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Sandwich composites are well known for many years and its place among the construction materials have they 

deserved mainly due to very good mechanical properties related to their weight. These materials have been a 

subject for many researches, but very few of them were focused on the behavior of curved constructions in bend 

with respect to their specific shape (curvature). With increasing number of new materials and resulting possible 

material combinations, it is necessary to characterize performance of new prepared structures and also evaluate 

the effect of a shape on the behavior of sandwich constructions with regard to their material composition. Pre-

sented paper deals with an investigation of flat and curved beams of sandwich structures, which correspond by 

their material composition to those, used in transport industry. Specifically, the influence of curvature size on a 

change of bending properties of structures with specific material composition compared to flat constructions is 

evaluated. This influence is also investigated in terms of specimen clamping and type of bending test. Obtained 

results showed that properties of sandwich structures are dependent not only on size of curvature, bud also on 

core thickness. Moreover, these results can help designers, constructers or technologists with design, dimensioning 

or production of these materials for specific applications. 
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1 Introduction 

Sandwich panels (Fig. 1) belong to the group of layered composite materials consisting of two facings with identical 

or different thickness and core. The connection of individual layers is ensured by curing of impregnation resin (when 

using composite facings) or by addition of third layer between – adhesive. These layered structures are used in practice 

especially due to their high bending strength and stiffness, high durability and low weight. Because of these properties, 

they are ideally suited for structural applications mainly in aerospace, automotive and transportation [1,2,3]. 

The required mechanical and other properties of composite parts are often in practice defined by required values of 

properties according to the tests specified in technical standards, and also in standards created by individual companies. 

As an example, standards defined by companies Skoda Transportation and Bombardier can be mentioned, which have to 

be fulfilled by suppliers of composites into the transport industry. However, most of the mechanical tests are performed 

on flat specimens where a shape of final layered part is not taken into account. In practice, from the macroscopic point of 

view a lot of parts consist surfaces of various curvatures or other deviations from planar state [4]. Curved sandwich panels 

can achieve in certain applications higher values of strength than planar panels, but more often is the case when properties 

are rather decreased due to the shape factor (curvature). Main cause is the fact that a core of curved sandwich structure 

transmits transverse forces and also considerable normal stresses. These normal stresses can be a limiting factor in the 

design of sandwich structures [1, 5]. 

 

Fig. 1 Curved sandwich structure in bending 

For example Baba and Thoppul experimentally confirmed that smaller curvature of panel increases bending strength 

(in four-point bending) compared to the strength of planar panel, and further described that the curvature affects the 

vibrational behavior of sandwich structures [6]. Smith based on Airy stress function implemented into analytical calcula-

tion and subsequent comparison with FEM model describes that circumferential stresses in facings of curved sandwich 

beams are dependent on the geometry and material parameters as in case of planar beams. This claim is valid in those 

case where radius of curvature is considerably greater than thickness of the entire sandwich structure. Moreover, Smith 



found that radial stresses in a core of sandwich curved beams are mainly influenced by the radius of curvature (R), and 

only minimally by material properties and facing thickness [7,8]. 

For the production of sandwich panels or layered composite parts, many technologies can be used where only some 

can be applied for example for honeycomb core structures. Namely, vacuum infusion technology can be used only for 

parts containing foam or wood cores [9,10,11]. In general, with growing difficulty of part, technology complexity also 

grows due to rising tools (molds) cost and necessary qualification of operators. As a manufacturing technology for pre-

impregnated materials (prepregs), vacuum bagging in combination with resin curing in the oven or autoclave is commonly 

used. Parts cured by this prepreg technology exhibit identical properties in all sections of the panel without defects and 

unsaturated areas [12]. Furthermore, in case of all curved panels and parts, the undesirable panel spring-in after demolding 

from the tool can occur [13]. 

This research paper is focused on comparison and effect definition of sandwich beam curvature on its bending load 

capacity in different types of test with respect to sandwich material composition and core dimensions. Moreover, the 

research discuss the effect of beam clamping regarding its curvature. 

2 Experiment 

An experiment was divided into several steps, where material selection and production of sandwich panels were per-

formed in cooperation with industry sector. Sample (beam) preparation and mechanical testing were conducted at Uni-

versity laboratories.  

 

2.1 Material Selection and Sample Composition 

All further mentioned materials that were used for a production of sandwich structures, were selected with respect to 

specific area of application – public and rail transport. Materials (structures) used in this industry field have to satisfy 

increased demands on safety, fatigue resistance and FST (Fire-Smoke-Toxicity) properties. The faces (facings) of all 

created sandwich structures were made of pre-impregnated fabrics (prepregs) manufactured by Gurit – PH840-300-42. 

This prepreg is composed of E-glass fabric, impregnated by halogen-free modified phenolic resin. Specific properties can 

be seen in Tab. 1. 

Tab. 1 Selected properties of prepreg PH840-300-42 

PH840-300-42 

Prepreg areal weight [g/m2] 525 

Fabric areal weight [g/m2] 296 

Weave style 8H satin 

Resin content [w. %] 42 

Curing temperature [°C] 120 - 160 

In total, three representatives were chosen from wide range of available core materials. The first is polymeric foam 

AIREX T90.100. This foam with closed cells is prepared from PET (Polyethylene terephthalate), characterized by excel-

lent FST properties and fatigue lifetime, high thermal stability and chemical resistance. Next core material is also foam 

AIREX C70.55 from crosslinked PVC (Polyvinylchloride) also with closed cells. Main advantages of this foam are ex-

cellent chemical resistance, fire retardancy, good impact resistance and high resistance to fatigue. Last used material is 

COREMASTER honeycomb C2-4.8-48 made of aramid paper (hexagonal cell size 4.8 mm) impregnated by phenolic 

resin, which has excellent thermal stability and high dimensional stability under heat and also moisture. Tab. 2 shows 

selected properties of individual core materials. 

Tab. 2 Selected properties of core materials 

 AIREX T90.100 C2-4.8-48 AIREX C70.55 

Density [kg/m3] 110 48 60 

Compressive strength [MPa] 1.4 2.0 0.6 

Compressive modulus [MPa] 85 - 69 

Shear strength [MPa] 0.8 *0.54 – 1.12 0.85 

Shear modulus [MPa] 20 *23.0 – 37.0 22 

* values differ due to honeycomb cell orientation 

All described materials were used for a production of planar and curved sandwich beams. Facings were created from 

two layers of prepreg from each core side (facing thickness tf = 0.47 mm). For an experiment, where the effect of core 

material type was investigated, individual cores of 5 mm thickness were used in structures. Subsequently, PET foams 



(T90.100) of thickness h = 5, 10 and 20 mm were placed into sandwich structures to evaluate the impact of core thickness 

on bending properties of curved structures. 

2.2 Specimen Fabrication 

For the purpose of experiment, laminate mold (Fig. 2) was designed and manufactured comprising two different areas 

with the defined curvature, on which were subsequently manufactured highly precise curved panels. Curvature of panels 

is expressed by the ratio of radius R and core thickness h, thus R/h. Specifically, radiuses R1=200 mm and R2=400 mm 

were defined on this mold. Mold design follows all principles applicable to this type of molds. Positive wood model was 

used for the production of this mold where hand lay-up technology was applied using glass reinforcements impregnated 

by polyester resin system. Resulting laminate mold was coated with the protective gelcoat, and was fitted with the metal 

reinforcing frame to increase stiffness of entire mold. 

 
Fig. 2 Prepared manufacturing laminate mold 

Production of curved panels is in general more complex, thus it was necessary to modify foams of higher thickness 

(10 and 20 mm). Preforming by mean of heat was sufficient in case of 10 mm thick foam, however 20 mm thick foams 

were necessarily provided by pre-cut 1 mm thick grooves allowing foam to bend into the required curvature. 

According to used materials, vacuum bagging technology was selected for the production of sandwich panels, where 

the resin in prepreg was cured in oven under the mean of permanent vacuum (0.8 bar). Curing cycles began by gradual 

temperature increase during 30 minutes to temperature of 130 °C followed by curing itself at this temperature for 2 hours. 

Individual testing specimens (beams) were cut from produced panel using circular saw. 

2.3 Mechanical Testing 

Prepared beams of sandwich structures were tested in three-point, and four-point bending in case of both types, planar 

and curved beams. All bending tests were conducted on a ZWICK 1456 testing machine according to ASTM C393 stand-

ard, dealing directly with bending of sandwich structures. Dimensions of testing specimens (beams) were chosen regard-

ing to this standard, equal to 150 x 45 mm. As was described, testing was conducted in three-point (with significant impact 

of shear) and four-point (area of the constant bending moment - pure bending) beam set up. In both cases, supports 

distance between each other was set to 150 mm. Distance of acting supports in four-point bending test was set to 50 mm 

as 1/3 of clamping supports distance. Crosshead speed for both tests was equal to 5 mm/min, and all measurements were 

conducted at ambient temperature (25 °C). Bending force Fomax, representing bending load capacity of sandwich structure 

was the main parameter evaluated from all measurements.  

Individual specimens were tested in three configurations of beam clamping, which are depicted in following figure 

(Fig. 3). Symbols, given in this figure (0,+,-) correspond to the results description in graphs, where + symbol marks 

concave clamping, and – symbol convex beam clamping on supports.  

 
Fig. 3 Setup of sandwich beams for three point bending 

 

 



3 Results and Discussion  

The results of maximum bending force that represent bending load capacity of individual beams with selected cores 

in three-point bending are given in following graph (Fig. 4). As can be seen, structures with foam cores inside show lower 

load capacity than structures with Nomex honeycomb. Concavely clamped beams (+ symbol) exhibit lower decrease of 

Fomax in all cases in comparison to convexly clamped (- symbol). Curved sandwich structures with Nomex honeycomb 

show balanced values of evaluated parameter in the case of concavely clamped beams, where significant drop of load 

capacity by 10% is evident at convexly clamped strongly curved beams (R/h = - 40). Conversely, slight increase of load 

capacity at concavely clamped beams with PVC foam cores (C70.55) was measured. The highest arise of Fomax compared 

to planar beam by 8.3 % was evaluated for curved beam with ratio R/h = 40. On the other hand, the highest decline of 

load capacity by almost 25% was measured for an identical beam clamped convexly. This major decline is probably 

caused by low foam density together with low compressive strength and modulus because only local failure and loss of 

core stability were observed. Curved sandwich beams consisting T90.100 foam core show also decrease of load capacity, 

however in all cases are the values better (higher) than those measured for structures with PVC core. The highest drop by 

19% was again measured for convexly clamped curved beams. Despite local failure, core shear failure was observed, 

especially in strongly curved concavely clamped beams (R/h = 40). 

 

Fig. 4 Bending load capacity of individual sandwich  

samples (beams) in three point bending 

Following graph (Fig. 5) depicts results of maximal bending force measured in four-point bending test. In this test 

configuration, only concavely clamped beams were measured. Without influence of shear stress, which is considerable in 

three-point bending test, an increase of bending load capacity by 15 % for structures with honeycomb core was measured 

for both ratio of curvature. Sandwich structures with T90.100 core show decrease of load capacity by 7 % in case of 

strongly curved beams. Curved structures with C70.55 foam core did not exhibit significant change of load capacity in 

comparison to the planar structures in this type of bending test (value deviations correspond to measurement errors). 

 

Fig. 5 Bending load capacity of individual sandwich  

samples (beams) in four point bending 

Bars in last graph (Fig. 6) correspond to the values of bending load capacity of sandwich structures containing identical 

core type (foam T90.100), but varying in core thickness. As can be seen, curved structures with core thickness of 10 mm 

and 20 show an increase of bending load capacity compared to planar structures, thus different behavior than structures 

with 5 mm thick core. Identically to previous tests, even in case of these thicker core concavely clamped beams, higher 



values of measured parameters were determined. The highest increase of 20 % was measured for slightly curved con-

cavely clamped beams with 10 mm thick core. The thickest curved structures (with 20 mm core) showed maximal rise of 

load capacity by 7 % for convexly clamped slightly curved beams. 

 

Fig. 6 Bending load capacity of PET foam core sandwich specimens (beams) in three point bending 

4 Conclusion 

In this experimental study, bending load capacity of sandwich structures has been evaluated and results compared 

with respect to beam shape, material composition, clamping configuration, and beam dimensions. The comparison of 

foam cores of 5 mm thickness revealed that in test, where beams are subjected to combined loading by bend and shear, 

these structures show decrease of load capacity with increasing ratio of curvature. On the other hand, honeycomb core 

sandwich beams exhibit in general higher load capacity and more balanced values compared to foam core beams. Bending 

behavior of these honeycomb beams in four-point test was characterized by increase of measured parameter due to beam 

curvature. This is probably caused by higher compressive and shear stiffness of honeycomb core. As is apparent from all 

these results, curvature together with material composition of sandwich panels may have a significant effect on bending 

load capacity.  

Curved beams with higher thickness cores of same material composition exhibit always higher bending load capacity 

compared to identical but planar beams. This is apparently caused by a greater ability of thicker core to transfer shear 

force components from upper to lower facing, and thus prevent local deformation (indentation).  

Moreover, research showed that convex curved beams have in nearly all cases lower bending load capacity in com-

parison to concave beams. This fact should be considered especially during design stage of interior curved panels, for 

example interior facing panels in trains and buses. 
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