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( ) ( ) ( )1 2 mu t u t u t⎡ ⎤⎣ ⎦L  and f is a nonlinear vector 

function [ ]1 2 nf f fL , then the linear model in a given 
operating (steady-state) point ( ),s su y  can be generally obtained 

using formulae with constant matrices A , B . As the reactor 
embodies astatic behaviour, it is not possible to compute the 
matrices in a chosen (steady-state) operating point. However, 
the linearization can be performed generally, resulting in a 
time-variant system: 

 ( ) ( ) ( ) ( ) ( )t t t t t′ = +x A x B u  (4) 

where the matrices ( )tA , ( )tB  are no longer constant but time-
dependent. Using the formulas above, the originally nonlinear 
model of the reactor has been transformed into a linear time-
variant model. 
Generally, output from a linear system with matrices C , D  is 
defined as: 

 ( ) ( ) ( )t t t= +y Cx Du  (5) 

3.2 Transfer function 
As the reactor analyzed in this contribution is astatatic, the 

linearized model is time-dependent. Then the transfer function 
(t.f.) is also time-dependent: 

 ( ) ( )( ) ( )1, ns t s t t−
= −G C I A B%

 
 (6) 

where s  is the complex Laplace variable and nI is the n -by- n 
identity matrix. 
Since the system generally has one output ( )T t  and 4 inputs 

( )FKm t& , ( )vm t& , ( )FKT t , ( )vpT t , the resultant t.f. is a vector of 

the 1-by-4 size: 

 
FK v FK vpT m T m T T T TG G G G⎡ ⎤= ⎣ ⎦G & &

%  (7) 

The first term 
FKT mG &

describes the relation between the 

temperature inside the reactor ( )T t  and the input flow rate of 
the chromium sludge ( )FKm t& . The other terms describes the 
relations between the temperature and the variables ( )vm t& , 

( )FKT t , ( )vpT t respectively. As stated earlier, the only 

practically manipulated variables are ( )FKm t&  and ( )vm t& . The 
transfer function for ( )FKm t&  has this general form (using (5) 
and (6)): 

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )

3 2
3 2 1 0

3 2
2 1 0

,
FKT m

B t s B t s B t s B t
G s t

s s A t s A t s A t

+ + +
=

+ + +
&

 (8) 

From the equation presented above, it can be seen that the 
relation between ( )T t  and ( )FKm t&  is generally integrative. At 
present, the only practically manipulated variable is ( )FKm t& , 
therefore, the further investigation is focused on the analysis of 
the transfer function 

FKT mG & . 

 
3.3 Transfer function coefficients range 

In order to determine the range of 
FKT mG &  coefficients, a 

series of simulation experiments were performed in the 
MATLAB/Simulink environment. Some of the coefficients are 
very small and consequently they could be possibly neglected 
for the control system design. 
 
3.4 Poles and zeros 

Given the range of coefficients, it is possible to compute 

also the range of poles and zeros of 
FKT mG & . Results are 

summarized in Table 1. 
Zeros at (or very close to) the origin indicate derivative 

behaviour whereas poles at the same position signalize 
integrative properties. The table shows that one pole ( 1p ) is 
directly at the origin resulting in integrative behaviour of the 
temperature ( )T t  with respect to ( )FKm t& . If the poles are 
located in the left part of the complex plane (their real parts are 
negative), the system is stable. From this point of view the table 
shows that generally the system embodies also instability. In 
addition, when the poles are complex (they also have imaginary 
parts), it indicates oscillatory behaviour. As revealed by the 
table, in some conditions the system may embody oscillatory 
behaviour, however absolute values of complex parts of the 
poles are relatively small which shows that this effect is not so 
significant. From the results, it can be also deduced that the 
system possesses non-minimum phase (NMP) behaviour – 
some of the zeros may become positive (unstable). Generally, 
NMP-systems are more difficult to control. 
 

iz , ip  Real min. Real max. Imag. min. Imag. max. 

1z  0.0185 0.1601 0 0 

2z  -0.0062 -0.0062 0 0 

3z  1.973x 10-5 0.0016 0 0 

1p  0 0 0 0 

2p  -0.0226 -0.0059 0 5.590 x10-4 

3p  -0.0067 0.0021 -5.590 x10-4 9.108 x10-4 

4p  -0.0018 8.464x 10-4 -9.108 x10-4 0 

Tab. 1. Range of Poles and Zeros 
 
4. CONCLUSION 
 

Havig the approximate uncertainty intervals of the   
coefficients, it suggests using the robust control approach 
(Morari, 1989). As parameters of the linearized model change, 
an alternative idea could also be the usage of adaptive control 
strategies (Åström, 1989). Another possible approach which 
proved to be successful is the predictive control (Sámek, 2007). 
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