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Abstract 

High pressure methods have become a useful tool for studying protein structure and stability. 

Using them, various physico-chemical processes including protein unfolding, aggregation, 

oligomer dissociation or enzyme-activity decrease were studied on many different proteins. 

Oligomeric protein dissociation is a process that can perfectly utilize the potential of high-

pressure techniques, as the high pressure shifts the equilibria to higher concentrations making 

them better observable by spectroscopic methods. This can be especially useful when the 

oligomeric form is highly stable at atmospheric pressure. These applications may be, 

however, hindered by less intensive experimental response as well as interference of the 

oligomerization equilibria with unfolding or aggregation of the subunits, but also by more 

complex theoretical description. In this study we develop mathematical models describing 

different kinds of oligomerization equilibria, both closed (equilibrium of monomer and the 

highest possible oligomer without any intermediates) and consecutive. Closed homooligomer 
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equilibria are discussed for any oligomerization degree, while the more complex 

heterooligomer equilibria and the consecutive equilibria in both homo- and heterooligomers 

are taken into account only for dimers and trimers. In all the cases, fractions of all the relevant 

forms are evaluated as functions of pressure and concentration. Significant points (inflection 

points and extremes) of the resulting transition curves, that can be determined experimentally, 

are evaluated as functions of pressure and/or concentration. These functions can be further 

used in order to evaluate the thermodynamic parameters of the system, i.e. atmospheric-

pressure equilibrium constants and volume changes of the individual steps of the oligomer-

dissociation processes.  

 

Keywords: oligomeric protein, high pressure, theory, equilibrium, inflection point  
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1. Introduction 

High-pressure methods became a common tool of investigation of structure and function of 

proteins during the last two decades (Gross and Jaenicke, 1994; Royer, 1995; Mozhaev et al., 

1996; Silva et al., 2001; Marchal et al., 2005; Rivalain et al., 2010; Silva et al., 2014). In some 

cases they are used to study the properties of proteins from marine organisms living deeply 

under the sea level (Shrestha et al., 2015), but vast majority of these studies is aimed at 

elucidation of the structure-function relationships of proteins from common organisms 

extrapolating their high-pressure behavior to the atmospheric pressure.  High-pressure 

methods are used to investigate protein denaturation, unfolding, conformational changes, 

enzyme kinetics, etc., but they also have valuable application in studying quaternary structure 

and equilibria of oligomeric proteins. Many oligomeric proteins have been investigated by 

high-pressure methods, including those of low number of subunits, mainly dimers (Paladini 

and Weber, 1981; Silva et al., 1986; Ruan and Weber, 1988; Erijman et al., 1993; Kornblatt et 

al., 2004; Marchal et al., 2012; Ingr et al., 2015) and tetramers (Jaenicke and Koberstein, 

1971; Royer et al., 1986; Ruan and Weber, 1989; Pin et al., 1990; Devillebonne and Else, 

1991; Ruan and Weber, 1993; Girard et al., 2010), hexamers (Foguel and Weber, 1995), 

higher oligomers and viral capsids (Silva and Weber, 1988; Silva et al., 1989, 1992; Da Poian 

et al., 1993; Silva et al., 1996; Weber et al., 1996) or prion oligomers (Torrent et al., 2015), 

protein aggregates with less organized structure like casein micelles (Gebhardt et al., 2005, 

2006, 2011) and even polymeric structures, e.g. TMV-virus (Bonafe et al., 1998) or 

microtubules and microfilaments (Messier and Seguin, 1978; Kobori et al., 1996; Nishiyama 

et al., 2010). Structural changes of oligomeric proteins prior to subunit dissociation were 

studied, too (Cioni and Strambini, 1996). These studies were concerned with different 

structural and functional features and in some cases the key thermodynamic parameters, 

especially the volume change of the oligomer dissociation V  and the atmospheric pressure 
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equilibrium constant atmK , were determined  (Silva et al., 1986; Ruan and Weber, 1988, 

1989; Pin et al., 1990; Dapoian et al., 1993; Erijman et al., 1993; Ruan and Weber, 1993; 

Foguel and Weber, 1995; Kornblatt et al., 2004; Ingr et al., 2015). These studies exploit the 

fact that the high pressure favors a process accompanied with a negative change of the total 

volume of the system. They show that the oligomeric form is destabilized by high pressure, 

i.e. the total volume of the monomers is lower than that of the oligomer, which is considered 

as a general rule for the oligomer dissociation processes supported by whole the experimental 

evidence. This fact allows us to study the dissociation equilibrium even for oligomers highly 

stable at atmospheric pressure and dissociating only at very low concentration where the 

signal of the detection methods is insufficient (Royer, 1995). Application of high pressure is 

most often coupled with different spectroscopic and fluorometric detection techniques, but 

methods of light (Meier and Kriegs, 2008) or neutron  (Shrestha et al., 2015) scattering, as 

well as optical microscopy (Nishiyama et al., 2006, 2010) or gel electrophoresis (Paladini et 

al., 1987, 1994), can be used, too. In addition, properties of the monomeric forms of highly 

stable oligomers as well as intermediate structures of protein unfolding can be studied by 

high-pressure X-ray crystallography and NMR (Collins et al., 2011).    

Application of high pressure can induce various structural changes from oligomer dissociation 

via reversible unfolding to an irreversible aggregation, sometimes observable at a single 

protein (Dumay et al., 1994; Seefeldt et al., 2005; Ingr et al., 2015). It is, therefore, necessary 

to be able to distinguish among these processes, especially unfolding and oligomer 

dissociation. The processes can be identified according to the concentration dependence of 

their transition curves. As was shown in numerous experimental studies (Lange et al., 1996; 

Mozhaev et al., 1996; Ruan et al., 2001; Royer, 2002; Rouget et al., 2010, 2011; Cioni et al., 

2014), the transition curve of a reversible folding-unfolding equilibrium, i.e. the dependence 
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of the fraction of one of the forms on pressure, is a concentration independent sigmoid with 

the inflection point pressure  

atmK
V

RT
p lninf


  (1) 

and the fraction of the unfolded form u  is ½ (for the proof follow the derivation given by 

eqns 3-14 below for n=1). The slope of the transition curve in the inflection point is 

.
4RT

V

dp

d u 



 (2) 

These two quantities allow us to determine the thermodynamic characteristics V  and atmK  

of the process. On the contrary, the transition curve of the oligomer-monomer equilibrium 

moves towards higher pressures when the concentration grows. This shift can be used to 

determine the volume change of the process V  and the equilibrium constant K  for any 

pressure, including the atmospheric pressure equilibrium constant atmK , as was previously 

shown for several oligomeric proteins (Ruan and Weber, 1988, 1989, 1993; Foguel and 

Weber, 1995; Kornblatt et al., 2004; Ingr et al., 2015). In addition, processes with negative 

V  in the direction of association of monomeric subunits are also known. They are usually 

aggregations with high and not precisely defined number of monomeric units, as was 

demonstrated on the case of myoglobin (Gebhardt et al., 2003). 

Besides many experimental studies, some theoretical works dealing with the thermodynamics 

of oligomeric-proteins dissociation under high pressure were published as well (Weber, 1986, 

1993). In this paper we provide a contribution to the theoretical analysis of some of these 

equilibria with the stress on the detailed description of the transition curves, especially their 

significant points, i.e. inflection points and extremes, which may be used as a versatile tool 

for evaluation of eventual future experiments with oligomeric proteins.  
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2. Results and discussion 

2.1.General assumptions.  

In this work we describe closed equilibria (i.e. equilibria between the highest oligomer and 

the monomer without any intermediate states) of homooligomers of any degree, heterodimer 

and heterotrimers, and consecutive equilibria (containing intermediate oligomers of lower 

degree than the highest one) of homo- and heterotrimer. In all the cases only pressure-

independent negative volume changes of oligomer dissociations will be considered as it seems 

to be a good approximation supported by the overall experimental evidence as well as our 

recent theoretical simulation (Kutalkova et al., 2014).  

The parameters that should be determined using the proposed theoretical background are 

especially the volume changes V  accompanying the individual oligomer-dissociation steps 

and the atmospheric-pressure equilibrium constants of these processes atmK . Their 

determination is based on the analysis of the transition curves – i.e. responses of the 

experimental device to the system under changing pressure at a given concentration or, in a 

reciprocal approach, changing concentration at a given pressure. 

For simplicity, the concentrations of individual chemical entities are denoted by simple 

capital letters with intuitive meaning (M – monomer, A – subunit A, D – dimer, etc.) equal 

with those used in the respective chemical equations. All the concentrations are considered as 

dimensionless relative quantities related to the standard concentration of 1 mol dm
-3

. 

Accordingly, the equilibrium constants are dimensionless, too. As many of the mathematical 

derivations are rather lengthy, they are presented in Electronic Supplementary Information, 

hereafter referred to as ESI. 

2.2.Closed equilibria systems. 
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2.2.1. Homooligomers  

Consider the equilibrium between a homooligomeric protein nM , consisting of n  monomeric 

subunits, and its subunits M  described by a chemical equation 

.MnM n



  (3) 

The equilibrium constant of this process for a given pressure p  is  

 
 

.
n

n

M

M
pK   (4) 

Denoting the total protein concentration related to the monomeric form 0M  and considering 

the balance equation  

,0 nMnMM   (5) 

the relation between 0M  and the monomer fraction 0/ MM  is given by the equation 

   
.0

1

0

1

0


 nn

n

M

pK

M

pK
n   (6) 

The reaction change of the Gibbs energy is 

VpGG atm   (7) 

where atmG  is the same quantity at atmospheric pressure and atmppp   is the difference 

between the current and atmospheric pressures. For simplicity, we approximate p  by p  

because atmp  is negligible in comparison with p , which is in the order of tens to hundreds 

MPa in all relevant experiments. As 

  






 








 








 


RT

Vp
K

RT

VpG

RT

G
pK atm

atm expexpexp  (8) 



8 
 

where R  is the molar gas constant and T  is the thermodynamic temperature, eqn (6)  

becomes 

  .01

exp

1

0










 






n

atm

n

M

RT

Vp
K

n  (9) 

 

 

 

 

 

Figure 1. Monomer-dimer equilibrium at high pressure. Fraction of monomer  is plotted as a 

function of pressure for different total concentrations of monomer. Katm = 10
-6

, V = –50 ml 

mol
-1

, R = 8.314 J mol
-1

K
-1

, T=300 K; ­­­­­ M0 = 10
-3

; ·­·­·M0 = 10
-4

; ·····M0 = 10
-5

. Inflection 

points of all the curves lie on the horizontal dotted line – eqn (15). Concentrations are given in 

mol l
-1

. 

 

This equation can be solved analytically for   as a function of pressure only for 4n  and 

only for 2n  it is relatively simple. In this case 

 





















RT

Vp

atm

RT

Vp

atm

eK

M

M

eK
p 0

0

8
11

4
  (10) 
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(Figure 1). However, it is generally possible to express K   as a function of   

 
 
  

.
1

exp 1

0












 
 n

n

atm M
p

pn

RT

Vp
KpK




 (11) 

Based on this equation atmK  and V  can be determined provided that  p  is known for a 

series of pressure points and  pK  can be determined for each of them, as was shown 

previously (Ruan and Weber, 1988, 1989, 1993; Foguel and Weber, 1995; Kornblatt et al., 

2004; Ingr et al., 2015). In this case  

  .lnln
RT

Vp
KpK atm


  (12) 

The expression RTV /  is thus the slope of the linear dependence of Kln  on pressure 

while atmKln  is its intercept on y-axis. A drawback of the experimental method based on eqn 

(12) may arise from the necessity to measure the signal for the whole pressure range in order 

to reach the extreme cases, i.e. practically pure monomer on one side and oligomer on the 

other side. This may be difficult for several reasons. First, the “pure” oligomer region may be 

experimentally inaccessible if the oligomer is not highly stable. Second, the “pure” monomer 

region may be biased by interference of the oligomer dissociation with other structural 

transitions, unfolding or aggregation, that often take place at high pressure. Finally, the 

spectral response can drift with pressure in a manner independent of structural transitions, 

often differently for the monomer and oligomer cases.  

A more robust evaluation method based on the inflection points of the transition curves can be 

derived from eqn (9) expressing p  as a function of :  

 
 

  .ln1ln
1

ln 0M
V

RT
nK

V

RT

nV

RT
p atmn 













  (13) 
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It can be shown (see ESI, section S-1) that its inflection point and the corresponding value of 

  are given by the expressions  

      0inf ln1lnln1
2

1ln1 M
V

RT
nK

V

RT
n

n
nn

V

RT
p atm

























  (14) 

.
1

inf





n

nn
  (15) 

Obviously, for a given n  the inflection point occurs at constant value of   independently of 

other parameters – this value moves towards 1 with growing number of subunit (Figure S-2). 

This effect can be observed e.g. in (Bonafe et al., 1994) – see figure 4 and solid circles in 

figure 5 thereof – where a protein consisting of 20 identical subunits is studied. 

Eqn (14) represents the inflection point pressure as a linear function of the logarithm of the 

total protein concentration (expressed as monomer). The thermodynamic parameters V  and 

atmK , eventually atmatm KRTG ln , can be obtained by a linear regression of this function. 

Using previously published works it can be shown that this approach gives results in a good 

agreement with those reported by the authors (Paladini and Weber, 1981; Ruan and Weber, 

1988; Da Poian et al., 1993; Foguel and Weber, 1995) in spite of the fact that the published 

transition curves were usually measured only at two different concentrations. Certainly, if the 

transition curves can be reliably detected in the whole range of  , then a single curve 

measured at any concentration is, in principle, sufficient to evaluate V  and atmK  in accord 

with eqn (12). However, if the limits of the transition curve for   tending to 0 and 1 cannot 

be well detected, but the central part containing the inflection point is still observable, then 

the evaluation method based on eqn (14) is an optimal choice, although the curve should be 

measured for more concentrations. As an example, consider the data by Ruan and Weber 

(Ruan and Weber, 1988) who determined, according to their figure 2, the thermodynamic 
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parameters for dissociation of hexokinase dimer of 
1150  molmlV  and 

10101.6 atmK . Using the same plot, we can estimate the inflection-point pressures as 140 

MPa for 1.7 M dimer and 100 MPa for 0.17 M dimer. Linear regression according to eqn 

(14) then gives 
1131  molmlV  and 10109.8 atmK  showing a good agreement of 

both the methods. (For more detailed analysis including the reproduced original plot see ESI, 

section S-15.) However, this comparison must be taken with caution since only two points 

were taken into account. 

Actually, when atmG  is not too small in absolute value, i.e. atmK  is substantially different 

from 1, the first term in eqn (14) is negligible since the expression in brackets is within the 

range (-1; 1) for all values of n  up to 59 (for 8n it is 1.00003) and even further it does not 

grow dramatically. Thus, in these cases the y-axis intercept can be in a good approximation 

identified with VKRT atm /ln . (For instance, when 310atmK , i.e. 11,17  molkJGatm  at 

25 °C, the value of 9.6ln atmK  and thus the error of this quantity is at maximum 17% and 

is decreasing when the oligomer is more stable at atmospheric pressure.) It may be useful, 

especially for oligomers with higher number of subunits n , to define a volume change related 

to one monomer as  

./ nVVmon   (16) 

The slope of eqn (14) then takes the form    monVRTnn  //1 , which tends to 

monVRT  /  for higher n. Hence, it is possible to determine the volume change per monomer 

unit for equilibria of higher oligomers even when the number of subunits n  is not known. It 

should, however, be known in order to determine V  eqn (16) and atmK . 

Although for most of proteins n  is usually known, its determination can be desirable for 

many-subunits, e.g. micelles or viral capsids. It can be estimated from eqn (15), but it is 
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necessary to measure the transition curve in a wide pressure range in order to see both the 

limit cases, complete oligomerization and complete monomerization of the system. The 

former state can be usually assumed at the atmospheric pressure. The latter state may be 

approximated by the point of maximum curvature of the transition curve which is always very 

close to 1 , especially for high values of n  (see Figure S-2). The region behind this point 

can be used to identify the biasing trend of the curve. This determination should be, however, 

considered only as a rough estimate, due to the eventual limited sensitivity of the 

experimental methods.  

2.2.2. Heterodimer 

Heterodimer is the only system consisting of non-equal subunits that necessarily undergoes 

only one-step oligomerization equilibrium 

.BAD 

  (17) 

 It is, therefore, interesting to compare it with homodimer. Considering the dissociation 

constant definition 

D

AB
K d   (18) 

 and balance equation 

DAA 0  (19) 

(in case that the total concentrations of subunits A and B are different, we consider, without 

the loss of generality, A to be the lower concentrated one), the fraction of monomeric form of 

A defined as  

0A

A
A   (20) 
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is obtained as a solution of the quadratic equation 

     .000

2

0  pKpKABA ddAA   (21) 

This equation gives, after introducing the pressure dependence of dK given by eqn (8), a 

solution 

 














































2

,00

0,

0

,00 4
11

2
RT

Vp

atmd

RT

Vp

atmd
RT

Vp

atmd

A

eKBA

AeK

A

eKBA
p  (22) 

which is plotted in Figure 2. 
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Figure 2.  A: Fraction of the monomeric subunit A as a function of pressure for heterodimer at 

stoichiometric (·····) and non-stoichiometric (·­·­·) ratio of concentrations of subunits A and 

B and for a homodimer (­­­­­).  Kd,atm = 10
-6

; V = -50 ml mol
-1

; R = 8,314 J mol
-1

K
-1

; T = 

300 K; B0 = 10
-3

 mol l
-1

; M0 = 10
-3

 mol l
-1

. In case of non-stoichiometric ration of A and B the 

concentration A0 = 10
-8

 mol l
-1

.
 
B: Linear dependences of inflection points of transition curves 

plotted in panel A on the monomer concentration. 

 

In analogy with the previous section, an equation can be derived that gives the value of the 

inflection point A  as a function of 0A  and 0B : 

.0122322324
0

0

2

0

2

0

0

0

2

0

2

0

0

0234 

























A

B

A

B

A

B

A

B

A

B
AAAA   (23) 

This equation is of the fourth order and thus difficult to solve in general. However, the 

equlibrium can be studied in two significant special cases, for 00 BA   and for 00 AB  . In 

the former case, which corresponds e.g. to the work with isolated natural heterodimeric 

protein, the linear and absolute terms in A  vanish and the equation gets, after some algebra, 

the form  

.0242  AA   (24) 

with the solution 586.022inf, A , equally as in the case of a homodimer. The 

corresponding inflection point pressure is 

.lnln
2

21
ln 0,inf A

V

RT
K

V

RT

V

RT
p atmd



















 


  (25) 

Thus, this expression is completely analogous with eqn (14) and can be analyzed in the same 

way in order to obtain atmdK ,  and V . Its use can be verified e.g. on the published data by 

Foguel and Weber (Foguel and Weber, 1995), see ESI, section S-15. The only difference is in 

the logarithmic expression in the first term which has the value of ln(1.207) = 0.188 for 

heterodimer, while for homodimer it is equal to    504.04/21ln  .  
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The latter case, in which 00 AB  , can be helpful especially at systems of less stable 

heterodimers where the individual subunits can be either purified or prepared by recombinant 

expression as independent proteins. In this case the concentration of subunit B can be 

considered as a constant of the value 0B . Then 

1

1

,

0 




RT

Vp

atmd

A

e
K

B
  (26) 

and the inflection point pressure of this transition curve is  

0,inf lnln B
V

RT
K

V

RT
p atmd





  (27) 

(for derivation see ESI, section S-2) which allows us to determine V  and atmdK ,  by means 

of a linear regression. Thus, the analysis of a heterodimer is formally equal to that of a 

homodimer, but the subunit difference gives us two ways how to easily determine the 

parameters atmdK ,  and V , one suitable especially for highly stable heterodimers and the 

other one for heterodimers of lower stability.  

2.2.3. Closed equilibria of heterotrimers.  

As the subunits of heterotrimers are not equal, it is generally reasonable to consider the 

equilibria in heterotrimers as consecutive. For instance, the dissociation of a trimer consisting 

of two subunits A and one subunit B (A2B heterotrimer) may consist of the trimer dissociation 

to A2 and B followed by the dissociation of the A2 dimer. However, the consecutive 

equilibrium changes to the closed equilibrium when the dimer is unstable in comparison with 

the trimer, and therefore the dimeric subsystem A2 exists in substantial amount only in a 

complex with the subunit B. In this case the following equilibrium can be expected 

,2 BAT 

  (28) 
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which is characterized by the dissociation constant  

T

BA
K

2

  (29) 

and the balance equations 

.;2 00 TBBTAA   (30) 

Let us define the fractions of monomer and trimer as fractions of the subunit A present in one 

or another state, i.e. 

.
2

;
00 A

T

A

A
TM    (31) 

At the stoichiometric ratio of the subunits A and B the position of the inflection point of the 

trimer-monomer transition curve is given by a linear function 

0inf ln2
9

346
ln A

V

RT
K

V

RT
p atm
















 


  (32) 

which can be used to determine the thermodynamic parameters atmK  and V . 

Analogously, a similar derivation can be carried out for the heterotrimer composed of three 

different subunits A, B and C (ABC heterotrimer). Considering the stoichiometric ratios of all 

three subunits, we arrive at a solution identical to the A2B heterotrimer, the inflection point 

pressure is thus given by eqn (32).  

2.3.Consecutive-equilibria systems.  

2.3.1. Homotrimer.  

If an oligomer consists of more than two subunits, its association or dissociation can run 

consecutively, i.e. via one or several intermediate states. The situation was partially described 

by Ruan and Weber (Ruan and Weber, 1989) for the system homotetramer-dimer-monomer 
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and later even studied experimentally by Foguel and Weber on a hexamer-dimer-monomer 

system (Foguel and Weber, 1995). In both the cases, however, the dimer was very unstable 

and thus the equilibrium was reduced to the closed one, as discussed below. Even simpler 

example is a protein consisting of three identical subunits (homotrimer) which can 

consecutively dissociate from trimer (T ) to dimer ( D ) plus monomer ( M ) and the dimer can 

further dissociate to monomers: 

.2; MDMDT 





   (33) 

At a given pressure the equilibrium of the system is described by the trimer and dimer 

dissociation constants 

.;
2

D

M
K

T

DM
K DT   (34) 

If the total concentration of the protein expressed in terms of the monomeric units is 0M , the 

balance equation  

TDMM 320   (35) 

is valid. The mathematical model derivation is complicated by the presence of the two 

pressure-dependent equilibrium constants. It is, therefore, convenient to solve the problem for 

a fixed pressure and then introduce the pressure dependence to the obtained solutions.  

Let us define the fractions of monomeric units present in the forms of monomer, dimer and 

trimer 

,
3

;
2

;
000 M

T

M

D

M

M
TDM    (36) 

respectively. Considering this, the following equation is obtained (for derivation see ESI, 

section S-4): 
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.1
8

3
2 2

0

3

0


T

DD

D
DD

K

MK

M

K 



 (37) 

This equation can be solved for D  as a function of 0M  and, consequently, M and T  can 

be determined, too. However, as the equation is of the third degree in D , the solution is 

rather cumbersome and complicated to understand. Nevertheless, the equation was solved by 

the Wolfram Mathematica 9 package and the result is shown in Figure 3 for several sets of the 

thermodynamic parameters. The complete expression is given in ESI, appendix S-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Consecutive equilibrium of homotrimer 

– concentration dependence. Fractions of trimer, 

dimer and monomer as functions of protein 

concentration (expressed as a monomer) for 

different sets of thermodynamic parameters. A: 

= 10
-5

; = 10
-4

; = -20 ml mol
-1

; 

= -50 ml mol
-1

; B: = = 10
-4

; 

= -50 ml mol
-1

; = -20 ml mol
-1

. In both 

cases T = 298,15 K;  p = 150 MPa; ····· 

monomer; ·­·­· dimer; ­­­­­ trimer.  

Figure 4. Consecutive equilibrium of 

homotrimer – pressure dependence. Fraction 

of trimer, dimer and monomer as functions 

of pressure for different sets of 

thermodynamic parameters. A: = 10
-5

; 

= 10
-4

; = -20 ml mol
-1

; = -50 

ml mol
-1

; B: = = 10
-4

; = -50 

ml mol
-1

; = -20 ml mol
-1

; In both cases T 

= 298,15 K;  -log M0 = 2.5; ····· monomer; 

·­·­· dimer; ­­­­­ trimer.  

A A 

B 
B 
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Figure 3. Consecutive equilibrium of homotrimer – concentration dependence. Fractions of 

trimer, dimer and monomer as functions of protein concentration (expressed as a monomer) 

for different sets of thermodynamic parameters. A: atmDK , = 10
-5

; atmTK , = 10
-4

; DV = -20 ml 

mol
-1

; TV = -50 ml mol
-1

; B: atmDK , = atmTK , = 10
-4

; DV = -50 ml mol
-1

; TV = -20 ml mol
-1

. 

In both cases T = 298,15 K;  p = 150 MPa; ····· monomer; ·­·­· dimer; ­­­­­ trimer.  

Figure 4. Consecutive equilibrium of homotrimer – pressure dependence. Fraction of trimer, 

dimer and monomer as functions of pressure for different sets of thermodynamic parameters. 

A: atmDK , = 10
-5

; atmTK , = 10
-4

; DV = -20 ml mol
-1

; TV = -50 ml mol
-1

; B: atmDK , = atmTK , = 

10
-4

; DV = -50 ml mol
-1

; TV = -20 ml mol
-1

; In both cases T = 298,15 K;  -log M0 = 2.5; ····· 

monomer; ·­·­· dimer; ­­­­­ trimer.  

 

 

If the pressure dependence of DK  and TK  is introduced in analogy with eqn (8) with atmDK ,  

and atmTK ,  being their atmospheric-pressure values and DV  and TV  the respective volume changes, 

fractions of the individual states can be plotted also as functions of pressure. Figure 4 presents 

this plot for two different sets of parameters.  
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Figure 5. Dimer fraction as a function of pressure and concentration for different sets of thermodynamic 

parameters. A: Volume change (in absolute value) of the trimer-dimer (TD) transition is bigger than that 

of the dimer monomer (DM) transition – the separation of the TD and DM transitions is growing with 

increasing pressure. = = 10-5; = -50 ml mol
-1

; = -60 ml mol
-1

; B: Opposite 

situation than in panel A – the separation of the transitions is decreasing with growing pressure =

= 10-4; = -60 ml mol
-1

; = -50 ml mol
-1

; C: Volume changes of both the transitions are 

equal, the separation of TD and DM transitions is pressure-independent. = = 10-4; =

= -50 ml mol
-1

; D: Absolute value of  is more than twice bigger than absolute value of  – 

no cross sections of the 3D plot of at constant concentration  has maximum – it only decreases 

with growing pressure. = = 10-5; = -50 ml mol
-1

; = -20 ml mol
-1

. In all cases T = 

298,15 K. 

D 

B 

C 

A 
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Figure 5. Dimer fraction as a function of pressure and concentration for different sets of 

thermodynamic parameters. A: Volume change (in absolute value) of the trimer-dimer (TD) transition 

is bigger than that of the dimer monomer (DM) transition – the separation of the TD and DM 

transitions is growing with increasing pressure. atmDK , = atmTK , = 10
-5

; DV = -50 ml mol
-1

; TV = -

60 ml mol
-1

; B: Opposite situation than in panel A – the separation of the transitions is decreasing 

with growing pressure atmDK , = atmTK , = 10-4; DV = -60 ml mol
-1

; TV = -50 ml mol
-1

; C: Volume 

changes of both the transitions are equal, the separation of TD and DM transitions is pressure-

independent. atmDK , = atmTK , = 10-4; DV = TV = -50 ml mol
-1

; D: Absolute value of DV  is more 

than twice bigger than absolute value of TV  – no cross sections of the 3D plot of D at constant 

concentration 0M  has maximum – it only decreases with growing pressure. atmDK , = atmTK , = 10-5; 

DV = -50 ml mol
-1

; TV = -20 ml mol
-1

. In all cases T = 298,15 K. 

 

A more complex view of this situation can be obtained if a 3D plot is constructed of the 

fraction of a dimer (or, eventually, the other states) as 2D functions of concentration and 

pressure (Figure 5). Here, it can be seen that the shape of the function differs considerably 

depending on the thermodynamic parameters and the positions of the significant points of the 

standard 1D functions can be deduced from it.  

As can be seen in Figure 4, the nature of the equilibrium at given pressure differs in 

dependence on the values of equilibrium constants. If TD KK  , i.e. if the dimer is 

remarkably more stable than the trimer, there is a wide range of dimer prevalence and 

practically no region of co-existence of all three forms. On the other hand, when the trimer’s 

stability highly exceeds that of the dimer, i.e. DT KK  , the dimer is almost absent at any 

concentration and the trimer directly decays to the monomer – the equilibrium thus changes to 

the closed one and can be described by eqn (6). Depending on the pressure, the system can 

change its nature between these two cases in several different ways, as is shown in Figure 4A 

and B. Regarding the experimental approach, it is, therefore, necessary to measure the 

experimental response of the system as a function of concentration and pressure on a 2D area 

given by a product of suitably long intervals of both these quantities. Depending on the 

method of choice, the experimental response can be measured either as a function of 
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concentration at a fixed pressure, repeating the measurement for different pressure values, or 

vice versa.  

It should be noted that at the consecutive equilibria of trimers or higher oligomers the 

sensitivity of the experimental methods to the individual oligomerization states is a crucial 

issue. Contrary to the closed equilibria, where only two states have to be distinguished, 

consecutive systems require at least three-state resolution. Depending on the mutual ratios of 

the detected signals of the individual states, the overall transition curve of a given system may 

look differently for different detection methods. Determination of the relative contributions of 

each state to the total signal may be possible in case that the states can be isolated chemically 

(Foguel and Weber, 1995). Nevertheless, it is especially valuable if a method sensitive 

exclusively to one of the states can be used. Possible suggestions of such techniques based on 

the Förster resonant energy transfer (FRET) (Sun et al., 2010) and neutron scattering (Jacrot, 

1976; Svergun and Nierhaus, 2000) are given in ESI, section S-7.         

As the nature of the equilibrium may change with the varying pressure and concentration, it is 

worthwhile to identify regions where the complex model can be approximated by linear 

equations. The simplest way is to choose a range of pressure (or concentration in a 

complementary approach) with a significant area of dimer prevalence when the concentration 

(pressure) changes from the lower to the upper border of its interval. If this range exists and 

has a sufficient extent, the two inflection points corresponding to the transitions from trimer 

to dimer and from dimer to monomer are well separated and are characterized by a practical 

absence of the third form of the system, i.e. monomer in the former and trimer in the latter 

case. In this case the last or the first term in eqn (37) can be neglected for the trimer-dimer 

(TD) and the monomer-dimer (DM) transitions, respectively. The solutions of the resulting 

equations lead to linear dependences of the inflection point pressures on  0ln M  (for 

derivation see ESI, section S-6) 
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 which allows us to determine the thermodynamic parameters atmDK , , atmTK , , DV , and TV  by 

means of a linear regression.  

Similarly, the thermodynamic parameters can be estimated from the inflection points of D  

as a function of pressure provided that both the inflection points exist and are well separated 

in the experimentally accessible region. As can be proved (see ESI, section S-6), the 

inflection points are identical with those identified in the previous way, therefore eqns (38) 

and (39) remain unchanged. It is, therefore, only necessary to decide which way is more 

convenient for the specific experimental data.  

In case that no region of dimer prevalence exists in the experimentally accessible region of 

pressure and concentration, it is probable that an area exists where, on the contrary, 

DT KK  . In this situation the dimer is practically absent from the system and the 

equilibrium can be considered as closed and analyzed in accord with eqn (14).  The 

equilibrium constant K  of eqn (14) is then equal to the product DT KK , and, accordingly, 

atmDatmTatm KKK ,,  and DT VVV  . In case that DT KK   everywhere in the 

experimentally accessible region, the individual equilibrium constants and volume changes 

for the processes of dimerization and trimerization cannot be determined and their separation 

has no meaning. 

In some cases, however, none of the discussed simplified cases takes place in a sufficiently 

large region. For instance, if TD VV   (Figure 5C), the inflection points run along parallel 
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lines and the pressure changes have no effect on their separation. If their separation 

corresponds with none of the previously discussed cases, determination of the thermodynamic 

parameters from simple linear functions is impossible. In such cases it may be convenient to 

start from an estimate based on the distance between the inflection points of the 

experimentally determined transition curve. These points do not have to correspond with the 

inflection points of D , but rather of M  (for the DM transition – low concentration side) and 

T  (for the TD transition – high concentration side). Solving eqn (37) for M  and 

determining the inflection point of M  (as a function of concentration) numerically in 

Wolfram Mathematica 9 it can be demonstrated that this inflection point occurs within the 

interval   64.0;56.0inf, M  for any values of DK  and TK . The corresponding variation of 

0ln M  is small, therefore an arbitrary value from this interval can be taken to estimate the 

thermodynamic parameters. Analogously, the inflection point of inf,T occurs within the 

interval (0.33; 0.45). If it is possible to estimate the nature of the equilibrium, both the values 

can be chosen with higher accuracy as they can be determined exactly for some special cases 

(Table 1).  

Table 1: Inflection-point values of monomer and trimer fractions of a homotrimer for 

different natures of the equilibrium.  

 

 

 

 

 

The inflection point concentrations (in the logarithmic form) are then given by 

Nature of equilibrium inf,M  inf,T  

General 0.56 – 0.64 0.33 – 0.45 

Closed 0.634 0.366 

Consecutive – well 

separated transitions 
0.586 0.450 

Consecutive – DT KK   0.562 0.334 
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These lines, together with other significant-point dependences on concentration and pressure, 

are depicted in Figure 6. 

It should be pointed out that the difference of these expressions, i.e. the approximate distance 

between the inflection points, is only a function of the ratio TD KK / :  
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 (42) 

This equation, together with eqns (40) and (41), can thus be used to estimate the desired 

thermodynamic parameters using methods based on approximate model functions (see ESI, 
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Figure 6. Significant points of the homotrimer equilibrium. Individual significant points as 

functions of pressure and concentration lie on curves not much different from linear functions. 

Inflection point of TD transition is represented by the two lowest lines, dotted and dashed, 

inflection point of DM transition by the two uppermost lines (dotted – eqn (40) with 

450.0inf, T  and eqn (41) with 586.0inf, M , respectively; dashed – estimate according to 

eqns (38)(38 and (39), respectively). The curves of maxima in the concentration (dot-dashed – 

eqn (43)) and pressure (short-dashed – eqn (44)) domains are close to parallel lines. 
5

, 10atmDK , 4

, 10atmTK , 20 DV ml mol
-1

 and 50 TV  ml mol
-1

. 

 

sections S-8, S-9). If the experimental methods enable reliable determination of the functions 

M  and T , an iterative method can be used to determine the parameters with higher 

accuracy (see ESI, section S-10).  

In some cases the experimental methods may allow us to determine also the maximum of D , 

either as a function of concentration at a given pressure, or vice versa. If D  is considered as 

a function of concentration, its maximum also corresponds with the crossing point of M  and 

T  and occurs at the concentration given by the formula  
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Its derivation is given in ESI, section S-4, together with its application in an iterative method 

of determination of the thermodynamic parameters (section S-10). 

 In many cases it can be more convenient to measure the signal at a given concentration as a 

function of pressure. The inflection points of the transition curve can be again approximated 

by the inflection points of M  and T . Using all the previous approximations, these points 

are given by eqns (40), (41). A set of linear equations can be derived that allow us to estimate 
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the thermodynamic parameters, and, if the functions M  and T  can be determined reliably, 

an iterative procedure can be used to determine the parameters accurately (see ESI, section S-

9, S-10). It is also possible to find the maximum of D  at a given concentration (as a function 

of p ) which is, in general, a different point than the maximum at constant pressure (see 

Figure 6). As can be seen in ESI, section S-5, its position is given by the formula 
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This equation is rather complicated for direct determination of the thermodynamic 

parameters, but can be used in an iterative way analogously to eqn (43) (see ESI, section S-

10). It should be pointed out that this maximum does not exist for all possible values of DV  

and TV . As follows from the derivation given in ESI, section S-5, the condition 

2/DT VV   has to be fulfilled. If it is not, the fraction of dimer D  decreases with 

growing pressure within the whole range irrespective of the concentration, because the dimer 

is destabilized much more rapidly than trimer and the DM transition has always larger extent 

than the TD transition (Figure 5D). In this case the analysis based on eqn (44) cannot be 

carried out. However, the thermodynamic parameters can be evaluated by analyzing the 

pressure-dependent transition curve at two different concentrations, the first one at which the 

system at atmospheric pressure is predominantly trimeric and the second one at which it is 

mostly dimeric. In the first situation the system reduces to the closed trimer-monomer 

equilibrium, in the second one to the dimer-monomer equilibrium, both described by eqn (13). 

It is, unfortunately, impossible to demonstrate the validity of the theory on real experimental 

data, since, to our knowledge, no experiment directly coherent with this model was published 
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so far. However, it was reported several times that for equilibria considered as closed there 

was an incoherence between the V  values determined from the individual transition curves 

(in accord with eqn (12), often denoted as PV  in the literature) and from the shift of 

transition curves (in analogy with eqn (14), denoted as CV ), the latter method providing 

higher values (King and Weber, 1986; Silva et al., 1986; Ruan and Weber, 1993). This 

discrepancy was always observed only for higher oligomers than dimer, even for oligomers 

with high number of subunits like viral capsids (Weber et al., 1996). It was explained by the 

heterogeneity of the oligomer population and the deterministic equilibrium (Erijman and 

Weber, 1991). However, another plausible explanation, at least in some cases, can be that the 

equilibria might behave as consecutive. If the TD and DM transitions are separated, but the 

separation is not very large, the resulting transition curve may still appear as that of the closed 

equilibrium due to the low sensitivity and noise of the experimental methods. However, the 

value of V  determined by the two methods is inconsistent. Consider an example (in detail 

discussed in ESI, section S-11) of a homotrimer equilibrium of the parameters TV , DV , 

atmTK , , and atmDK , . Depending on their values the equilibrium can behave either as closed or 

as consecutive with more or less separated TD and DM transitions. For determination of the 

apparent V  (i.e. for the putatively closed equilibrium) often the pressure difference between 

the points of 1.0  and 9.0  is used. These points can be, in a good approximation, 

identified with those of 9.0T  and 9.0M , respectively. Using eqn (37) the pressure 

difference between these points can be determined. Considering, for simplicity of the 

example, that DT VV  ,  the difference is  

.72.18ln4
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For the genuine closed equilibrium, where DT VVV  , the corresponding difference 

determind by eqn (14) is  

    .79.89.01.0
TD VV

RT
ppp


   (46) 

As the dimer has to be rather stable in case of a consecutive equilibrium, it is probable that 

atmDK ,  is not considerably higher than atmTK ,  (ten or more times). In this case, however, the 

expression in eqn (45) is higher than that in eqn (46). Thus, when the experimental quantity 

corresponding with eqn (45) is substituted to eqn (46) and the apparent volume change PV , 

is determined, the resulting value is lower than in the case of authentic closed equilibrium. On 

the other hand, the other method based on the concentration shift of the transition curves 

provides rather different results. Here, the apparent inflection point of the curve can be 

identified with the maximum of D  and determined with the aid of eqn (44). If we consider, 

for simplicity, only the limit case of the consecutive equilibrium with well separated 

transitions, i.e. when the expression in the parenthesis of eqn (44) reduces to 1, the maximum 

of D  occurs at  
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Comparing this expression with eqn (14) describing the closed equilibrium, it is obvious that 

the apparent volume change 2/CV  is equal to TV . Thus, if DT VV   , then

TDC VVV  , which is a result expected for the closed equilibrium. Hence, although 

some approximations were taken into account, it can be seen that the apparent inflection 

points move with the concentration changes in a similar way for both closed and consecutive 

equilibrium and the apparent volume change CV  is not much dependent on the character of 
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the equilibrium. On the contrary, the apparent volume change PV  depends on it 

considerably, which might be the reason of the observed incoherence between the two 

quantities. Thus, although it is not possible to reevaluate the previously published data, they 

may indicate that the studied equilibria were in fact consecutive but the used experimental 

methods did not enable uncovering this feature.    

It should be, however, noted that in some cases the inconsistence of PV  and CV  might 

have still another reason. The dissociation process can be irreversible or only partially 

reversible, especially due to the simultaneously running unfolding of the monomers. This 

phenomenon, which then governs the observed dissociation process, is of the first order and 

thus concentration independent. In case of partial reversibility the concentration dependence 

of the transition curve can be seen, but smaller than in the fully reversible case. This can be 

demonstrated on the published examples of higher oligomers in (Silva et al., 1989; Bonafe et 

al., 1994) – especially in the latter case the difference between the irreversible and partially 

reversible system is apparent. Therefore, the mutual agreement of PV  and CV  can be used 

as an indicator of reversibility of the dissociation-association process. 

2.3.2. Heterotrimer A2B.  

Many oligmeric proteins form a heterotrimer consisting of two identical subunits A and a 

different subunit B. The most common mechanism of its association – dissociation 

equilibrium is the following: 

BDT 

  (48) 

AD 2

  (49) 

Here, T  denotes the trimer BA2  and D  stands for the dimer 2A . The principal difference 

with respect to the homotrimer is that, using recombinant subunits A  and B , the dimerization 
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process (eqn (49)) can be studied separately in accord with eqn (14). Therefore, the 

dimerization parameters atmDK ,  and DV  can be determined prior to studying trimer 

formation. In addition, the difference in the subunits allows us to use non-stoichiometric 

ratios of A  and B  which can further help the experimental procedures.    

Heterotrimer equilibrium is described by the dissociation constants of dimer 

.;
2

T

BD
K

D

A
K TD   (50) 

In addition, the following balance equations have to be obeyed: 

,;22 00 TBBTDAA   (51) 

where 0A  and 0B  are the total concentrations of the subunits A and B. As the subunit A is 

present in all three forms of the system, it is useful to define the fractions of monomer, dimer 

and trimer, respectively, as follows: 
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Restricting our interest immediately on the stoichiometric case, in which  

,
2
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where 0T  denotes the total concentration of trimer, i.e. the concentration of trimer provided 

that all the subunits are present in the trimeric form, we arrive at the following equation 
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This equation can be rearranged to the form of an algebraic equation of the fourth degree in 

D . More detailed discussion is given in ESI, section S-12, together with its analytical 

solution carried out in Wolfram Mathematica 9 (appendix S-2).  

It is again useful to discuss the individual special cases of eqn (54). Let us start with the case 

presuming a highly stable dimer and less stable trimer which is characterized by the relation 

DT KK  . As in the homotrimer case, a region of prevailing dimer exists and the two 

transitions, TD and DM, can be analyzed separately. Eqn (54) can thus be simplified by the 

neglect of the first or the last term, respectively. Both these simplified equations depend on 

only one dissociation constant. The TD transition can be considered as a heterodimer 

equilibrium of subunits A2 and B, while the DM transition as a homodimer equilibrium of two 

A subunits. These transitions are, therefore, described by eqns (25) and (14), respectively. 

(For the justification see ESI, section S-12.) Hence, the two transitions can be considered 

separately and the parameters atmDK , , DV , atmTK , , and TV  can then be determined 

straightforwardly. 

If, on the other hand, the trimer is substantially more stable than the dimer, i.e. DT KK  , 

the system undergoes the closed equilibrium described by eqn (32) with the constants atmK , 

and V  given by the expressions atmDatmTatm KKK ,,  and DT VVV  , analogously 

with the homotrimer case. 

If the separation of the two transitions is not so striking and it does not allow us to use these 

approximations at any pressure, it is valuable when an experimental method sensitive 

exclusively to either the trimer or the free subunit B is available. If this is the case, the 

fraction of free B denoted B  obeys the fourth-degree equation 
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However, eqn (55) is only quadratic equation in 0T  and can be solved for 0T  as a function of 

B : 
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Although the inflection point of 0lnT  cannot be determined analytically, the numerical 

solution in Wolfram Mathematica 9 shows that the inflection point value of inf,B  is in a very 

narrow interval (0.58; 0.64) for any values of DK  and TK . For TD KK /  ratio between 0.1 

and 10, i.e. when none of the previously discussed special cases applies, the interval reduces 

to (0.60; 0.64). Thus, the inflection point value of 0T  can be obtained from eqn (56) 

substituting 62.0inf, B  for B . Introducing the pressure dependence of TK  and DK  and 

exploiting the fact that atmDK ,  and DV  can be determined independently, eqn (56) becomes 

(in the logarithmic form) 
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This equation can be solved iteratively in a similar manner as in the case of homotrimer (see 

ESI, section S-13).  

2.3.3. Heterotrimer ABC.  

Another kind of a heterotrimer is composed of three different subunits A, B and C. As the 

solution of this system is formally analogous to the A2B heterotrimer, it is given in ESI, 

section S-14.  

3. Conclusions 
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A theoretical description of the equilibria among the subunits of oligomeric proteins under 

high pressure is provided in this work. The dependences of significant points of the transition 

curves – inflection points and extremes – on pressure and concentration have been derived, in 

most cases in the form of linear functions. Analysis of these functions allows us to determine 

the thermodynamic characteristics of the systems, i.e. the volume changes and atmospheric-

pressure equilibrium constants of the individual transitions. The theory can be developed for 

the closed equilibrium of homooligomers of any number of subunits in a close analytical 

form. For these systems a rough estimate of the number of subunits is possible in case that it 

is not known a priori. In addition, an analogous description was developed also for the closed 

equilibria of a heterodimer and different forms of heterotrimers. Systems undergoing the 

consecutive equilibria represent far more complex problem. A homotrimer, which was chosen 

as the simplest example, was analyzed in detail. Here, it is difficult to develop a universal 

theory valid in the whole pressure and concentration ranges because the description is based 

on algebraic equations of higher than the second degree. Although these solutions were 

developed using Wolfram Mathematica 9 software and are shown in several figures, they are 

too complicated for the detailed analysis. Therefore, special cases that can be reached by a 

specific choice of pressure and concentration ranges were studied in which the solution is 

simplified and can be turned to linear functions. Finally, a heterotrimeric system undergoing 

consecutive equilibria was analyzed in a similar way. 

Although we have recently verified the theory on the model of dimerization of HIV-1 

protease (Ingr et al., 2015), more extensive experimental studies including also higher 

oligomers are needed to demonstrate its utility. In spite of possible experimental difficulties 

we hope that this work may encourage further high-pressure experimental studies with 

oligomeric proteins.   

Footnotes 
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Highlights 

 A theory of oligomeric-protein equilibria under high pressure was developed. 

 A generalized model of closed equilibria was proposed. 

 Detailed description of consecutive high-pressure equilibria in trimeric proteins is provided. 

 Solutions of models not-solvable analytically were elaborated in Wolfram Mathematica.  
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