Comparison of Open-Source CFD Software for Aerodynamic Analysis of Mini-UAV

Tomáš Vogeltanz

Department of Informatics and Artificial Intelligence

Tomas Bata University in Zlín

Czech Republic

17.09.2015

- Free Software
- Mini-UAVs
- Aerodynamic Analysis

- The aerodynamic analysis often plays a major role in the early stage of a design phase.
 - Major changes during conceptual phase
 - Minor changes after conceptual phase
- Incorrect analysis => loss of money
- Suitable aerodynamic behavior is necessary.
- Two options:
 - Wind tunnel test
 - CFD analysis

Figure 1. Free Software Connections

Figure 2. Design & Mesh

- OpenVSP is a parametric and easyto-use aircraft geometry application.
- AirfoilTools generates the Selig and Lednicer airfoil DAT files.
- enGrid is an open-source mesh generation application.
- Larosterna is a design tool with an option to import a SU² mesh file.

Figure 3. CFD Software

• The Stanford University Unstructured (SU²) suite solves complex, multiphysics analysis and optimization tasks using arbitrary unstructured meshes.

Figure 3. CFD Software

- The Open Field Operation and Manipulation (OpenFOAM) CFD Toolbox includes:
 - over 80 solver applications
 - over 170 utility applications for pre- and post-processing tasks

Figure 3. CFD Software

- Code_Saturne is based on a Finite Volume Method which accepts 3D meshes built with
 - any type of cell (tetrahedral, hexahedral, prismatic, pyramidal, and polyhedral)
 - any type of grid structure (unstructured, block structured, hybrid)

- Common parameters of mini-UAVs:
 - Wingspan < 6 m</p>
 - Weight < 25 kg
 - Low speeds (between 20 and 120 km/h)
 - Low altitudes (from 3 to 1000 m)
- Primary Requirements:
 - Long flight duration
 - All-weather capabilities
 - Success in missions

Figure 4. SAGITTA UCAV Concept [1]

Figure 5. Wing Planform of SAGITTA Demonstrator [2]

• Symmetrical airfoil - NACA64A012

Figure 6. Wind Tunnel Model of AVIGLE UAV [3]

Figure 7. Geometry of AVIGLE UAV [3]

- 2 mini-UAVs analyzed in 3 CFD applications
 - $-SU^2$
 - ROE (Roe's Approximate Riemann Solver)
 - JST (Jameson-Schmidt-Turkel)
 - OpenFOAM
 - Code_Saturne
- Results
 - SAGITTA with Boundary Layer
 - AVIGLE without Boundary Layer (enGrid crashed)
 - SAGITTA without Boundary Layer (for comparison)

Figure 8. SAGITTA Demonstrator - C_L vs. α

Figure 9. SAGITTA Demonstrator - C_D vs. α

Figure 10. SAGITTA Demonstrator - C_L/C_D vs. α

Figure 11. AVIGLE Tiltwing UAV - C_L vs. α

Figure 12. AVIGLE Tiltwing UAV - C_D vs. α

Figure 13. AVIGLE Tiltwing UAV - C_L/C_D vs. α

Figure 14. SAGITTA Demonstrator with and without Boundary Layer - C_L vs. α

Figure 15. SAGITTA Demonstrator with and without Boundary Layer - C_{D} vs. α

Figure 16. SAGITTA Demonstrator with and without Boundary Layer - C_L/C_D vs. α

- CFD results depend on:
 - Software/Developers
 - Mesh quality of UAV model
 - Modeler
- Wind-tunnel results depend on:
 - Wind tunnel
 - Measuring instruments
 - Manufacturing quality of UAV model
 - Human factor

- Open-source CFD software with an appropriate setting and mesh may accurately compute lift and drag coefficients.
- Time vs. Money & Repeatability
- Similar results from OpenFOAM and Code_Saturne
- SU²
 - JST symmetrical UAVs (or wings) with higher Reynolds number (1.7e⁶)
 - ROE asymmetrical UAVs with lower Reynolds number (2.82e⁵)

- Free software
- 2 mini-UAVs analyzed in 3 CFD applications
 - $-SU^2$
 - ROE (Roe's Approximate Riemann Solver)
 - JST (Jameson-Schmidt-Turkel)
 - OpenFOAM
 - Code_Saturne
- Results
 - SAGITTA with and without Boundary Layer
 - AVIGLE without Boundary Layer

- 3D-printed models -> wind-tunnel tests
- Printed model ≈ computer model
- => more precise and objective CFD evaluation
- Results
 - PyFR
 - HiFiLES

- [1] SAGITTA, June 10, 2015, http://www.unibw.de/lrt13_2/Forschung/Projekte/SAGITTA.
- [2] Hövelmann, A., C. Breitsamter, 2012, Aerodynamic Characteristic of the SAGITTA Diamond Wing Demonstrator, *Deutscher Luft- und Raumfahrtkongress*, 14 p.
- [3] Holsten, J., T. Ostermann, D. Moormann, 2011, Design and wind tunnel tests of a tiltwing UAV, CEAS Aeronautical Journal, vol. 2, no. 1-4, pp. 69-79.
- [4] AVIGLE, June 22, 2012, http://www.fsd.rwth-aachen.de/English/Research/Avigle.php
- [5] McCormick, Daniel J., May 27, 2002, An Analysis of Using CFD in Conceptual Aircraft Design, Blacksburg, Virginia, USA, Faculty of Virginia Polytechnic Institute and State University, 152 p.
- [6] Mueller, T. J., J. D. DeLaurier, 2003, Aerodynamics of small vehicles, *Annu. Rev. Fluid Mech*, vol. 35, no. 1, pp. 89-111, DOI: 10.1146/annurev.fluid.35.101101.161102.
- [7] Vogeltanz, Tomáš, 2015 (03/22), A Survey of Free Software for the Design, Analysis, Modelling, and Simulation of an Unmanned Aerial Vehicle, *Archives of Computational Methods in Engineering*, 66 p., DOI: 10.1007/s11831-015-9147-y.
- [8] OpenVSP, August 19, 2015, http://openvsp.org/.
- [9] AirfoilTools, 2015, http://airfoiltools.com/.

- [10] enGrid open-source mesh generation, 2012, http://engits.eu/en/engrid.
- [11] Eller, D., Larosterna: about, 2014, http://www.larosterna.com/index.html.
- [12] SU²: The Open-Source CFD Code, August 27, 2015, https://github.com/su2code/SU2/wiki.
- [13] OpenFOAM Foundation, OpenFOAM, 2015, http://www.openfoam.org/index.php.
- [14] ENGYS Ltd, HELYX-OS: Engys' free-to-download Open Source native GUI for OPENFOAM®, 2015, http://engys.com/products/helyx-os.
- [15] EDF R&D, Welcome to Code_Saturne, 2015, http://code-saturne.org/cms/.
- [16] Jin, Wonjin, Yung-Gyo Lee, 2014, Computational Analysis of the Aerodynamic Performance of a Long-Endurance UAV, *International Journal of Aeronautical and Space Sciences*, vol. 15, no. 4, pp. 374–382, DOI: 10.5139/IJASS.2014.15.4.374..
- [17] Uragun, B., December 18-21, 2011, Energy efficiency for unmanned aerial vehicles, 2011 10th International Conference on Machine Learning and Applications, Honolulu, Hawaii, USA, pp. 316-320, DOI: 10.1109/ICMLA.2011.159.
- [18] McAlpine, J.D., Computational Fluid Dynamics or Wind Tunnel Modeling?, 5 p., www.envirometrics.com/abstracts/CFDvsWT.pdf.

Thank you for your attention

Do you have any question?

vogeltanz@fai.utb.cz