculations it 
involves, exact dual optimal control is too 
demanding to be of use in most situations. 

It has, therefore, been necessary to simplify the 
solution of this problem. This solution is based on 
the constrained separation of identification and 
control, the Certainty Equivalence (CE) Principle. 
The basic principle of CE is that the model 
uncertainty is not considered. For the controller 
design the parameter estimates of the process model, 
which are obtained by recursive identification, are 
used. It is assumed at the same time that values of 
these estimates correspond to their actual values. It 
is obvious that adaptive control systems based on 
the CE approach are not always optimal. For that 
purpose, several simplified approaches to the design 
of adaptive dual control systems have been 
developed. These simplifications can be divided into 
two main groups based on: (1) approximations of 
the dual problem, known as implicit dual control 
methods; and (2) reformulation of the problem, 
known as explicit dual control methods [17] - [20].  

In [21], a simulation study of four different 
suboptimal dual controllers for time-varying 
stochastic systems is presented. A two-stage dual 
suboptimal controller for stochastic systems and a 
multistage suboptimal dual controller using optimal 
predictors are presented in [22] and [23].   An active 
SubOptimal Dual controller (ASOD) [24] has been 
examined in simulation conditions. Murray-Smith 
and Sbarbaro [25] designed a non-linear adaptive 
controller using non-parametric Gaussian process 
prior models. This controller has dual features, both 
tracking a reference signal and learning a model of 
the system from the observed responses. A neural 
adaptive dual controller with dynamic structure for 
non-linear stochastic systems was derived by 
Šimandl and Král [26]. The model of the stochastic 
system is based on a Gaussian radial basis function 
neural network; the dual controller design is based 
on two separate criteria. Paper [27] is concerned 
with a dual approach to start-up of an adaptive 
predictive controller in case of a priori unknown 
plants. In [28] the dual adaptive control for linear 
system with unknown constant parameters is given.  

One of the most efficient approaches is given by 
the bicriterial synthesis method for dual adaptive 
controllers. The main idea of the bicriterial approach 
is the introduction of two cost functions that 
correspond to the two goals of dual control: (1) to 

track the plant output to the desired reference signal; 
and (2) to introduce excitations to improve the 
parameter estimation. This bicriterial approach was 
developed for discrete systems essentially by Filatov 
and Unbehauen [29]. The dual version of the direct 
adaptive pole-placement controller using bicriterial 
optimization was designed in [30]. Indirect adaptive 
dual control for Hammerstein systems using 
artificial neural networks is presented in [31]. This 
controller can be applied to non-linear systems by 
simulation and provides excellent prospects for 
industry. There are also other successful methods of 
modelling nonlinear systems such as an agent based 
modelling [32]. 

In this paper, the bicriterial approach is used for 
adaptive dual control of the DR300 servo laboratory 
model (speed control with variable load) in real-
time conditions and is compared with three standard 
STCs that are based on the CE principle. These 
three controllers differ only in the algorithm of 
recursive identification (different approach to 
forgetting procedure). The usage of the adaptive 
algorithms for control of an above-cited laboratory 
model is motivated by a substantial uncertainty of 
its dynamic behaviour and a range of non-linearities 
that result from its static characteristics (see Section 
4).   

This paper is organized in the following way. 
Section 2 gives a brief view of the structure of 
adaptive dual control and the bicriterial approach. 
Dual modification of CE STC is the content of 
Section 3. The description of DR300 laboratory 
servo model and analysis of its static and dynamic 
properties are introduced in Section 4. Section 5 is 
devoted to the real-time control of the non-linear 
servo system together with an evaluation of 
experimental verifications. Section 6 concludes the 
paper.   
 
 
2 Structure of Adaptive Dual Control 
and Bicriterial Approach  
The main difference between a conventional CE 
adaptive control system (see Fig. 1) and an adaptive 
dual control system (see Fig. 2) lies in the parameter 
estimates transmission. In the dual system, both 
parameter estimates and their accuracy are 
considered. If the uncertainty of the recursively 
acquired parameter estimates is taken into account, 
it is possible to calculate the controller output, 
which ensures the optimal excitation of the system 
for quality identification while keeping the cautious 
character of the controlling signal. This approach 
can markedly improve the quality of control of 
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systems with limited a priori information and high 
levels of uncertainty. 

The two-criteria minimization method, called the 
bicriterial approach, is based on sequential 
minimization of two cost functions for dual control 
corresponding to the two aims of dual  control   (see  

Fig. 3). The first function is control losses c
kJ  and its 

optimum after minimization is the cautious control  
action )(kuc . This cautious controller results in a 
control signal with a smaller magnitude than that of 
an ordinary CE controller, so there are smaller  
overshoots  after the start of a process.  The second  
cost   function,  a

kJ ,  which   represents  the 
parametric uncertainty, is minimized around the 
cautious control value in the kΩ  domain. The 
resulting control action value is a compromise of 
optimization of the two criteria when the magnitude 
of the excitation is given by the size of the 
domain kΩ . It is appropriate to define these 
constraints symmetrically around the cautious 
control value )(kuc  by the value of parameter kθ  
representing the magnitude of the additional 

excitations. Finally, we obtain the dual controller by 
bicriterial optimization 

 ( ) aargmin
k

k
u( k ) Ω

u k J
∈

=  (1) 

 ( ) ( ) ( ) ( )c c;kΩ u k k u k kθ θ= ⎡ − + ⎤⎣ ⎦  (2) 

 ( ){ }( ) tr ; 0k kθ η η= ≥C  (3) 

 c
c

( )
( ) argmin k

u k
u k J=  (4) 

The amplitude of excitations is dependent on the 
value of the selectable parameter η  and the trace of 
the covariance matrix ( )kC .  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3  Dual Modification of CE Controller                     
With an explicit STC, it is possible to use the design 
of a dual controller independently of the structure of 
the standard CE adaptive controller. A dual 
controller obtained in this way can be used together 
with any CE controller with indirect adaptation 
(e.g., pole assignment, LQG, digital Ziegler–
Nichols, predictive, or generalized minimum 
variance). It is introduced as an additional unit 
modifying the CE control signal to the dual control 
one. This simple modification improves the control 
performance. 
 Now consider a single input–single output 
system described by the linear stochastic differential 
equation (discrete time input/output model) 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

1 1

1 0 0

1 ... 1

... 1
nb b

na a

T

T

y k b u k b u k n a y k

a y k n n k

b u k k n k

k n k

+ = + + − + −

− − − + +

= + +

= +

Θ Φ

Θ Φ

 (5)   

Provided that a bn n n= =  is 
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Fig. 3. Optimization of two cost functions 

Controller Process 
w 

Controller 
Design 

yu 

Recursive 
Identification 

Parameter Estimates 

Fig. 1. CE adaptive control system 

Fig. 2. Dual adaptive control system 
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 [ ]1 1 1 0,..., , ,...,T T
n nb b a a b⎡ ⎤= = ⎣ ⎦Θ Θ#  (6) 

the ARX model parameter vector and 

( ) ( ) ( ) ( ) ( )
( ) ( )0

,..., 1 , ,..., 1T

T

k u k u k n y k y k n

u k k

= ⎡ − + − − − + ⎤⎣ ⎦
⎡ ⎤= ⎣ ⎦

Φ

Φ#
 

  (7) 

is the regression vector (y(k) is the process output 
variable, and u(k) is the controller output variable). 
The noise sequence ( )n k  has variance 2

nσ . A simple 
recursive least squares identification method is used 
to estimate the plant parameters. The vector of 
parameter estimates is updated as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2

ˆ ˆ ˆ1 1T
n

k k
k k e k

k k k σ
+ = + +

+
C Φ

Θ Θ
Φ C Φ

 

  (8) 

where 

 ( ) ( ) ( )ˆˆ 1 1 ( )Te k y k k k+ = + −Θ Φ  (9) 

is the prediction error. The square covariance matrix 
is updated in each sampling period according to 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) 21

( ) ( )

T

T
n

k k k k
k k

k k k σ
+ = −

+
C Φ Φ C

C C
Φ C Φ

 (10) 

The following notation for the covariance matrix 
is introduced for later manipulations 

( ) ( ) ( ){ }
( ) ( )

( ) ( )

( ) ( )
( ) ( )

1 1 0

1 0 0

11 1

1

ˆ ˆ T

k

Tn
b b

b
n nn

k E k k

c k c k c k k

k k
c k c k

⎡ ⎤ ⎡ ⎤= − − ℑ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

Θ

Θ Θ

C Θ Θ Θ Θ

c

c C

…
# % #

…

 

  (11) 

The set of process outputs and inputs available at 
time k is denoted as 

 
( ) ( ) ( ) ( ){ }

( ){ }0

,..., 0 , 1 ,..., 0

1,..., 1; 0
k y k y u k u

k N y

ℑ = −

= − ℑ =
  

The nominal system output for the CE controller is 

 ( ) ( ) ( ) ( ) ( )1 CE 0 0
ˆ ˆˆ 1 Ty k b k u k k k+ = +Θ Φ  (12) 

where ( )CEu k  is the CE controller output signal. 
Dual control cost functions are given as 

 ( ) ( ){ }2c ˆ 1 1k kJ E y k y k= ⎡ + − + ⎤ ℑ⎣ ⎦  (13) 

and 

 ( ) ( ) ( ){ }2a ˆ1 T
k kJ E y k k k⎡ ⎤= − + − ℑ⎣ ⎦Θ Φ . (14) 

Substituting equations (5) and (12) into equation 
(13) and minimizing the modified equation (13) 
leads to the cautious control law 

 ( ) ( ) ( ) ( ) ( )
( ) ( )

1 0

1

2
1 CE 0

c 2
1

ˆ

ˆ

T
b

b

b k u k k k
u k

b k c k

−
=

+
Θc Φ

. (15) 

Criterion (1) with the constraints given by 
equation (2) can be directly minimized leading to 

( ) ( )
( ) ( ) ( ) ( ) ( ){ }a a

c csgn
c

k k

u k u k

k J u k k J u k kθ θ θ

=

+ − − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
 

  (16) 

and after a final modification, the resulting dual 
control law is in the form [6] 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 0c c 0sgn T
b bu k u k k c k u k c k kθ= + + Θ Φ  

  (17) 

The detailed structure of an adaptive control 
system with a dual control unit is shown in Fig. 4. 

 
 

4  Real-time Control of a Non-linear 
System                                                                          
The proposed dual control algorithm was tested 
using a real-time laboratory model DR300 (Speed 
Control with Variable Load) by the Amira 
Company, Duisburg, Germany (see Fig. 5). A block 
scheme of the DR300 system is presented in  Fig. 6. 

The plant is represented by a permanently exited 
DC - motor (M1) of which the input signal 
(armature current) is provided by a current control  
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loop.  Its servo amplifier operates in 4 quadrant 
mode, so that the orientation of the current and 
correspondingly the orientation of the rotation of the  
 

 
 

Fig. 5. Laboratory model Amira DR300 

 
Fig. 6. Block scheme of Amira DR300 servomotor. 
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Fig. 7. Static characteristics of Amira DR300 

servomotor 

motor is arbitrarily adjustable. The sensors for the 
output signal (speed) are a tachogenerator (T) and 
an incremental encoder (I). The free end of the 
motor shaft is fixedly coupled (K) to the shaft of a 
generator. Its output current is freely adjustable. The 
rotation speed of the motor M1 is driven by voltage 
u. The motor shaft rotations per minute (rpm) are 
measured by tachogenerator T. The aim of the 
control process is to control the rotation speed of the 

shaft ω by the control voltage u. From the control 
point of view, the Amira DR300 is a non-linear 
system. Some characteristics of the nonlinearity 
(gain with dead zone and hysteresis) can be 
observed from the static characteristics shown in 
Fig. 7. 

Even in the parts of static characteristics, where 
the plant output changes (approximately -2V to -1V 
and 1V to 2V), the gain of the system is not 
constant. The gain of the plant varies from 
approximately 3600 rpm/V to 6900 rpm/V. 

A servo motor control is being solved e.g. in [33] 
– [36]. The disturbance rejection of a nonlinear 
servo system using the self-tuning control is 
described in [37].  

Four different adaptive control algorithms were 
used to control the DR300 system. All the 
controllers were based on the pole assignment 
approach in two-degrees-of-freedom (2DOF) 
configurations (see Fig. 8).  

The controlled system was modelled using a 
discrete second-order linear ARX model 

 ( ) ( ) ( ) ( ) ( )1 1A z y k B z u k n k− −= +  (18) 

where 

 
( )
( )

1 1 2
1 2

1 1 2
1 2

1A z a z a z

B z b z b z

− − −

− − −

= + +

= +
 (19) 

and the non-measurable random component n(k) is 
assumed to have zero mean value E[n(k)] = 0 and 
constant covariance (dispersion) σn = E[n2(k)]. 

Polynomials of the feedback control part 

 ( ) ( )
( )

1

1R

Q z
G z

P z

−

−
=  (20) 

were computed by solving the characteristic closed-
loop polynomial 

 ( )1 1 1 1 1 1( ) ( ) ( ) ( ) ( )A z K z P z B z Q z D z− − − − − −+ =  (21) 

where 

y u 

 

 

Fig. 8. Closed-loop 2DOF control system 
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 ( )1 11K z z− −= − . (22) 

The feedback controller polynomials and the 
desired polynomial have the form 

 ( ) ( )1 1 1 1 2
1 0 1 21 ;P z p z Q z q q z q z− − − − −= + = + +  (23) 

 ( )1 1 2
1 21D z d z d z− − −= + + . (24) 

By solving equation (21), a system of linear 
equations can be obtained using the method of 
indeterminate coefficients 

 

1 0 1 1

2 1 1 1 2 1 2

2 22 1 2 1

1
2 2

ˆ 0 0 1 ˆ1
ˆ ˆ ˆ ˆ ˆ0 1

ˆ ˆ ˆˆ ˆ0
0ˆ ˆ0 0

b q d a
b b a q d a a

q ab b a a
pb a

⎡ ⎤ + −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦−⎢ ⎥⎣ ⎦

 (25) 

where 1â , 2â , 1̂b , and 2̂b  are current estimates of the 
process model parameters. 
 From the matrix equation (25) it is possible to 
compute the feedback controller parameters. The 
coefficients of polynomial (24) were chosen as 

1 21.6, 0.64d d= − = . 
Polynomial ( )1R z−  of the feed forward control 

part 

 ( ) ( )
( )

1

1R

R z
G z

P z

−

−
=  (26) 

was computed by solving the polynomial equation 

 1 1 1 1 1( ) ( ) ( ) ( ) ( )wD z S z B z R z D z− − − − −+ =  (27) 

where ( )1S z−  is the auxiliary polynomial. For a 

step change of the reference value ( )w k , 

( )1 11wD z z− −= − , and it is then possible to solve 

equation (27) by substituting 1z = . 

 
( )
( )

1 2
0

1 2

1 1
ˆ ˆ1

D d dr
B b b

+ +
= =

+
 (28) 

From Fig. 8 it is obvious that the controller is 
given by the equation 

 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )P z K z u k R z w k Q z y k− − − −= −  (29) 

and the CE control law is then 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0 1

2 1 1

1

2 1 1 2
CEu k r w k q y k q y k

q y k p u k p u k

= − − −

− − + − − + −
 (30) 

A sampling period of T0 = 0.05 s was used in all 
experiments, and initial parameter estimates were 
set without using a priori information about the 
controlled system: 
( ) ( ) ( ) ( )1 2 1 2

ˆ ˆˆ ˆ0 0.1, 0 0.2, 0 0.3, 0 0.4a a b b= = = = and 
the initial value of the covariance matrix 
( ) 90 10C I= was used. 
The first controller used was the dual controller 

described in the previous sections. This controller is 
further referenced as dual. The individual vectors 
and parameters in equations (15) and (17) have the 
form 

( ) ( ) ( ) ( )0 , , 1T k u k y k y k= ⎡ − − ⎤⎣ ⎦Φ ; 

 ( ) ( ) ( )
1 0 12 13 14, ,T

b c k c k c k= ⎡ ⎤⎣ ⎦Θc ; ( ) ( )
1 11bc k c k=  

(see the covariance matrix (11)); the selectable 
parameter chosen for equation (3) was 30η = . 

The other three controllers were taken from the 
Self-tuning Controllers Simulink Library [5], [38], 
[39]. The controller structure pp2chp was used. 
These controllers only differed in the algorithm for 
recursive identification. 

The first one used the pure Recursive Least 
Squares Method (RLSM) [40] and is referenced as 
lsm. 

The second one contained RLSM with an 
exponential forgetting factor [41] and is referenced 
as ef. 

The third one used RLSM, extended to include 
the technique directional (adaptive) forgetting [5], 
[42], [43] and is referenced as adf. In this case the 
vector of parameter estimates is updated according 
to the recursive relation 

 
( 1) ( )ˆ ˆ ˆ( ) ( 1) ( )
1 ( )
k kk k e k

kξ
−

= − +
+

C ΦΘ Θ  (31) 

where 

( )
( ) ( ) ( ) ( ) ( )

1 2 1 2
ˆ ˆˆ ˆ ˆ, , ,

1 , 2 , 1 , 2

T

T

k a a b b

k y k y k u k u k

⎡ ⎤= ⎣ ⎦
= ⎡− − − − − − ⎤⎣ ⎦

Θ

Φ
 

               (32) 
are the vector of parameter estimates and the data 
(regression) vector. 

The expression 

 ( ) ( ) ( 1) ( )Tk k k kξ = −Φ C Φ  (33) 

is an auxiliary scalar, and 

 ˆˆ( ) ( ) ( 1) ( )Te k y k k k= − −Θ Φ  (34) 
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is the prediction error. If ξ(k) > 0, the square 
covariance matrix is updated by the relation 

 
( )1

( 1) ( ) ( ) ( 1)( ) ( 1)
( )

Tk k k kk k
k kε ξ−

− −
= − −

+
C Φ Φ CC C  (35) 

where 

 ( ) ( ) ( )
( )

1
1
k

k k
k
ϕ

ε ϕ
ξ
−

= −
−

 (36) 

If ( )1 0kξ − = , then 

 ( ) ( 1)k k= −C C . (37) 

The value of adaptive directional forgetting ϕ(k) 
is then calculated for each sampling period as 

 

[ ] ( ) ( )( )
( )( ) ( )
( ) ( )

( )
( )

1( ) 1 1 ln 1

1
1

1 1

k k

k k k
k k k

ϕ ρ ξ

υ η ξ
ξ η ξ

− ⎡ ⎤= + + +⎣ ⎦
⎡ ⎤+

+ −⎢ ⎥
+ + +⎢ ⎥⎣ ⎦

 (38) 

where 
2ˆ ( )( )
( )

e kk
k

η
λ

= ;         ( ) [ ]( 1) ( ( 1) 1k k kυ ϕ υ= − − +  

 
2ˆ ( )( ) ( 1) ( 1)

1 ( )
e kk k k

k
λ ϕ λ

ξ
⎡ ⎤

= − − +⎢ ⎥+⎣ ⎦
 (39) 

are auxiliary variables. 
The closed loop stability is one of the problems 

that are not satisfactory solved for the STC. Usage 
of a suitable recursive identification method and 
related achievement of unbiased and convergent 
parameter estimates are very important to ensure the 
closed loop stability. The problem of unbiasedness 
and convergence of parameter estimates of STC has 
been considered as an important and very difficult 
mathematical problem. This problem was not 
investigated for a long time because of the 
difficulties connected with nonlinearity and 
complexity of the adaptive control laws. If the 
unbiasedness and convergence of parameter 
estimates is guaranteed, STCs operate without 
problem. It is also to be taken into consideration that 
for processes described with adequate lower order 
model the large tolerance exists for the model 
inaccuracy. In case of the control of the laboratory 
model DR300, the second order model is used 
which contributes to better stability of the closed 
loop. Because the pole assignment method is used in 
the control part of the control loop, stability can be 

provided by an appropriate selection of the 
coefficients of the desired polynomial ( )1D z−  (24). 

General problem of the convergence and stability 
of adaptive dual controllers is investigated and 
stability conditions are derived in [44]. 

 
 
4.1 Controllers’ Performance 
The control performance of the DR300 system 
controlled by controller dual is shown in Fig. 9. It 
can be seen that the control process quickly became 
stable and the parameters of the model reached 
values sufficient for the asymptotic tracking of the 
reference signal. 
 

 
 
 
 

 
 
 
 
 
 
 
 
  
Fig. 9. Control of DR300 using dual controller 
 

 
 
 
 
 
 

 
 
 
 

  
 
 
 

 Fig. 10. Control of DR300 using lsm controller 
 

The lsm controller used pure RLSM for 
identification of the controlled system. All input–
output pairs affect the parameters of the model by 
the same weight. As can be seen in Fig. 10, the lsm 
controller is not able to cope with the DR300 
control problem as accurately as the dual controller. 

The identification based on the RLSM with 
exponential forgetting is used in the ef controller. 
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The forgetting coefficient of ϕ = 0.95 was used for 
the control of the DR300 system. The performance 
of the control loop signals is shown in Fig. 11. It can 
be seen that after about 3 s the parameters produced 
by recursive identification became good enough to 
make the control loop stable with asymptotic 
tracking of the reference signal. Oscillations of both 
controller and process signal output occur when the 
reference signal changes. This behaviour is caused 
by the different model parameters for the positive 
and negative values of process signal output (see the 
static characteristic in Fig. 7). 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 11. Control of DR300 using ef controller 
 

 
 
 
 
 
 
 
 
 
 

  

 

Fig. 12. Control of DR300 using adf controller 
 
 
4.2 Comparison of Control Performance Using 
Summing Criteria 
The performances of the individual controllers were 
compared not only by investigating graphs of 
controller performance and process output signals, 
but also mathematical criteria. Four criteria were 
used to compare the control results obtained by 
individual controllers 
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Values of individual criteria are shown in Table 1. 
Criteria Se2 and Sea are based on control error. 

The sum of squares of control error and the sum of 
absolute values of control error were used to obtain 
Se2 and Sea respectively. These criteria represent the 
accuracy of the control process. Criteria Su2 and Sua 
are based on changes to the control signal. The sum 
of squares of the control sequence and the sum of 
absolute values of the control sequence were used to 
obtain Su2 and Sua respectively. These criteria 
represent demands for actuators. Values of a and b 
were selected to cover the whole control process 
except the first 3 s. 
 

Table 1. Values of criteria for the control results 
 

controller Se2·10–3 Sea Su2·104 Sua·104 
dual 127.3 138.6 102.2 167.7 
lsm 158.7 242.3 281.5 105.7 
ef 161.2 198.7 506.1 247.5 
adf 134.3 130.2 53.6 115.7 

 
The best performance according to the Se2 

criterion was given by the dual controller, while 
using the Sea criterion leads to the adf controller 
having the best performance. The accuracy of the 
dual and the adf controllers is significantly better 
then the accuracy obtained by the lsm or ef 
controllers. This result is valid for both Se2 and Sea 
criteria. The best results according to the Su2 
criterion were obtained with the adf controller, 
while the lsm controller gave the lowest value of the 
Sua criterion. Despite this result, the lsm controller is 
not suitable for control of the DR300 system 
because of the unsatisfactory accuracy of the control 
process. Higher values of the Su2 and the Sua 
criterions for the dual controller comparing to the 
adf controller are causer by excitation of the 
controlled system incorporated in the bicriterial dual 
approach. This excitation leads to better 
identification of the controlled system and 
subsequently to lower value of the Se2 criterion for 
the dual controller. 
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4 Conclusion 
Dual control using the bicriterial approach was 
verified and compared with some other standard 
adaptive control approaches in real-time conditions 
by controlling a laboratory model. Examples of 
control of a highly non-linear system with a dead 
zone – the DR300 Speed Control – were shown. The 
primary aim of this work was not to control the 
DR300 system but to use it as a demonstration 
example of the more general class of non-linear 
systems. Even though the non-linear system was 
modelled by a linear model, real-time experiments 
demonstrated very good performance of the dual 
controller. It should be emphasized that initial 
parameter estimates were set without using a priori 
information about the controlled system. Usage of 
converged parameter estimates as an initial setting 
of the next control process would lead to better 
performance in the initial phase of the control 
courses. 

Dual bicriterial control is a suitable and 
promising approach for the control of non-linear 
systems, time-varying systems, or systems with 
unknown parameters. 
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