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Abstract. This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are 
the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential 
Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of 
chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of 
the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both 
compared approaches. Repeated simulations for Lozi map driving chaotic systems were performed on the simple 
benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the 
canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of 
ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG 
given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is 
faster. 
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INTRODUCTION 

This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are 
the adaptivity and embedding of complex chaotic dynamics. This paper is aimed at investigating the influence of 
chaotic dynamics to the performance of Differential Evolution (DE) algorithm [1] and comparing the advantages 
and disadvantages of chaotic approach with the adaptive techniques for used heuristic. The adaptive strategy of 
interest within this paper is the state of the art representative jDE. [2]. A chaotic approach generally uses the chaotic 
map in the place of a pseudo random number generator [3] (CPRNG). 

Recently the concepts of chaos driven heuristic have been more intensively studied. Several papers have been 
recently focused on the connection of DE and chaotic dynamics either in the form of hybridizing of DE with chaotic 
searching algorithm [4] or in the form of chaotic mutation factor and dynamically changing weighting and crossover 
factor in self-adaptive chaos differential evolution (SACDE) [5]. The work [6] uses chaos for the initialization of DE 
(CIDE algorithm). The focus of our research is the direct embedding of chaotic systems in the form of chaos pseudo 
random number generator (CPRNG) into the DE (ChaosDE) as introduced firstly in [7]. 

Also the PSO (Particle Swarm Optimization) algorithm with elements of chaos was introduced as CPSO [8]. 
Later on, the chaos embedded PSO with inertia weigh strategy was closely investigated [9], followed by the 
introduction of a PSO strategy driven alternately by two chaotic systems [10]. Recently the chaos driven firefly 
algorithm has been introduced [11], chaotic differential bee colony[12]and the concept of chaos driven DE has 
become more intensively studied [13], [14]. 

USED HEURISTIC 

Differential Evolution is a population-based optimization method that works on real-number-coded individuals 
[1], [15]. DE is quite robust, fast, and effective, with global optimization ability. A simple and very efficient 
adaptive DE strategy, known as jDE, was introduced by Brest et al. [2]. This adaptive strategy utilizes basic 
DE/rand/1/bin scheme[1] with a simple adaptive mechanism for mutation and crossover control parameters (F and 
Cr). The ensemble of these two control parameters is assigned to each individual of the population and survives if an 
individual is successful. The initialization is fully random with uniform distribution for each solution in population. 
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If the new generated solution is not successful; the new (possibly) mutated control parameters disappear together 
with not successful solution [16]. 

EXPERIMENT DESIGN 

The general idea of basic ChaosDE and CPRNG is to replace the default pseudorandom number generator 
(PRNG) with the discrete chaotic map.In this research, direct output iterations of the chaotic maps were used for the 
generation of real numbers in the process of crossover inside DE and for the generation of the integer values used 
for selection of individuals from the population. 

Previous successful experiments with chaos driven PSO and DE algorithms have manifested that very promising 
experimental results were obtained through the utilization of Lozi map. Mathematical description of aforementioned 
chaotic map is given in [17]. 

For the purpose of ChaosDE, Canonical DE and jDE investigation on DE performance, Schwefel’s test function 
(1), shifted 1st De Jong’s function (2), shifted Ackley’s original function (3), shifted Rastrigin`s function (4) were 
selected. Dimension was set to 30. 
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Function minimum: Position for En: (x1, x2…xn) = s; Value for En: y = 0, xi<-5.12, 5.12>. 
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Function minimum: Position for En: (x1, x2…xn) = (0, 0,…,0); Value for En: y = 0, xi-30,30 
 

 



dim

1

2 )2cos(10)(dim10)(
i

iiii sxsxxf  . (4) 

 
Function minimum: Position for En: (x1,x2…xn) = s; Value for En: y = 0, xi<-5.12, 5.12>. 

 
Wheresiis a random number from the 90% range of function interval; s vector is randomly generated before each 

run of the optimization process. 
Experiments were performed in the combined environments of Wolfram Mathematica and C language, canonical 

DE and jDE therefore used the built-in C language pseudo random number generator Mersenne Twister C 
representing traditional pseudorandom number generators in comparisons. All experiments used different 
initialization, i.e. different initial population was generated in each run. 

Within this research, one type of experiment was performed. It utilizes the maximum number of generations 
fixed at 1500 generations. This allowed the possibility to analyze the progress of all studied DE variants within a 
limited number of generations and cost function evaluations. Parameter setting was following: F = Cr = 0.4 for 
ChaosDE, F = 0.5, Cr = 0.9 for canonical DE, parameters a = 1.4, b = 0.3 for Lozi map (See[17]), jDE has utilized 
the recommended settings as in [16]. 

RESULTS 

Statistical results of the selected experiments are shown in Tables1-4, which represents the simple statistics for 
Cost Function (CF) values, e.g. average, minimum values representing the best individual solution, standard 
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deviations and execution time for all 50 repeated runs of DE/ChaosDE/jDE.The bold values within the all Tables 1-
4 depict the best obtained results. 
 

TABLE 1.  Statistical results for Schwefel’s test function.
Algorithm Avg. CF Min CF Std. dev Time 
Canonical DE -5384.8 -6286.55 337.628 23.7968 
Chaos DE Lozi map -12412.9 -12569.5 147.985 20.8750 
jDE -12569.5 -12569.5 0.0035 24.4531 

 
TABLE 2.  Statistical results for shifted 1st De Jong’s function.

Algorithm Avg. CF Min CF Std. dev Time 
Canonical DE 2.4E-21 1.73E-22 3.17E-21 16.1093 
Chaos DE Lozi map 0 0 1.67E-27 14.5312 
jDE 3.18E-15 6.95E-16 3.83E-15 18.8125 

 
TABLE 3.  Statistical results for shifted Ackley’s original function.

Algorithm Avg. CF Min CF Std. dev Time 
Canonical DE 1.78E-10 3.40E-11 1.03E-10 19.2031 
Chaos DE Lozi map 0.0117 3.99E-15 0.0642 17.6250 
jDE 2.48E-07 1.26E-07 7.94E-08 22.2187 

 
TABLE 4.  Statistical results for shifted Rastrigin`s function.

Algorithm Avg. CF Min CF Std. dev Time 
Canonical DE 168.5168 126.1883 16.2593 19.2968 
Chaos DE Lozi map 15.8374 4.9521 14.7125 16.8125 
jDE 32.4262 24.2600 3.6793 21.0625 

CONCLUSION 

This work was aimed at the deeper analysis of the chaotic dynamics directly injected into the DE. This paper 
compared the ChaosDE with state-of-the art adaptive representative, which is simple adaptive jDE.This research is 
focused mainly on the possible disadvantages and advantages of both compared approaches. 

Results lend weigh to the argument that through utilization of simple discrete chaotic map in the place of pseudo 
random number generator inside heuristic, the chaos embedded heuristic may in some results attributes outperform 
even the adaptive strategies. The findings can be summarized as follows: 

 The high sensitivity of the DE to the internal dynamics of the CPRNG is fully manifested within all four 
case studies. 

 With used simple test functions, the performance of ChaosDE is better in the most cases than jDE and 
Canonical DE. This makes the ChaosDe concept easy tu use (plug-in) for (simple) real optimization tasks. 

 Due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster 
selection of unique individuals from population, ChaosDE is faster. 

 jDE is advantageous from the point of view of stable performance (very low std. dev value) and easy 
parameter settings thanks to their adaptivity. 
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