0395

Annals of DAAAM for 2011 & Proceedings of the 22nd International DAAAM Symposium, Volume 22, No. 1, ISSN 1726-9679
ISBN 978-3-901509-83-4, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2011

Make Harmony between Technology and Nature, and Your Mind will Fly Free as a Bird

Annals & Proceedings of DAAAM International 2011

GRAPHICAL USER INTERFACE SIMULATORS FOR LESSONS OF REAL-TIME
PROGRAMMING

DOLINAY, J[an]; DOSTALEK, P[etr] & VASEK, V[ladimir]

Abstract: This paper describes graphical user interface
simulators we developed and use in lessons of programming
real-time applications with real-time operating systems. The
simulators represent attractive way of displaying status of the
program and improve student’s motivation in the lessons. The
paper describes both the implementation of the GUI simulators
in C# programming language and their usage in student’s
programs written in C language.

Key words: teaching, real-time programming, GUI, simulator

1. INTRODUCTION

Embedded computers are found in large number of devices
around us and their number increases rapidly. In many
applications implemented with discrete parts few years ago are
nowadays used microcontrollers (MCU). This is due to their
very low price and advantages in terms of reliability, flexibility
of the functions of such device (which can be changed by
changing the program in the MCU without change in the
hardware) and also the lower price of the device due to smaller
number of parts. (Morton, 2001). Real-time operating systems
(RTOS) are necessary part of many embedded computers,
especially those which perform more complex tasks. Therefore
it is not surprising that a university graduate specialized on
informatics should have understanding of embedded computers
hardware and software design, as well as real-time operating
systems functionality and programming.

Schools attempt to give their students this knowledge in
various ways, ranging from “classical” lessons focused on
computer or microcontroller parts and their handling in
program, to more interesting lessons, such as programming
some real world applications or models, robots, etc. It seems
that the lessons have better impact on students if they show
how certain goals can be achieved by program using practical
tasks, rather than describing how certain MCU peripheral is
programmed (Hamrita & McClendon, 1997; Klassner, 2002).

But not always it is necessary or even desirable to use a
real-world system in the student’s program. For example, in a
simple hello-world type of program, including communication
with hardware can make the program more complicated
(unnecessarily) and thus make it harder for the students to
understand it. This way the good intention of making the lesson
more attractive by including some real-world object can lead to
unexpected and undesired outcome of worse performance of
the students. On the other hand, the ability to see outputs of
their programs is very important for learners. If for no other
reasons, it can help diagnose problems in the program by
printing out debug messages and so on. For typical lessons,
where the students use standard personals computers (PC) to
develop and run their programs, the output is typically
represented by console window into which the program can
write text messages (using e.g. printf function in C). This is
sufficient as far as the information value is concerned, but not
very interesting for the students. Moreover, it does not resemble
the real problems students will be facing in their professional

career, since we can nowadays hardly expect they will be
writing programs which have console interface.

One solution to the above problems is offered by use of
simulators, which simulate the user interface of a real object,
e.g. a clock, temperature controller, etc. It has the advantage of
real interactivity, almost identical to using real device, while
being much cheaper and less prone to damage by improper use.
Such kind of tools is commonly used, for example, in
developing application for mobile phones and we decided to
adopt it for our purpose as well. In the following text we will
describe the simulator interface and their usage in the lessons.

2. SIMULATOR DESIGN

At our faculty we teach programming microcontrollers both
at the low level, creating programs from scratch and also using
real-time operating systems. We try to make the lessons more
attractive for students by using models of real-world systems
and various expansion modules. (Dolinay et al., 2007). This
article is focused on lessons of programming with RTOS,
which can be taught mostly on PC. The program running on PC
needs to communicate with the user in some way, e.g. to allow
him/her to adjust the parameters. As mentioned above, console
interface is not the best option for this and we wanted to
improve the ways student’s programs can communicate with
the user. After evaluating the options we decided to use
software simulators, which will substitute real user interface,
such as buttons or displays.

The simulator is in fact a program with graphical user
interface (GUI), which communicates with the program written
by the student and displays the information student’s program
want to output or sends information to the student’s program
about user inputs, e.g. button press.

& Hodiny-GUI

”~
P
@)
| rapio controLLED

00:00:00

Fig. 1. Alarm clock simulator GUI



0396

For explanation of the simulator implementation it will be
best to start with practical examples. In our lessons we
currently have 3 simulators:

e Stop watch
e Alarm clock
e Temperature controller.

The alarm clock simulator can be seen in fig. 1.

Students write their programs in C language and use school
operating system RTMON (Dolinay et. al. 2010), and also
Windows API. One of the first tasks they solve in the lessons is
creating a simple stop-watch program with two threads
(processes). One thread increments the time and the other
thread handles user commands, such us stop or reset the time.
Such program can interact with the outside world in these ways:
(1) Through console window — printing time and responding to

keyboard commands.

(2) Through GUI implemented directly in the program.

(3) Through simulator program which provides the GUI.

(4) Through a real user interface represented by real display
and buttons, somehow connected to the PC.

As described earlier, option (1) has several disadvantages
and is also less attractive to students. Option (2) requires that
the RTOS used has a GUI interface support and that the user
knows how to incorporate this GUI in his/her program — which
is typically not an easy task. Option (3) is the one we deal with
in this article and will be explained in details later. Option (4) is
probably the best as it is both attractive to students (there is a
real device to play with) and also it represents the typical real-
world configuration of an embedded system. The reason why
we do not use this approach for all tasks in lessons is its
complexity — it is hard to prepare such tasks and it is hard to
program them as well. However, we use this approach at least
partially in some tasks, where students control real model of a
heating plant.

As mentioned, our approach is the option (3) from the list
above; that is a simulator program which provides GUI to the
student’s programs. The simulator is intended for Windows
platform, so it is assumed that the development PC (host PC) is
running Windows OS. But it would be possible to port the
simulators to run also on Linux or other systems. The simulator
is independent program (process) which communicates with the
student’s program (also independent process) via messages.
However, the messaging between the simulator and the user
program is hidden from the students. In their programs they use
C-language library functions provided with the simulator, as
will be described in the next chapter.

3. IMPLEMENTATION

As mentioned earlier, the simulator is independent
Windows process which communicates with the student’s
program using Windows messages. This mechanism is hidden
inside the simulator library, which the students use in their
programs. This library represents the features provided by the
simulator packed into easy-to-use functions such as
DisplayTime or GetKeyPress. This has additional advantage of
similarity to the real application with physical hardware instead
of simulator. The programmer can expect to have similar
functions offered by the driver software which he obtains
together with the hardware. So from the developer’s point of
view the program is written in the same way for simulator as it
would be for the real hardware. There are no extra things to
learn which would be needed only for simulation but had no
practical use in real life.

The simulator interface can be divided into 2 main parts:

e The GUI part (simulator itself, running as an independent
process on the host PC).

e The “client” part, which is included in the student’s
program.

The simulator itself is a program written in C#. This
program is able to process and send Windows messages from/to
virtually any other windows program.

The client part of the interface is library written in C, which
the user adds to his/her program and calls the library functions.
For maximum flexibility this part has 2-layer design.

The low-level layer (implemented in gui.h and gui.lib) are
common functions which allow sending and receiving
Windows messages, but do not interpret the meaning or data in
these messages.

The high-level layer is then library specialized for given
simulator program, e.g. for the alarm clock. This layer utilizes
the functions from the lower layer and provides functions to the
user’s programs. These functions are simulator-dependent, so
for the alarm clock there may be functions for displaying time,
starting or stopping the buzzer, etc.

4. CONCLUSION

In this article we described our approach to teaching RTOS
programming using simulators which provide graphical user
interface for student’s programs. These simulators were
developed based on our experience with teaching such courses.
They represent compromise between simple console interface
and full hardware interface with real display, buttons, etc.
Using such simulator help motivate students for writing
programs and at the same time it brings the programs written in
lessons closer to real applications, which students may face in
their future career. The simulator is implemented as a program
written in C# language and accompanied by a library for C
language which students include in their programs. As of now
we developed and use three such simulators: stop-watch, alarm
clock and temperature controller. In future more simulators
could be developed and also the interface could be ported to
other operating systems besides Windows.

5. ACKNOWLEDGEMENTS

This work was supported by the Ministry of Education,
Youth and Sports of the Czech Republic under the Research
Plan No. MSM 7088352102 and by the European Regional
Development Fund under the project CEBIA-Tech No.
CZ.1.05/2.1.00/03.0089.

6. REFERENCES

Dolinay, J.; Dostalek, P. & Vasek, V. (2007). Educational
models for lessons of microcontroller programming,
Proceedings of 11th International research/expert
conference TMT 2007, Tunisia, ISBN 978-9958-617-34-8,
pp. 1447-1450, Hammamet

Dolinay, J.; Dostalek, P. & Vasek, V. (2010). Simple operating
system RTMON for HCO8 microcontrollers, Annals of
DAAAM for 2010 & Proceedings of the 21st International
DAAAM Symposium, ISBN 978-3-901509-73-5, ISSN
1726-9679, pp 0258, Katalinic, B. (Ed.), pp. 0515-0516,
DAAAM International, Vienna

Hamrita, T. K., McClendon, R. W., A New Approach for
Teaching Microcontroller Courses, International Journal of
Engineering Education, Vol.13, No.4, 1997, pp. 269-274

Klassner, F. (2002). A Case Study of LEGO Mindstorms’
Suitability for Articifial Intelligence and Robotics Courses
at the College Level, Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education,
Kentucky, ISBN 1-58113-473-8, pp 8-12, Cincinnati

Morton, T. D. (2001). Embedded Microcontrollers, Prentice
Hall, ISBN 0-13-907577, Upper Saddle River



