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Abstract: A way for treating general delayed systems witheutain delays in both the numerator and
denominator is shown. The proposed procedure iodstrated by an example. A simple controller is
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simulations and compared with standard tool fousblrontrol design.
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range of time delays. This means that in real wogkllting
1. INTRODUCTION feedback loop characteristics will not degradeirfet delay

The task of controller design for time de'ay Sygem a Varies from Otoa Value deﬁned as the worst [bﬂ}SSiase.
frequent problem and many papers have been publishe
this topic during last decades. The control thetwgling with

this type of plant is very complex and this paperniot

summarizing the common knowledge in this field. &ima of

this paper is an application of robust control gesd general
anisochronic plant with time delay in both the nuater and

denominator, and the algebraic approach togethtr thie

structured singular value is used as a tool.

Many procedures has been developed for controlimé t
delay systems including LFT approaches using nlidépve
uncertainty or internal model control (IMC) dealingth
design in the ring of meromorphic functions [e.gteK and
Hlava (2001) and Zitek and Kera (2003)]. Methods
handling time delay systems via multiplicative utaimty
are well known. However, techniques for systemd wiine
delay in both the numerator and denominator usalyn&C

The algebraic theory [e.g. Kera (1993), Prokop and Corriou design, which deals robustness in a less easy way.
(1997), Vidyasagar (1985)] is well known and itporntance
is growing due to the simplicity of controller deation and
the fact that some crucial properties of the rasylfeedback
loop can be easily influenced by the choice ofdbstroller
structure, which is not hard to do within the scayethis
approach. The structured singular value denptgske Doyle

(1982, 1985)] provides a measure of robust stgbaind D-K iteration. The overall performance is verified by

performance that can take into account many asmts.simulation of step response for different valuetiro delays

controller design including sensor  noise, dynamlgnd for simple and two degrees of freedom feedbacks
perturbations as well as parametric uncertaintiesase they [1DOF, 2DOF, see Prokop and Corriou (1997)]

can be treated via linear fractional transformat{®®T).
However, standard tools farsynthesis are not able to design
controller with a predefined structure. The alg@bepproach 2. MODELING OF DELAYED SYSTEMS VIA LFT

provides methodology for synthesis of very simpleonsider general delayed system with uncertain tilays
controllers (PI, PID), yet with an excellent fumetality iq both the numerator and denominator:
compared with th®-K iteration, which is a reference method

for this type of controller design. Due to the rimbidality of o) _ (b, +bs+...+bs")e™

the cost function an algorithm for global optiminat is s"+ae +ase™ +...+a, s e

employed for tuning nominal closed-loop pole plaeam 00, Tad, 5000, Tg]i=0,1,..n-1 1)
where the peak of the function in frequency domain gives o ' T
the measure of controller stability and performaaowing
this, we can simulate behavior of the resultingdbeek
system for the worst-case perturbation causinghiigbest
value ofu. But this is not the only issue that can be addiés
by the structured singular value. In this casejsitalso
possible to design controllers that have some #8peci
properties such as stability and performance fer whole

In this paper, a general scheme for treating ahismic
delayed systems via LFT will be shown alongsidehvah
example of application to such a system with tireéag in
both the numerator and denominator. The contraisign is
performed using algebraigi-synthesis [see Dlapa et al.
(2009)] as well as a comparison study with a stehdaol -

This family of plants has uncertain retarded quredynomial

in denominator. The highestpower represents a delayless
term andr, 7; are non-negative delay parameters. The delays
vary in the intervals of zero to a predefined value
representing the upper bound for each time delay.
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This plant can be (with some conservatism) exptessg Theorem 1 [Doyle (1982)]: For Ay defined by (5) is the
LFT in Fig. 1. Perturbationgye, dgei L1 C satisfy conditions loop in Fig. 2 well posed, internally stable and

”FL[FU (G, Au), K]"oo <1 iff

|5de|b| < 1' |5deli| < 1 (2)
And for weightsWye, and Wye; the following inequalities sup  u[F (G,K)(jw]<1 (6)
must be held for allwd R: K stabiioing G

|VVdEIb( J C())| > |1— ej“Tdn
|\Ndeli ( J a))| > |1 - eijdl

() with Asrp
0

0 } |6,| <1, 000 C.
,i=01...,n-1 (4)

del

errors controls

Fig. 3. Closed-loop interconnection.

Define sensitivity function as transfer functioorr reference
r to errorein Fig. 4:
1
7
1+PK @

Now, as a consequence of Theorem 1, a sufficiendition
for robust stability and performance of the feediblop in
Fig. 4 can be formed for sensitivity functi@and the family

®

Oddn1

Fig. 1. LFT interconnection of general delayed eyst of plants (1).
3. ALGEBRAIC pu-SYNTHESIS Corollary 1: For the set of plants (1) feedback loop in Fig. 4
is internally stable andSW|_ <1 if conditions (3), (4) and

The plant (1) can be treated by the interconnedtioRig. 2

with sensitivity function as performance indicator. (6) hold.

Proof: ForAge defined by (5) the numerator and denominator
Of l:U(Pnom- Adel) iS

b (1 + dseiWaeln) (8)
n-1 .

s"+ z &S (L+ OgeWaer) 9)
i=0

Elements (1iije|dee|b) and (1-dje”Wde”), i=1,...,n-1

fully cover frequency properties of time delays fthe
> K numerator and denominator of the set of plants if1)
conditions (3) and (4) hold. This is apparent, sifar each
Fig. 2. Closed-loop interconnection. elemente™, ae"*,i=0,...,n-1 ands=jw, wOR
O, and o, exist such thate™? =1+, W, (j@),
Perturbation matrix has the form: eli% =1+ gdelivvdeli(ja}) ! ‘é:dem ! ‘é:deli <1, gdelbi gdeli uc,
Owo O =+ 0O i =0,...,n=1. The proof then follows from Theorem 1.
0, 0 0 O -+ O
Adel = oot ’ Adela = . d-ell . . ’
0 A : : . : r e u y
—> K —» P >
0 0 é-delr‘rl -
|5de|b| <1, |Jde|i| <1, dgel 9geii J C,1=0,...0-1 (5) d

The interconnection in Fig. 2 can be transformed ato
simplified scheme in Fig. 3.

For stability and performance the following theorkaids: Fig. 4. Feedback loop.
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The algebraic synthesis can be applied to the ralmiant

b, +bs+...+bs"

P,(s) = 10
o(9) s"+a, +a,s+...+a,,s"" (10)
which can be transformed to:
b, +b,s+...+b,s"
a, +s)(a, +s)ll..Ma. +s
P (9= @AM B gy

s"+a, +a,s+...+a,,s""
(a,+s)(a, +9)Ll..Ua, +9)

Tuning parameters are positive and constraineceab axis
since parameters of transfer function have to beaerd due
to the fact that non-real poles cause oscillatibmaminal
feedback loop.

A crucial problem of the cost function in (14) ietfact that
many local extremes are present. Hence, in mosiscézcal
optimization does not yield a suitable or even itaig
solution. This can be overcome via evolutionary
optimization, which solves the task very efficigntl

4. EXAMPLE — UNSTABLE DELAYED SYSTEM

Then the controller is obtained as a solution t@ th

Diophantine equation:

ADK + BNK = 1, DK: NK O Rps (12)
Equation (12) is often called the Bezout identiayd all
feedback controllerksl /Dy are given by

Ny, —AT
D, +BT’

K:k:

D, NKO'DKODRPS

(13)

where N, , D, OR;g are particular solutions of (12) aiid
is an arbitrary element &ps

The controller (13) derived as a solution to (12jeguards
that the nominal feedback loop in Fig. 5 is BIBQ@bde,

which is important for appropriate theorems relatedthe
structured singular value. If the nominal feedbag&tem has
a pole in the right half plane then these theoreamot be
used. However, this is not the case if the BIBibta is

held.

ro e | N u
_ | D,

V<

>|

Fig. 5. Nominal feedback loop.

The aim of synthesis is to design a controller Wwhsatisfies
condition:

sup  A,[FL(G K)(@ 8y Doy, v 8, I S 1, 00(—0,400) - (14)

K stabilizigG

where n+n; +n, is the

system, n; is the order of particular solutioK,, t; are
ty +t,s+... +t s™

(@, +9U.Ha +59)

denotes the structured singular value of LFT onegalized
plantG and controlleK with

arbitrary parameters i = andpa

m+ny

AE{A“' O},5P<1,5PDC (15)

0 o
where Age denotes the perturbation matrix (5) agdis a
complex number corresponding with the robust penéorce
condition.

Consider the set of anisochronic systems with titeky in
the numerator and denominator:

3e ™

P(S) EW n 0 [0, 4], nL 0 [O, 08] (16)

This set of plants is treated via LFT using theesoé in
Fig. 6. WeightsWye; and Wy, can be obtained from the
inequalities:

|Wdeli| > |:|-_ejm°h JA=12T, =4T, =08 (17)
It follows from Fig. 7 and 8 that
2s 04s
=—25 W, ,=——2 18
dell 25+1 del2 0.4S+1 ( )

satisfy (17) with very small conservatism.

Now, it is easy to create an open-loop intercoriapcivith
weighted sensitivity function as performance intbca
Recall closed-loop interconnection depicted in Rigvith the
open-loop in dashed rectangle dendged

Fig. 6. LFT model of plant.

The perturbation matrix has the form:

order of the nominal feedback

A = |:5dell 0 :|
o 0 a-deI2
|5dell| <1, |5deI2| <1, 5del1: 5del2 oc (19)
and performance weight is & 8rder transfer function:
0.004
W, = 20
' 10s®+10Cs? +s+10107° (20)

The weightW, has a small factor fos” in denominator so
that the DGKF formulae Doyle et al. (1989) can bedu



The plant for which the controller is derived isnaminal
system:

P9 =—

5s-1 (21)

Plant Py is unstable due to positive feedback in the

interconnection in Fig. 6. If the nominal plantsible then
negative feedback in Fig. 6 must be used g must be

For plant (21) the controller is d"4rder transfer function
derived from (13) as

Ny 1S+ Ny o _ tZSZ +ts
N, Ny, —AT a, +s a,+s)(a, +9
K=—K= Ko - (2 ) (32)(4 ) (23)
Dy DKO +BT dKnls t,s” +t;s
(@, +s)  (as+9)(a, +9)

The denominator of (23) is divisible by so that the

chosen so thaWgep| > 2. The interconnection for stable plantasymptotic tracking for the stepwise reference aigan be

has, however, a drawback in higher conservatisnrebr,
it can be proved that no stabilizing controllerséxi(for these
particular weights) since robust stability condito for

transfer functions between the outputs and inputsnf
weights Wyen, Wgep and perturbationSdgen, dger  Yield

inequalities for gain of the controller that canbet satisfied
at frequencies close to 1 rad/s.

Nominal plantP, can be transformed to:

3
_ats_B
F%J (55) - 5s—1 - A ’ /\! BOR PS (:2:2)
a,+s

Then the controller is obtained as a solution topbantine
equation (12) with all controller$\y/Dx given by (13)
implying BIBO stable nominal feedback loop.

10!

. .
10° 10° 10" 10° 10!

Frequency (rad/s)

Fig. 7. Bode plot \W; (dashed) and the right side of (17).
(solid).
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Fig. 8. Bode plot W, (dashed) and the right side of (17).
(solid).
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Fig. 9. Mu-plot for D-K iteration (dashed) and alyaic
approach (solid).
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Fig. 10. 2DOF interconnection for simulation.
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Fig. 11. Simulation for 1DOF structurey(= 4, , = 0.8).

1500

The aim of synthesis is to design a controller Wwisatisfies
condition (14). Evolutionary optimization by Diffemtial



Migration (DM, see Dlapa, 2009) gave the poles anitrary  Simulation for both controllers with 1DOF structuesd
parameters as follows: stepwise reference signal is in Fig. 11. Simulafian2DOF
structure and the same reference signal is in =gt is

al__zo 405203 ’az_ _4ilég73a3 = 2326404 = 1771 (gg) apparent that th®-K iteration has a non-zero steady state
= 24.501; = 44. (25) error for both 1DOF and 2DOF interconnection, whisot
and controller the case of the algebraic approach. Set point itrgcls
k() =M - 29165 +52275" +1003 +38%+1.159 (26 similar for both procedures.

A dy s* +39.76s° +5386s° +862.1s The same simulations but with lower time delaysdegicted
The D-K iteration, which is a reference method, yields th# Fig. 13. It can be observed that the propexfefeedback
controller loop do not degrade if the time delays vary inititervals of

. , i 0 to 4s and O to 0.8 s fay and 1, respectively. For the
Ko (s)= 21'?43 +21?'3 +105‘35 +1'2035+0'?503 (27) 2DOF structure there is no overshoot present, whichot
§" +35265° +2483s” + 2195+200 true for 1DOF feedback loop.

Both controllers satisfy condition (14) (see Fiy). 9 ) ]
Remark: It is apparent that for some values of time delays

Simulation stabilizing controller exists. There is, howeveg general
14 ‘ ‘ rule for examining the existence of the robust wmler
12f = except Corollary 1 and the analysis of robust $tgbi

1 — 2 1 conditions, which is not straightforward due to fhet that a
osl / | controller must be connected for the applicabilitf

/’ / Reference Corollary 1, and stability conditions are not e&asyanalyze
*er / = =~ Output - alg. approach 1 so that explicit formulae for time delays and dyiemtan be
04 / T o o oo | 1 derived (in the general case).
0.2 ,// Control signa - D-K iterationl il
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