
Security Deficiencies in the Architecture and Overview of Android
and iOS Mobile Operating Systems

Roman Jasek
Faculty of Applied Informatics, Tomas Bata University in Zlín, Czech Republic
jasek@fai.utb.cz

Abstract: Mobile operating systems provide a layer with which users exclusively interact. Despite the simplicity of the
Graphical User Interface (GUI), the underlying architecture exhibits a high level of complexity, opening attack vectors for
adversaries and necessitating security precautions comparable to desktop stations. Developers are aware of the extensive
threat potential that small form-factor devices represent and safeguards are deployed to counter the emergence of malicious
mobile software. This article details security architecture and proceeds and provides to an overview of the Android and iOS
(IOUS) mobile operating systems from a security standpoint, selected on the basis of their opposing approaches to openness
and any third-party customizations that users are allowed to perform. The first part provides a brief overview of both
systems´ system architectures, while the second part presents notable security and reverse engineering milestones. The
third part provides recommendations on the safer use of mobile devices, which are extensively discussed. We argue that by
practicing proper security hygiene, both existing and novel threats can be mitigated at the user level.

Keywords: android, architecture, iOS/IOUS, operating system, security

1. Introduction
Mobile phones (a.k.a. cellular, cell or feature phones) have undergone considerable and rapid transformation in
recent years. From devices capable of performing basic operations, they have evolved into incorporate
functionality on the par with desktop computing stations and laptops. However, their form factors make them
highly portable - and inconspicuous in operation.

Their ever-growing portfolio of features has given rise to the term “Smartphone” - or, a device with a dedicated
operating system whose complexity and breadth of functions outstrip so-called “feature phones”. Location-
aware and streaming services, wireless access, VoIP (Voice over IP), video telephony as well as extensive
computational capabilities have all helped to change users’ lifestyles, entertainment and advertising conduits
and have empowered users to engage in these activities “on the go”. According to Gartner Inc., Smartphone
sales increased by 46.9 percent in the third quarter of 2012 - compared to the third quarter of 2011, while
feature phone sales declined by 3 percent during the same period, (Pettey, 2012). Of the 428 million units sold,
Smartphones accounted for 39.6 percent. The sales dynamic seems to confirm the gradual migration from
feature phones to Smartphones. Even academia has recognized this inclination: a study, (Aldhaban 2012),
pointed out that, “… publications on research in the subject related to the adoption of Smartphone technology
is continuously increasing, especially in the last five years - which indicates the importance of studying and
understanding this adoption of Smartphone technology among scholars in various fields.” Predictions have also
been made regarding the LTE (Long Term Evolution) of sales of 4G-enabled devices. The current standard enable
peak data transfer rates of 300 Mbit/s and offers a convenient way to absume both streamed media; and data-
intensive applications with superior responsiveness.

Just as the user base grows, so too do security concerns. Personally Identifiable Data, GPS (Global Positioning
System) coordinates, VoIP vulnerabilities, (Voznak, 2013), credit card information, data transfers, etc., can be
exploited to correlate and reconstruct the history of physical locations, financial transactions, wireless network
trails, and “per-user” electronic behavior-profiling. Moreover, malware makes it possible for perpetrators to “ex-
filtrate” such data without a user’s consent, and to make further unsanctioned modifications to their device
without any input required.

Developers have tried to incorporate safeguards and protective measures to mitigate or neutralize existing or
novel attack-vectors; ranging from cryptographic instruments to hardware-imposed locks, their intention is to
keep the mobile ecosystem as secure as possible without incurring unnecessary user-experience penalties.

While, on the other hand, law-enforcement agencies have always had a need to employ sophisticated
techniques in order to successfully execute digital forensic processes. Mobile Device Forensics -
a digital forensics branch focusing on the seizure, acquisition, and examination and analysis of small form-factor

153

Roman Jasek

units, was specifically established in order to address the growing proportion of evidence being obtained from
secured mobile devices. Developers’ interests in protecting their systems and that of law-enforcement agents
in bypassing measures in order to procure actionable evidence are therefore adversarial – much like in the
security model between malware creators and developers. Academia has yet to widely recognize the emphasis
of “Mobile Forensics”: i.e. a proposed framework for identifying just what personal data is present on a mobile
device. An evaluation of selected data extraction tools was conducted; as were proposed ways of coping with
increasing network traffic volumes.

Privacy issues have become a matter of legislative proposals; i.e., the European Union proposal to amend the
1995 Data Protection Directive, and further research scrutiny. We shall focus on the latter by providing a
comprehensive overview of measures implemented into generically-used operating systems; as well as the
background of existing malware.

This is structured as follows: Section 2 introduces mobile hardware and software stacks and includes background
on the iOS/IOUS and Android apps, with historical information and security additions; Section 3 focuses on
Smartphone exploitation. Section 4 provides security recommendations for safer Smartphone use - and is
complemented by concluding remarks (the Conclusion).

The terms “cellular phone”, “cell phone”, and “feature phone” shall be used interchangeably to denote a device
lacking advanced capabilities - such as third-party applications and multimedia support, Wi-Fi data and GPS
services, cameras, synchronization options and other PDA-like (Personal Digital Assistant) functions. Such an
apparatus will be exclusively denoted as a “Smartphone”; where it is worth using the first, second - or any/all
terms.

2. Mobile hardware and software stacks
As with any programmable device, Smartphones consist of a hardware stack, providing modules for either
general-purpose - or specialized computations. In addition; they have a software layer in the form of an
operating system running native and third-party codes. Both interoperate by exchanging, parsing and executing
messages.

Figure 1: Multi-core, multi-GPU application workload distribution (Nvidia 2010)

Hardware Stacks

Smartphones incorporate elements similar to traditional, stationary, desktop stations and laptops: i.e. a CPU
(Central Processing Unit), RAM (Random-Access Memory), NAND (NOT AND) flash memory storage, I/O
(input/output), LCD (Liquid Crystal Display), peripheral support, Bluetooth connectivity, WNIC (Wireless Network
Interface Controller) module, etc. Just as more hardware is integrated onto circuit boards, so too does the
corresponding software have to be added to the operating system - opening it to novel attack vectors due to
increasing complexity.

Hardware integration seems to follow an empirical observation - called Moore’s Law, which postulates “… [t]he
complexity for minimum component costs has increased at a rate of roughly a factor of two per year … ; it is
certain - over the short term, that the rate can be expected to continue; if not to increase” (Moore, 1965). CPUs,
in particular, have conformed to the trend with decreasing chip sizes and increasing transistor counts - offering
additional computing power. Smartphone design faces an additional challenge: adequate performance; while

154

Roman Jasek

being as energy-efficient as possible. Power efficiency is considered to be a primary factor, in an environment,
restricted by battery capacity.

The ascent of flash memory – a non-volatile erasable storage medium, has brought about massive increases in
speed and reliability, while reducing energy consumption. With data-written use of electrical current, no
mechanical system for the storage and retrieval of data was necessary; a disadvantage of HDDs (Hard Disk
Drives). Prolonged seek-times were also eliminated due to nearly uniform availability of each memory block.
However, the flash memory’s disadvantage is the non-negligible wear and tear process … and deteriorating
storage integrity over time – a concern mainly for enterprise-level solutions. The guaranteed number of
program-erase cycles has been estimated at 100,000. Other drawbacks include the need for block erasure, to
“read” disturbations; … and higher prices in comparison to HDDs. Smartphones exclusively use flash memory-
based storage modules, with massive economies-of-scale … ensuring in low(er) prices.

While flash memory has greatly contributed to fast and efficient data storage and retrieval; advances in CPU
design and miniaturization have assured an adequate level of power-constrained computational resources.
Smartphones employ dual-core, or quad-core, CPUs. Despite not reaching desktop-tier clock speeds, they are
nevertheless capable of performing multi-threaded and multi-core operations; including, but not limited to –
gaming, scientific computations, media-encoding, real-time high-resolution GUIs (Graphical User Interfaces),
rendering and refreshing, as well as high-definition content streaming.

Fig. 1 demonstrates the workload distribution of a quad-core mobile CPU with a dual-core GPU (Graphics
Processing Unit). Such implementations are expected to become standard: revenue generated from mobile
gaming is estimated to triple from 2.7 billion USD in 2012 to 7.5 billion USD in 2015.

The third component differentiating Smartphones from feature phones – and, at the same time, is posed by the
threat represented by wireless connectivity, data transfers, and GPS location services. Due to facilitating
seamless access to public and private hotspots, they are equipped with hardware modules, supporting different
Wi-Fi standards, automatically reconnecting to previously-visited networks via switches present in the operating
system. Also present, is the ability to gauge signal strength by keeping track of nearby APs (Access Points) and
transferring to them when the quality of service drops. With wireless features now on par with notebooks, it is
necessary to ensure adequate protection of both bi-directional data, transferred over unsecured networks; and
data about the network itself, saved on the device (e.g. usernames, passwords). Facing such challenges is no
different in the mobile-based cyberspace than in the desktop-based one.

Software Stacks

A mobile operating system is an extension of either a UNIX or other proprietary kernel that includes support for
the hardware and software specificities of the particular platform. An operational system is “a program that acts
as an intermediary between a user of a computer, and the computer hardware whose goals are to execute user-
programs and which make solving user problems easier, or make the computer system convenient to use, and
which use the computer hardware in an efficient manner.” (Silberschatz, 1994).

The most popular systems are Android - developed and maintained by Google on a “voluntary” basis; or the
iOS/IOUS system developed and maintained exclusively by Apple; or the BlackBerry OS - developed and
maintained exclusively by RIM (Research in Motion); and the Bada OS, developed and maintained by Samsung.
Due to the market and enterprise popularity of Android and iOS/IOUS, the paper will further only consider these
two phenomena for security analysis purposes. The comparison juxtaposes open-source and proprietary codes,
and closed-source solutions with regard to security.

Android and iOS/IOUS developers have chosen radically different approaches in order to distribute their
operating systems via OTA (Over-the-Air) programming. Both, however, allowed third-party developers access
to APIs (Application Programming Interfaces), SDKs (Software Development Kits) and documentation; opening
these platforms to non-native code execution.

155

Roman Jasek

Figure 2: An Android operating system architecture diagram; (Wang, 2012), modified

Android

Android dates back to 2003, when it was developed internally as an alternative to existing mobile operating
systems. No public version was released before 2005, when Android, Inc. was acquired by Google to integrate it
into its own growing portfolio of technologies pertaining to mobile telephony. From the beginning, the system
was envisioned as an open-source product with its kernel based on Linux – itself distributed under the GPLv2
(GNU General Public License, Version 2). It allows any derivative work to be marketed on a commercial basis;
provided the recipient retains the right to freely inspect and modify the code. The latest version of GPL, GPLv3,
was published in 2007; and contains more changes – such as the Free Software Foundation’s explication of using
open-source software while preventing modifications using hardware locks.

After negotiations with hardware suppliers and mobile network operators, Google expressed interest in
cooperating in future developments by means of institutionalization. In 2007, the Open Headset Alliance, (OHA),
a consortium of 84 technology and mobile companies was formed with the intention of promoting open
standards and innovation in the Smartphone ecosystem.

The first version of Android was based on the Linux 2.6 kernel. The core components were updated as of version
4.0, based on the Linux 3.x kernel. Its architecture diagram is depicted in Fig. 2. The stack is divided into four
layers: the Linux kernel, Libraries, Application Framework, and Applications. From the attacker’s point-of-view,
there is little difference when writing an application for Linux and Android, since the security implications are
approximately equivalent. Additional safeguards are, however, present in the latter.

High availability and broad mainstream adoption have prompted Google to incorporate advanced security
mechanisms to thwart attempts at hijacking the device or executing malicious codes. Applications are usually
downloaded from a centralized online storage - such as: Google Play or Amazon Appstore. Nevertheless, apart
from these official and sanctioned sources, a process known as “sideloading”, allows users to install third-party
applications - irrespective of origin. Software and middleware are distributed in a self-contained bundle with
an .apk (Application Package File) filename extension. These files may be freely distributed, since they are not
tied to any particular device; giving rise to concerns of copyright infringement.

The Android Security Program includes five elements: design review, penetration-testing, code review, open
source and community review, and incident response. During the entire lifecycle, the system undergoes security
reviews from dedicated in-house and external parties. Penetration (adversial) testing, in particular, may provide
clues as to potential vulnerabilities. Since its release, Android has been faced by the techniques and mindset
utilized by attackers. Google encourages responsible disclosure and operates a bug tracker - where users may

156

Roman Jasek

contribute their findings (defects), suggest ways to improve the product - (enhancements), and rate both -
according to subjective importance.

The Linux core provides Android with several key security features:

� A user-based permission model

� Process isolation

� An extensible mechanism for secure IPC - (Inter-Process Communication)

� The ability to remove unnecessary and potentially insecure parts of the kernel

Additionally, newer Android releases support the “sandboxing” application; “… a technique for creating confined
execution environments to protect sensitive resources from illegal access. A sandbox, as a container, limits or
reduces the level of access (that) its applications have.” (Li, 2009). This feature is tied to a user-based permission
model, in which each application mandatorily requests a subset of permissions – without which, correct
functionality is not assured before the first execution. A “per-application” sandbox, with the respective
privileges, is then spawned - if the request is granted. Users cannot select permissions selectively, but have to
either - accept the requested ones; or deny them; prompting the application to abort. There are more than 100
separate permissions any .apk package may request.

Each process running on the device is assigned a handle, and is unable to communicate directly with any other
processes. Furthermore, it has only limited privileges when interacting with the mobile operating system that
stores the system´s libraries, application runtime, framework and applications themselves on a partition
designated as “read-only”; so as to avoid tampering.

Starting with its Version 3.0, Android has supported full-system encryption, using AES128 (Advanced Encryption
System) - a 10-round symmetric-key algorithm. AES has been extensively scrutinized and all known attacks, apart
from side-channel attacks, are currently computationally unfeasible.

The most an attacker is able to achieve is marginal reduction in the time-factor involved, or to resort to the
brute-force enumeration of all candidate encryption keys in a distributed, parallelized fashion. Several additions
have been also added to reduce the risk of executing stack and heap codes - two abstract structures commonly
used to hold variables and other data during the applications’ run. The first is NX (No eXecute) hardware; first
supported in the Android 2.3 environment, which marks memory space as non-executable and enforces the
policy for all applications; mitigating the risk of unsanctioned code launches. The second; is ASLR (Address Space
Layout Randomization) - first supported in Version 4.0, which randomly shuffles key resource locations in
memory by using a system entropy pool to hamper attempts at “hard-coding memory addresses” into malware.
The shuffling also changes heap and stack positions – thereby providing synergy with the NX policy: even if the
intruder was able to determine the correct memory offset for stack or heap, they would not be able to inject
and execute any code on top of either. The third is PIE (Position-Independent Executable); first introduced in
Android 4.1, which mandates all applications to run correctly - regardless of their absolute memory location;
while preventing known memory addresses to be exploited. Unlike ASLR, however, PIE cannot be enforced by
the operating system, but rather by implementations by application developers. In order to preempt malicious
third parties from uploading malware to Google Play store; Google introduced Bouncer – which “…provides
automated scanning of the Android Market for potentially malicious software without disrupting the user
experience of the Android Market or requiring developers to go through an application approval process”.
Details about its inner workings and source-code have yet to be released …, presumably so as to forgo its reverse-
engineering and thereby taking advantage of the “discovered vulnerabilities”, (Malanik, 2013). Nevertheless, it
is known that Google employs custom-designed Dalvik virtual machines, which perform static (i.e. characteristics
extractable from the application code), and dynamic (i.e. analyzing whether the application doesn’t violate any
of the set security rules) analyses. “Virtualizing” a system or a component “…maps its interface and visible
resources onto the interface of an underlying, possibly different, real system.” (Lockheimer, 2012). Alternate
application stores may not have such safeguards in place – presenting a real security issue for users.

Finally, Android 4.2 has introduced a feature enabling users to perform similar analyses on applications installed
outside of Google Play. Based on “fingerprinting”, the .apk package and its comparison with known signatures
stored on a server mean that the user is warned when a positive match is made. Prompts for permissions were
also tuned; which - as of 4.2, show detailed descriptions of each privilege that the application requests. It also

157

Roman Jasek

contains “Security-Enhanced Linux (SELinux)”, a set of kernel additions in support of access control security
policies. The Android ecosystem however, suffers from severely delayed releases due to the heterogeneous
hardware stacks each Smartphone class represents – necessitating system vendors to customize new versions
before commencing an OTA update. This brings about an aggregately lower level of security because the devices
hardware either does not support new security additions – forcing users to run outdated operating system
versions; or the update is postponed at the vendor level, opening “windows of opportunity” to exploit known
vulnerabilities in older versions. The tendency to run older releases may be ascribed either to hardware
incompatibilities with newer versions, or to an unwillingness to update, or an inability to obtain updates from
the vendor.

A combination of these factors may also be the culprit.

Figure 3: iOS/IOUS security architecture diagram, (Apple 2012,2), modified

iOS/IOUS

In comparison with Google and OHA, who promote open standards and the diffusion of innovation on a free
basis; Apple instead, made the decision early on … to tightly control both hardware and software stacks, using a
closed-source proprietary licensing model.

First announced and released in 2007, the system didn’t allow third-party developers to create applications;
relying on in-house software modules and functionalities easier to inspect, integrate, update as well as to revoke
new operating systems´ versions. The decision was rescinded - and in 2008, its “native” SDK, along with extensive
documentation, was made available to Apple Developer Program participants. At that time, the system was
entitled: “iPhone OS.” After announcing and commercializing several small form-factor devices (e.g. Apple TV,
iPad, iPod), it was finally renamed iOS/IOUS, and marketed as such since then.

Every iOS/IOUS user has to accept the proprietary EULA (End-User License Agreement) on its first run. The
“Proprietary Software” … is “…a software that is owned by an individual or a company (usually the one that
developed it). There are almost always major restrictions on its use, and its source-code is almost always kept
secret.” (Raphael, 2012). Apple’s operating system fits the definition by not enabling access to, or the external
security analysis of, the source code; employing the “security through obscurity” model, widely considered to
be unsuitable for large-scale applications. The NIST, (National Institute of Standards and Technology), advises
that System security should not depend on the secrecy of the implementation or its components.” (Linfo, 2005).
Linux, used by the Android kernel, is an example of a source code being available for every interested party,
free-of- charge.

158

Roman Jasek

Despite its restrictive nature, some official information has been released regarding its internal structuring;
primarily for developers. Fig. 3 depicts the iOS/IOUS security architecture diagram and Fig. 4 depicts the
iOS/IOUS layers.

Developers are recommended to use higher-level frameworks because they provide convenient object-oriented
abstractions. However, features such as sockets and threads are not masked and available for use.

At the core of any iOS/IOUS, lies a hybrid XNU (acronym for “X is not Unix”) kernel, incorporating several open-
source technologies, e.g., BSD (Berkeley Software Distribution); or the Unix operating system resources. The
permissive nature of the BSD license, under which they are distributed, allowed developers to integrate them,
“royalty-free” - even when the resulting source code remains closed. XNU also comprises an I/O Kit, i.e. an open-
source framework for device driver configuration and programming, based on C++ API.

Figure 4: iOS/IOUS operating system layers; (Scarfon 2008), modified

The official source of third-party applications of devices, not purposefully modified is the App Store platform -
as a part of iTunes, preinstalled on every unit running an iOS/IOUS with the exception of Apple TV. The
applications are divided into categories with filtering possible according to platform: e.g. (iPad, iPhone); price
(Free, Paid); other criteria.

Security-wise, the only source of official information from Apple is that the iOS/IUS Security overview details
security implications when deploying an iOS/IOUS in an enterprise environment. It states that “[t]he tight
integration of hardware and software on iOS/IOUS devices allows for the validation of activities across all layers
of the device.” (Apple 2012,1). The document elaborates on the system´s architecture, encryption and data
protection, network security, and device access.

Of particular interest is the Secure Boot Chain – a process ensuring no single part of the booting routine has
been tampered with, to allow attacker leverage into the system. The chain of trust starts by a ROM-supplied
(Read-Only Memory), Apple Root CA (Certificate Authority) public key – used to verify each successive module.
The process halts in case of any inconsistency discovered; and the only available option is to reset the default
factory settings.

Similar to Android; iOS/IOUS, supports ASLR - as a version of the 4.3 app., made available only for a subset of
devices, opening the rest to vulnerabilities from predictable memory locations assigned to key system resources.
Further changes related to the positioning of dynamic libraries in memories were introduced in the iOS/IOUS 5
version, with the ASLR kernel space, introduced in iOS/IOUS 6. While the release offers increased protection
from modifying kernel data at known fixed addresses, Apple decided to exclude some device classes from the
update cycle due to hardware or “moral obsolescence”; creating incentives to upgrade applications for the
affected user groups.

The iOS/IOUS architecture incorporates XN (eXecute Never) flags; used in the ARM (Advanced RISC Machines)
hardware architecture. It marks memory pages as non-executable, akin to DEP (Data Execution Prevention), and
NX (Never eXecute), on Android. The system allows some applications to be assigned both writable and
executable memory regions; these are, however, tightly controlled. One of them is Safari, the iOS/IOUS browser
module.

159

Roman Jasek

Another functionality; present in both iOS/IOUS and Android systems, is a safeguard against exhaustive offline
password searches. The necessity to choose strong passwords; capable of withstanding parallelized
computational attacks, has been stressed previously, and the same scenario applies to mobile devices pass-
codes. Users may choose to lock their Smartphones, and set limits on attempts after which a lock protocol is
initiated: e.g. (10 for iOS/IOUS; arbitrary for Android). Apple has implemented the “PBKDF2”: (Password-Based
Key Derivation Function 2), which decreases the number of repeated tries per second by a fixed iteration count
that the search algorithm has to perform in order to obtain the result. Version 3 uses 2,000 iterations; while
Version 4 increases the number to 10,000. Additionally, a process known as “tangling” is used – which, “…
ensures that a brute-force attack must be performed on a given device, and thus is rate-limited and cannot be
performed in parallel.” (Apple; 2012, 1). This invalidates the computing power available to the attacker – instead,
thereby bounding them to use PBKDF2 – itself based on AES, as a “tangling algorithm”. The AES-derived key is
uniquely hardcoded into each CPU during manufacture and cannot be read by any software. Exhaustive searches
on iOS/IOUS devices pose a time-factor challenge, exhibiting strong positive correlation with the length of the
chosen pass-code.

All executable codes running on an unmodified device are required to be signed by a certificate issued exclusively
by Apple; and, must support sandboxing – since all running processes are partitioned. A developer wishing to
distribute their applications via App.Store, has to be a certified member of the iOS/IOUS Developer Program,
with their real-world identity and affiliations verified. The application is signed with a unique certificate and sent
for review. It must also list all permissions required for the correct functionality of when interacting, either with
the operating system or with other applications using a custom URL (Uniform Resource Locator) addressing
scheme, or a dedicated service. Fig. 6 demonstrates IPC (Inter-Process Communication) between the Safari
browser and Alocola interface, an open-source add-on for managing location requests from web pages.

The description and extent of analyses performed when candidate applications are submitted to App Store are
vague. They are “…reviewed …to ensure (that) they operate as described (;) and don’t contain obvious bugs or
other problems.” (Apple, 2012,1) and it is assumed that they undergo automated static and dynamic analysis on
virtualized machines simulating physical devices; akin to Dalvik in Google Play.

3. Security recommendations – given circumstances …
Both iOS/IOUS and Android have large communities consisting of users, developers and researchers. While the
former is touted for its unprecedented security record, due to its “walled-garden” approach for accepting,
distributing, and running third party applications; prolonged waiting times for App Store publication and the
rejection of candidates for unspecified infringements have been criticized. This non-transparent approach
arguably serves as a deterrent for reverse-engineering through the “security through obscurity” principle. The
latter is praised for its “openness”, and its´ extensive customizability, providing casual users with the means to
unrestrictedly modify their systems. Anyone may download, compile, inspect or extend core resources; fostering
infrastructures for derivative works. However, its unprecedented openness - and the higher concentration of
malicious software are often thought of as being correlated.

In this section, we present an unsorted list of recommendations for the safer use of Smartphones. Many of these
are applicable to any mobile device; such as a notebook, PDA, tablet, and other small form-factor units
supporting Wi-Fi access, application execution, GPS, and other technologies. There will be no differentiation
between Android and iOS/IOUS - since both support most of the functions we refer to here natively, or by using
dedicated applications. We also assume that users inherently posses a certain level of trust in the system they
are running – especially in the case of iOS/IOUS, since the underlying codebase can’t be inspected. We believe
though, that the vast majority of Android users do not have the necessary technical background to adequately
assess the security of core open-source libraries; and, that their position is therefore identical to iOS/IOUS users
… trusting the system implicitly.

As long as mobile cyberspace becomes more ubiquitous, and security awareness does not outpace its growth
rates, it is reasonable to assume that large-scale Smartphone infections will appear … and proliferate. The era
of mobile cyber-warfare can therefore be considered to be a continuation of the traditional security model with
a majority of counter-measures, concepts, strategies, and principles applicable and exploitable by both
defenders and attackers.

160

Roman Jasek

Acknowledgements
This work was elaborated with the financial support of Research Project: NPU I No. MSMT-7778/2014, by the
Ministry of Education of the Czech Republic and also by the European Regional Development Fund under the
Project: CEBIA-Tech, No. CZ.1.05/2.1.00/03.0089.

References
Aldhaban, F.(2012) “Exploring the Adoption of Smartphone Technology: Literature Review”, Technology Management for

Emerging Technologies, pp. 2758—2770.
Apple, (2012) "iOS Technology Overview", [Online].

http://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneO
STechOverview.pdf

Apple, (2012) "iOS Security" [Online]. http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
Li, Z., Tian, J.-F. and Wang, F.-X. (2009) “Sandbox System Based on Role and Virtualization,” The First Int. Symp, Inf. Eng.

and Electr. Commer., Ternopil, pp. 342—346.
LINFO, (2005) "Proprietary Software Definition," [Online]. LINFO, http://www.linfo.org/proprietary.html
Lockheimer, H., (2012) "Android and Security," [Online], Android, https://googlemobile.blogspot.com/2012/02/android-

and-security.html
Malanik, D. and Kouril, L., (2013) "Honeypot as the Intruder Detection System", In Proceedings of the 17th WSEAS

International Conference on Computers, Kos (GR), pp. 96-101.
Malanik, D. (2010) "Nature Behavior in Stochastic Extreme Finding Methods", Annals of DAAAM for 2010 & Proceedings

ofthe 21st International DAAAM Symposium, Vienna, pp. 1205-1207.
Moore, G.E. (1965) “Cramming more components onto integrated circuits,” Electronics, vol. 38, pp. 4—7.
NVIDIA, (2010) "The Benefits of Multiple CPU Cores in Mobile Devices", [Online].

http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-whitepaper-0911a.pdf
Pettey, C. and Meulen, R. (2012) "Gartner Says Worldwide Sales of Mobile Phones Declined 3 Percent in Third Quarter of

2012; Smartphone Sales Increased 47 Percent", [Online], Gartner Inc,
http://www.gartner.com/newsroom/id/2237315

Raphael, R., (2012) "Exclusive: Inside Android 4.2’s powerful new security system" [Online].
http://blogs.computerworld.com/android/21259/android-42-security

Sarga, L. and Jasek R. (2012) “User-Side Password Authentication,” Proc. of 11th Int. Conf. on Inf. Warf. and Sec., Laval, pp.
237—243

Scarfone, K., Jensen, W. and Tracy, M. (2008) "Guide to General Server Security" [Online].
http://csrc.nist.gov/publications/nistpubs/800-123/SP800-123.pdf

Silberschatz, A., and Galvin, P. (1994) "Operating System Concepts", Boston: Addison-Wesley.
Voznak, M., Rezac, F. (2010) “Threats to voice over IP communications systems,” WSEAS Trans. Comp., vol. 9, pp. 1348—

1358.
Wang, Z. and Stavrou, A. (2012) "Google Android Platform: Introduction to the Android API, HAL and SDK", [Online].

http://cs.gmu.edu/~astavrou/courses/ISA_673_S12/Android_Platform_Extended.pdf

161

x�

and� a� PhD� in� Artificial� Intelligence� (Maastricht� University).� Tim's� research� focuses� on� the� operations�
technology�interplay�in�network�enabled�Command�&�Control�systems�and�in�offensive�cyber�operations.�

Virginia�A.�Greiman�Professor�of�Cyber� law�and�Cyber�Security�at�Boston�University�and�holds�academic�ap�
pointments�at�Harvard�University�Law�School�and�the�Kennedy�School�of�Government.��She�served�as�a�diplo�
matic�official�to�the�U.S.�Department�of�State�in�Eastern�Europe,�Asia�and�Africa�and�has�held�several�high�level�
appointments�with�the�U.S.�Department�of�Justice.�

Alan�Herbert� comes� from�East� London.�Alan�has� studied�at�Rhodes�University.�He�has�completed�Master�of�
Science�at�Rhodes�University�in�2014�in�Computer�Science.�Major�field�of�study:�Networks,�Security,�Network�
Simulation�and�Electronics.�Currently�studying�for�PhD�in�Computer�Science�and�Electronics�at�Rhodes�Univer�
sity�and�supervised�by�Prof.�Barry�Irwin.�

Steven�Hersee�is�a�PhD�student�at�the�Information�Security�Group�at�Royal�Holloway,�University�of�London.�He�
has�previously�served�in�the�Royal�Air�Force�and�his�primary� interests�are� in�the�geopolitics�of�cyber�security�
and�the�different�and�

Barry�Irwin�is�an�Associate�Professor�in�the�Department�of�Computer�Science�at�Rhodes�University,�South�Af�
rica.�He�established�and�has�led�the�Security�and�Networks�Research�Group�(SNRG)�since�its�founding�in�2003.��
He�holds�a�PhD�and�a�CISSP.�His�current�areas�of�research� include�network�traffic�analysis,�data�visualization�
and�webserver�malware.�

Suhaila�Ismail�is�a�PhD�student�in�Information�Assurance�Group�at�the�UniSA.�She�received�her�M.Sc.�in�Infor�
mation�Security�and�Computer�Forensics�from�UEL,�UK.�Currently�she�is� involved�in�research�of�Critical� Infra�
structures�and�SCADA�Systems�Security.�She�has�published�papers� in�Computer�Forensics,�Privacy,�Education�
and�SCADA�Systems�Security.�

Victor�Jaquire�has�been�in�ICT�and�Information�security�for�18�years�within�government�and�the�private�sector�
focussing� on� information� security� strategy,� performance� management,� business� management� and� develop�
ment,� and� operations.� His� professional� certifications� include� CISSP,� CISM� and� CCISO.� He� is� presently� in� the�
process�of�completing�his�Masters�thesis�in�Cyber�Security.�

Roman�Jasek�is�head�of�department�of�Informatics�and�Artificial�Intelligence�at�the�Faculty�of�Applied�Informat�
ics�in�Tomas�Bata�University�in�Zlin,�Czech�Republic.�He�deals�with�the�security�of�business�information�systems�
and�security�applications�on�the�mobile�platform.�The�team,�working�under�his�direction,�is�deals�with�indus�
trial�applications�using�artificial�intelligence.�

Trishee�Jobraj�is�currently�an�Information�Security�Liaison�at�Transnet�SOC�and�has�over�9�years’�experience�in�
the� IT� Support,� Internal� &� External� Audit� and� Information� Security.� She� also� manages� the� Membership� and�
Marketing�Portfolio� for� ISACA�SA.�Her�qualifications� include�a�BSC�degree� in�Computer�Science,� ITIL�Founda�
tion,�CISA�and�CRISC.�

Victor�Kebande�is�a�PhD�researcher�at�the�University�of�Pretoria�in�the�field�of�Cloud�Forensic�Readiness�at�the�
department�of�computer�science,�University�of�Pretoria.�He�is�a�member�of�institute�of�information�technology�
professionals�of�South�Africa�(IIPTSA)�and�an�active�member�of� Information�and�Computer�Security�Architec�
tures(ICSA)�research�group.�His�research�interest�are�in�cloud�forensics�and�internet�security��

Mohamed�Khan�is�a�senior�analyst�at�Transnet.�He�is�passionate�about�using�statistics�to�help�business�deliver�
value�through�analysis�of�big�data.�Author�of�one�book�and�a�frequent�speaker,�his�combination�of�actuarial�
science�and�information�security�give�him�a�unique�ability�to�find�novel�ways�to�analyse�data.�

Sam�Lefophane�is�currently�a�Smart�Card�development�engineer�in�the�Information�Security�Unit�of�Modelling�
and�Digital�Science�department�at�the�CSIR.�Sam’s�research�focus�is�in�RFID�signal�processing,�hardware�secu�
rity,�standardisation�and�intelligent�systems.��

Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.

