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5902 .ˆ =∇zσ ; 81642
2 .ˆ =∇ zσ . From these results and figures above, it 

is suitable to choose the first differencing of the DDHD (d=1).  
In practice, many time series have seasonal components. These 

series exhibit periodic behaviour with a period s. Therefore it is 
necessary to determine a degree of seasonal differencing - D. The 
seasonal differencing is marked by D

s∇ . In seasonal models, 
necessity of differencing more than once occurs very seldom.  That 
means D=0 or D=1. It is possible to decide on the degree of 
seasonal differencing on the basis of investigation of sample ACF. 
If the values of ACF at lags k*s achieve the local maximum, it is 
necessary to make the first seasonal differencing (D=1) in the form 

ts z∇  .  
As our time series of the DDHD exhibits an obvious seasonal 

pattern, it is necessary to make an analysis of the seasonal 
differencing of our time series, as well. The course of the ACF 
sample evidences the seasonal pattern. These functions have their 
local maxima at lags 48, 96, etc. That represents a seasonal period 
of 24 hours by a sampling period of 30 minutes. On the basis of the 
executed analysis, it is necessary to make the first differencing and 
also the first seasonal differencing of the DDHD in the form (1). 
 
 4948148 −−− +−−=∇∇ ttttt zzzzz  (1) 
 

For the comparison, it is possible to calculate the variances of 
time series and differenced series according to (Anderson, 1976). 
The results are 899  9137 22

4848
.ˆ;.ˆ == ∇∇∇ zz σσ . 

 
4. DETERMINATION OF AR PROCESS ORDER 

AND MA PROCESS ORDER  
 

After differencing the time series, we have to identify the order 
of autoregressive process AR(p) and order of moving average 
process MA(q). The traditional method consists in comparing the 
observed patterns of the sample autocorrelation and partial 
autocorrelation functions with the theoretical ACF and PACF 
patterns. (Brockwell & Davis, 1996).  

Order of autoregressive operator p and order of moving 
average operator q are not usually high; therefore only 20 values of 
ACF and PACF will be enough to compute.  

The order of model is usually difficult to determine on the basis 
of the ACF and PACF. This method of identification requires a lot 
of experience in building up models. From this point of view it is 
more suitable to use the objective methods for the tests of the 
model order. 
 
4.1 Criteria for model order 

A number of procedures and methods exist for testing the 
model order (Cromwell et al., 1994). These methods are based on 
the comparison of the residuals of various models by means of 
special statistics. In this paper, the Akaike Information Criterion 
(AIC), Bayesian Information Criterion (BIC) and Schwarz test are 
used for testing. The sample of test result of the model order of the 
DDHD is included in the Tab. 1. The table represent the values of 
the AIC in dependence on model order (p, q). 

 
The minimum value of AIC, BIC and SC is for p=0 and q=3. 

According to these results and on the basis of the general theorem 

(small values of model order), it is obvious that we would 
tentatively identify our time series as the MA(3) process. This fact 
is also possible to confirm by the analysis of ACF and PACF 
samples described above. Adequacy of this tentative model may be 
examined by means of Portmanteau test. 
 
4.2 Diagnostic checking – Portmanteau test 

If the fitted model is adequate, it should transform the 
observations to a white noise process. Thus, a logical method of 
diagnostic checking is to compute the residuals and then estimate 
and examine their autocorrelation function. If the model is 
appropriate, then the residual sample autocorrelation function 
should not differ significantly from zero for all lags greater than 
one. Adequate model can be tested by means of Portmanteau test. 
We may obtain an indication of whether the first K residual 
autocorrelation considered together indicate adequacy of the model. 
This indication may be obtained through an approximate chi-square 
test of model adequacy. We consider the test statistic in the form 
(2), which is approximately distributed as chi-square with K-p-q 
degrees of freedom if the model is appropriate. 

 

 ∑
=

⋅−−=
K

k
k arsdNQ

1

2 )ˆ()(  (2) 
 

Where N is a number of values, d is the difference degree, s is 
the season period, ( )ark ˆ2  is value of ACF sample of residuals. 

If the model is inadequate, the calculated value of Q will be too 
large. Thus we should reject the hypothesis of model adequacy if Q 
exceeds an appropriately small upper tail point of the chi-square 
distribution with K-p-q degrees of freedom. The chi-square statistic 
applied to the first 28 autocorrelations is Q=35.99. Comparing this 
value with a 5 percent value chi-square variable with 25 degrees of 
freedom, we find out that 7372

25050 .,. =χ  and so we would 
conclude that there is no strong evidence to reject the model. 

 
5. CONCLUSION  
 

This paper presents the method for building up the model of 
time series of DDHD. The model is used for prediction of heat 
demand. This prediction of DDHD is necessary for the control in 
the Centralized Heat Supply System (CHSS), especially for the 
qualitative-quantitative control method of hot-water piping heat 
output – the Balátě System (Balátě, 1982). The modelling is based 
on the Box-Jenkins methodology. The time series analysis was 
made for the DDHD from the concrete locality. 
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     q 
  p 0 1 2 3 4 5 6 

0 3499.5 3343.2 3318.8 3295.4 3312.7 3298.8 3311.5 

1 3396.6 3315.5 3918.3 3323.3 4499.6 N/A 3319.4 

2 3364.9 N/A N/A 3298.5 3499.8 N/A N/A 

3 3333.5 3300.2 3364.6 3315.2 3304.6 N/A N/A 

4 3312.6 3300.7 3315.8 N/A N/A 3966.3 4109.2 

5 3305.2 3304.5 3306.7 N/A N/A 4129.6 6152.9 

6 3305.5 3306.8 7479.6 3650.6 3352.1 5117.7 5684 

Tab. 1. Values of Akaike Information Criterion 
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