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Abstract: This research deals with the synthesis and control of chaos by means of evolutionary 
algorithms. The main aim of this work is to show that evolutionary algorithms are capable of synthesis of 
new chaotic system and optimization of its control and to show a new approach of solving this problem 
and constructing new cost functions operating in “blackbox mode” without previous exact mathematical 
analysis of the system, thus without knowledge of stabilizing of the target state. Three different cost 
functions are presented and tested. The optimizations were achieved in several ways, each one for 
another desired periodic orbit. The evolutionary algorithm, Self-Organizing Migrating Algorithm 
(SOMA) was used in its four versions. For each version, repeated simulations were conducted to outline 
the effectiveness and robustness of used method and cost function. Presented results lend weight to the 
argument, that proposed cost functions give satisfactory results. 
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1. INTRODUCTION 

In recent years, the usage of soft-computing methods 
including evolutionary algorithms (EA) in the field of chaotic 
systems is increasing and brings about a lot of successful 
results. 

Currently, evolutionary algorithms are known as powerful 
tools for almost any difficult and complex optimization 
problem. But the quality of obtained results through the 
optimizations mostly depends on proper design of the used 
cost function, especially when the EAs are used for 
optimization of chaos control. It is well known that chaos in 
general and also any technique to control of chaos are 
sensitive to parameter setting, initial conditions and in the 
case of optimization, they are also extremely sensitive to the 
construction of the used cost function. 

This work presents the package of tools for the synthesis and 
subsequent control of chaotic systems by means of 
evolutionary algorithms. It utilizes the Pyragas’s delayed 
feedback control technique (Pyragas, 1992; Just, 1999). 
Unlike the original OGY control method (Ott, et al., 1990) it 
can be simply considered as a targeting and stabilizing 
algorithm together in one package (Kwon, 1999). Another 
big advantage of Pyragas method is the amount of accessible 
control parameters. This is very advantageous for successful 
use of optimization of parameters setting by means of EA, 
leading to improvement of system behavior and better and 
faster stabilization to the desired periodic orbits. Some 
research in this field has been recently done using the 
evolutionary algorithms for optimization of local control of 
chaos (Richter & Reinschke, 2000; Richter, 2002). 

This research is concerned with the investigation of the 
design of the “blackbox mode” cost functions securing the 

stabilization to desired UPO (unstable periodic orbit). The 
proposed “blackbox” mode approach is very advantageous 
and simple to implement in this case, because it allows the 
control the chaotic system without any previous mathematical 
analysis, thus without knowledge of exact UPOs position. 

The control law is based on Pyragas method: Extended delay 
feedback control – ETDAS (Pyragas, 1995). This research is 
a continuation of previous experiments with application of 
EA to chaos control (Zelinka, et al., 2007; Zelinka, et al., 
2006; Senkerik, et al. 2006). 

2. EVOLUTIONARY SYNTHESIZED CHAOTIC 
SYSTEMS 

In the past, experiments have been made as to how to 
synthesize various chaotic systems by means of further 
described methods. Results were published in (Zelinka, et al., 
2008). This paper discusses the use of evolutionary 
algorithms on controlling of selected chaotic systems created 
via evolutionary processes. Surprisingly, we have found that 
some of them are barely controllable. 

In today’s area of evolutionary computation, specialized 
methods exist, which allows synthesis of complex structures 
(mathematical formulas, etc.). Well known techniques are for 
example genetic programming, grammatical evolution or a 
novelty method called analytic programming (AP), see 
(Zelinka, et al., 2008; Zelinka 2002; Zelinka & Oplatkova, 
2003; Oplatkova & Zelinka, 2006). Sometimes, when these 
methods are applied on the fitting of measured data, they are 
also called symbolic regression. The term symbolic 
regression (SR) represents a process, in which measured data 
is fitted by a suitable mathematical formula such as x2 + C, 
sin(x)+1/ex, etc., Mathematically, this process is quite well 
known and can be used when data of an unknown process is 



 
 

     

 

obtained. Historically SR has been in the preview of manual 
manipulation, however during the recent past, a large inroad 
has been made through the use of computers. Generally, there 
are two well-known methods, which can be used for SR by 
means of computers. The first one is called genetic 
programming or GP (Koza, 1998; Koza et al., 1999; Koza et 
al., 2003) and the other is grammatical evolution (O'Neill & 
Ryan, 2002; Ryan et al., 1998; O'Sullivan & Ryan, 2002). 

AP was used in this work for the synthesis of a new chaotic 
system. Symbolic objects (e.g., variables, constants…) for 
manipulation and complex structure synthesis were selected 
from the well-known logistic equation: 

( )nnn xrxx −=+ 11  (1) 
 
This selection was based on the fact that the logistic equation 
is a well-known simplest system that can produce chaotic 
behavior. This equation is also well analyzed. It was expected 
that through evolutionary search, it would be possible to 
synthesize the logistic equation. Another reason behind the 
selection of the logistic equation is that results from designed 
experiments can be easily compared, verified and analyzed.  

Basic set of objects used in symbolic regression are {x, A, +, 
–, *, /}. It is also important to note that evolutionary synthesis 
of chaotic systems is not restricted only to one-dimensional 
chaotic maps but can be applied in principle to synthesis of 
higher-dimensional and more complex chaotic systems. This 
declaration is based on many other successful complex 
examples accomplished by GP, GE and AP in the past. 

The cost function used for chaos synthesis, when compared 
with other problems like chaos control (Zelinka, et al., 2006) 
or black-box optimization (Nolle et al., 2005), is quite a 
complex structure, which cannot be easily described by a few 
simple mathematical equations. For the detailed information, 
please refer to (Zelinka, et al., 2008) 

Further text discusses controlling of selected chaotic system 
from evolutionary synthesized systems. 

3. CONTROL OF CHAOS - PROBLEM DESIGN  

3.1 Problem Selection and Case Studies 

The example of a new chaotic system synthesized by means 
of AP has the form (2). 
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This system exhibits chaotic behaviour for the control 
parameter A in the ranges <0.1, 0.13> and <0.8, 1.2> (see 
Fig. 1 and 2). 

This work primarily consists of three case studies. All of 
them are focused on the estimation of three accessible control 
parameters for the EDTAS method to stabilize desired UPO 
and the comparison of results for the used cost function. 

Desired UPOs are the following: p-1 (a fixed point) in the 
first case, p-2 (higher periodic orbit) in the second case and 
p-4 (also high periodic orbit) in the last case.  

 

 

Fig. 1. Bifurcation diagram for A=<0.8, 1.2> 

 

 

Fig. 2. Bifurcation diagram for A=<0.1, 0.15> 

All simulations were 50 times repeated for each EA version 
to show and check robustness of the used method. The 
control method – ETDAS in the discrete form suitable for 
one dimensional Logistic equation is given in (3). 
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Where K and R are adjustable constants, F is the perturbation, 
S is given by a delay equation utilizing previous states of the 
system and m is the period of m-periodic orbit to be 
stabilized. The perturbation nF  in equations (3) may have 
arbitrarily large value, which can cause diverging of the 
system outside the interval {-2.5, 0.5} (in case of control 
parameter A=<0.8, 1.2>).  Therefore, nF  should have a value 
between maxF− , maxF  and EA should find an appropriate 
value of this limitation to avoid diverging of the system. 



 
 

     

 

3.2 The Cost Function 

Several unique designs of cost functions (CF) were 
developed and tested for the stabilization of p-1 orbit (fixed 
point), p-2 orbit and p-4 orbit. In previous research the CF 
had been calculated in general from the distance between 
desired state (desired UPO) and actual system output on 
simulation interval – τ. The minimal value of this cost 
function giving the best solution is zero. The aim of all the 
simulations was to find the best solution that returns the cost 
function value as close as possible to zero. This CF is given 
by (4). 
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Where:  TS - target state, AS - actual state 

Other cost functions (CF1 CF2 and CF4) had to be used for 
the stabilizing of the chaotic system in “blackbox mode” ie. 
without exact numerical value of target state.  In this case it is 
not possible to use the simple rule of minimizing the area 
created by the difference between the required and actual 
state on the whole simulation interval – τ. 

Our noval approach is based on searching for periodic orbits 
in chaotic attractor and stabilizing the system on these 
periodic orbits by means of applying the optimal value of 
controller adjustable constants (K, maxF , R). It means that 
this new CF did not take into consideration any numerical 
target state, but the selected target behavior of system.  
Therefore, the new CFs are based on the searching for 
optimal values of controller parameters securing the 
stabilization on any type of selected UPO (p-1 orbit – stable 
state, p-2 orbit – oscillating between two values etc.). The 
slight disadvantage of this approach is that for each UPO (i.e. 
different behavior) a different CF is needed. 

The proposal of CF1 used for in the first case (p-1 orbit) is 
based on the following simple rule. In discrete systems, the 
iteration y(n) and y(n+1) of output value must be the same. 
The idea was to minimize the area created by the difference 
between the n and n+1 output iteration on the whole 
simulation interval – τ, thus at the same time this proposal of 
CF should secure fast targeting into the close neighborhood 
of p-1 orbit and its stabilization. The CF1 has form (5). 
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Where: pen1 = penalization 

The next proposal of CF2 used for in the second case (p-2 
orbit) is based on the following rule. The iteration y(n) and 
y(n+2) must have the same value. But this rule is also valid 
for the previous case of – p-1 orbit. Thus another condition 
had to be added. It says that in the case of p-2 orbit there 
must be some difference between the n and n+1 output 
iteration. Considering the fact of minimizing the CF the value 
this condition had to be rewritten into this suitable form (6)  

( ) ( ) cnyny +−+1
1  (6) 

 
Where: c – small constant 1.10-16 which was added to prevent 
the evolutionary optimization from crashing, since upon 
finding the suboptimal solution stabilized at p-1 orbit it 
returns the division by zero. The CF2 has the form (7). 
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Where: pen1 = penalization 

The last CF used for the third case (p-4 orbit) is based on the 
following design. The iteration y(n) and y(n+4) must have the 
same value. But this is also valid for the two previous cases – 
p-1 and p-2 orbit. Also, in this case another condition had to 
be added. It states that in the case of p-4 orbit there must be 
some difference between the n+1 and n+3 output iteration. 
The CF4 has the form (8). 

( ) ( ) ( ) ( ) cnyny
nynypenCF

t ++−+
+−++= ∑

= 13
141

0
4

τ

 (8) 

 
Where: pen1 = penalization 

In all proposed CFs there had to be included penalization, 
which should avoid the finding of solutions, where the 
stabilization on saturation boundary values {-2.5, 0.5} or 
oscillation between them (i.e. artificial p-2 orbit) occurs. This 
penalization was calculated as the sum of the number of 
iterations, where the system output reaches the saturation 
boundary value.   

These three “blackbox” mode CFs (5), (7) and (8) are tested 
in this work. The difference between them can be clearly seen 
in Fig. 3 - 5, which shows the dependence of CF values on 
the adjustable parameters K. From these figures, it is obvious 
that together with growing complexity of the used CF, the 
nonlinearity and unpredictability of CF surface also 
increases. Thus this is the answer for the question as to why 
EA were used. 

 

 

Fig. 3. Dependence of CF value on parameters K for p-1 
orbit, xinitial = -0.5, CF1, maxF = 0.5, R = 0.2530 



 
 

     

 

 

Fig. 4. Dependence of CF value on parameters K for p-2 
orbit, xinitial = -0.5, CF2, maxF = 2537, R = 0.2676 

 

Fig. 5. Dependence of CF value on parameters K for p-4 
orbit, xinitial = -0.5, CF4, maxF = 8964, R = 0.4569 

3.2 Optimizing Algorithm used for Chaos Control 

For the experiments described here, stochastic optimization 
algorithm SOMA (Zelinka, 2004) has been used. It was 
chosen because it has been proven that this algorithm has the 
ability to converge towards the global optimum. SOMA 
works with groups of individuals (population) whose 
behavior can be described as a competitive – cooperative 
strategy. The construction of a new population of individuals 
is not based on evolutionary principles (two parents produce 
offspring) but on the behavior of social group, e.g. a herd of 
animals looking for food. This algorithm can be classified as 
an algorithm of a social environment. 

4. EXPERIMENTAL RESULTS 

Four versions of SOMA were used for all simulations. See 
Table 1 for relation between each version and index 
corresponding to Tables. Parameters for the optimizing 
algorithm (see Table 2) were set up in such a way, as in order 
to reach the same value of maximal CF evaluations for all 
used versions. Each version of SOMA has been applied 50 
times in order to find the actual optimum. 

The primary aim here is not to show which version is better 
or worse but to show that the EA can in reality be used for 
easy to implement control of unknown new synthesized 
chaotic system, when the “blackbox mode” cost functions are 
properly defined. The ranges of all estimated parameters were 
these: 

-2 ≤ K ≤ 2 , 0 ≤ maxF  ≤ 0.5 and 0 ≤ R ≤ 1.0 

Table 1 Used Versions of SOMA 

Index Algorithm / Version 
1 SOMA AllToOne  
2 SOMA AllToRandom 
3 SOMA AllToAll 
4 SOMA AllToAllAdaptive 

 

Table 2 Parameter Settings for SOMA 

Parameter ATO / ATR ATA / ATAA 
PathLength 3 3 
Step 0.33 0.33 
PRT 0.1 0.1 
PopSize 25 10 
Migrations 25 7 
Max. CF 
Evaluations (CFE) 5400 5670 

 

The best solution for each version of SOMA are shown in 
Tables 3 – 5 together with other optimization results like 
Average IStab value for 50 repeated simulations (Avg. 
IStab). The corresponding figures 6 – 11 show simulation of 
the best individual solution and the complex simulation of all 
200 solutions. 

The elementary mathematical analysis of controlled chaotic 
system was made in order to find the exact positions of 
UPOs. But these numerical positions of UPOs were not used 
in any optimization or control process. They were used only 
for the checking of quality of stabilization and for the 
simplification of computation of the number of iterations 
required for exact stabilization during statistical analysis of 
the obtained results. 

4.1 Control of chaos, p-1 orbit, CF1 

The first case is focused on the stabilization of p-1 orbit. 
Unperturbed chaotic system has this p-1 orbit: xF = -1.0772 
(A = 1.15). For the results in this case please refer to Table 3. 
All SOMA versions gave similar results from the point of 
view of the CF value for the best solution and Avg Istab 
value. Fig. 6 displays the best individual solution with the 
lowest CF value (SOMA ATAA) Fig. 7 gives the simulation 
of all 200 solutions obtained by all versions of EA. Based on 
obtained results, it may be stated that the control parameters 
estimated in the optimizations ensured fast reaching of a 
desired state without any knowledge about its exact position 
for all 200 simulations. On average, about 55 iterations are 
required for successful stabilization. 

Table 3 Results for p-1 Orbit, Optimization by Means of CF1 

EA 1 2 3 4 
K -0.6713 -0.6773 -0.6646 -0.6635 
Fmax 0.4998 0.4992 0.4996 0.5 
R 0.2605 0.2597 0.2532 0.2530 
CF Value 2.9798 2.9839 2.9801 2.9796 
Avg. IStab 55 55 55 55 



 
 

     

 

 

Fig. 6. Best ind. solution: p-1 orbit, CF1, SOMA ATAA 

 

Fig. 7. Simulation of all 200 solutions, p-1 orbit, CF1 

4.2 Control of chaos, p-2 orbit, CF2 

This case is focused on the stabilization of p-2 orbit. 
Unperturbed new chaotic system has this p-2 orbit  
(A = 1.15): x1 = -2.0282, x2 = 0.1232. For the best results of 
each SOMA version please refer to Table 4. The simulation 
of the best solution is depicted in Fig. 8 (SOMA ATAA). The 
results show similar features as in the previous case. From 
Fig. 9 it follows that this design of CF secures precise but 
slightly slower stabilization on desired UPO. For 
stabilization, on average, about 141 iterations are required. 

Table 4 Results for p-2 Orbit, Optimization by Means of CF2 

EA 1 2 3 4 
K -0.4377 -0.4291 -0.4511 -0.4384 
Fmax 0.2537 0.2570 0.2499 0.2539 
R 0.2676 0.2713 0.2637 0.2678 
CF Value 36.2311 36.2298 36.2336 36.2315 
Avg. IStab 147 139 140 139 

 

 

Fig. 8. Best ind. solution: p-2 orbit, CF2, SOMA ATO 

 

Fig. 9. Simulation of all 200 solutions, p-2 orbit, CF2 

4.3 Control of chaos, p-4 orbit, CF4 

The last case is focused on stabilization of the following p-4 
orbit: x1 = -0.4290, x2 = -2.1716, x3 = 0.2521, x4 = -1.5247. 
See Table 5 for the results of this optimization. The 
simulations of the best individual solution (SOMA ATA) are 
depicted in Fig. 10. From Fig. 11 it follows that increasing 
order of UPO and complexity of CF surface can cause the 
phenomenon occurrence of different best individual solutions 
given by four SOMA versions thus the inability of reaching 
“exact” stabilization of p-4 orbit for all 200 solutions.  

Table 5 Results for p-4 Orbit, Optimization by Means of CF4 

EA 1 2 3 4 
K -0.5118 -0.5477 -0.5238 -0.5326 
Fmax 0.1119 0.8991 0.8964 0.8744 
R 0.4724 0.4652 0.4569 0.4533 
CF Value 24.3821 24.5044 24.3666 24.4140 
Avg. IStab 125 133 127 130 

 

 

Fig. 10. Best ind. solution: p-4 orbit, CF4, SOMA ATA 

 

Fig. 11. Simulation of all 200 solutions, p-4 orbit, CF4 



 
 

     

 

5. CONCLUSIONS 

Based on obtained results, it may be claimed that all 
simulations gave promising results and thus EAs are capable 
of solving this “blackbox mode” problem. In this work three 
different CFs were introduced and tested in the task of fast 
targeting and stabilization of desired periodic orbits of 
evolutionary synthesized chaotic system. The proposed 
“blackbox” mode approach is very advantageous and simple 
to implement in the case of new evolutionary synthesized 
chaotic system, because of its ability to control the chaotic 
system without any previous mathematical analysis, thus 
without knowledge of exact UPOs position. 

As can be seen from the optimization results presented here, 
they are very sensitive to the construction of the used CF. In 
the first and the second case study, the desired p-1 and p-2 
orbit was reached precisely and in the first case also rapidly, 
but in the in the third case the EA had found lot of solutions 
which did not secure such precise stabilization. The answer 
for this problem can be clearly seen from Figs 3 – 5. The first 
figure (Fig. 3) is related to the p-1 orbit. Here the relatively 
wide area around the global optimum is highly visible, thus 
the EA rapidly converges towards this global optimum and 
all simulations show very fast and precise stabilization of the 
chaotic system. In the case of p-2 orbit the situation is 
slightly different. The CF surface is more nonlinear and the 
area around global optimum is quite tiny. However, the EA 
was able to find satisfactory solutions with precise and quite 
fast stabilization. The growing nonlinearity appears with the 
increase of cost function evaluation required, thus the 
computational time.  In the last case (p-4 orbit), the CF 
surface is a highly nonlinear and erratic CF and contains a lot 
of local minima.  The area around the global optimum is very 
tiny and is surrounded by a lot of local minimas, thus it is a 
harder task for EA to find it. Here occurs the phenomenon 
that the global optimum represents solution with slow but 
very precise stabilization, whereas the solutions given by 
local optimums secures very fast but not precise stabilization 
on desired UPO. This problem is caused by the inclusion of 
initial chaotic part into CF value before stabilization. This 
can be solved by a change of setting-up of EA, change of CF 
design and implementing the experiences with complex CF 
designed for higher periodic orbits from previous research. 
Moreover, the worse ability of stabilization on higher 
periodic orbits is a well known property of ETDAS control 
method. 

This paper presents a simple tool as to how to check the 
controllability of new synthesized chaotic system without any 
numerical analysis. The desired order of UPO is reached by 
the selection of CF. According to all results shown here it is 
planned that the main activities will be focused on testing 
more complex cost functions (not only based on very simple 
mathematical rules) and other criteria for precision 
distinguishing of stabilized UPO, together with searching for 
better settings of EA. These promising results give the 
possibility for “blackbox mode” evolutionary searching for 
controller parameters in the task of continuous time systems 
(Lorenz, Rössler), where the exact mathematical analysis of 
UPOs position in the chaotic attractor is very demanding. 
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