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Abstract: - One of the possible approaches to control of dead-time processes is application of predictive control
methods. In technical practice often occur higher order processes when a design of an optimal controller leads
to complicated control algorithms. One of the possibilities of control of such processes is their approximation
by lower-order model with dead-time (time-delay). The first part of the paper deals with a design of an
algorithm for predictive control of high-order processes which are approximated by a second-order model of
the process with time-delay. The second part of the paper deals with a design of an analogical algorithm for
predictive control of multivariable processes with time-delay. The predictive controllers are based on the
recursive computation of predictions which was extended for the time-delay system. The designed control

algorithms were verified by simulation.
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1 Introduction

Some technological processes particularly in
chemical industry are characterized by time-delays.
Time-delays are mainly caused by the time required
to transport mass, energy or information, but they
can also be caused by processing time or
accumulation. Time-delay may be defined as the
time interval between the start of an event at one
point in a system and its resulting action at another
point in the system. One older classification of
techniques for the compensation of time-delayed
processes is introduced in [1],[2] and newer
overview of recent advances and open problems it is
possible to find in [3]. Processes with time-delay in
general are difficult to control using standard
feedback controllers. One of the possible
approaches to control processes with time delay is
model predictive control (MPC) [4], [5], [6]. The
predictive control strategy includes a model of the
process in the structure of the controller. The first
time-delay compensation algorithm was proposed in
[7]. This control algorithm known as the Smith
Predictor (SP) contained a dynamic model of the
time-delay process and it can be considered as the
first model predictive algorithm.

When using most of other approaches, the
control actions are based on past errors. MPC uses
also future values of the reference signals. It is
essentially based on discrete or sampled models of
processes. Computation of appropriate control
algorithms is then realized especially in the discrete
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domain. The basic idea of the generalized predictive
control [8], [9] is to use a model of a controlled
process to predict a number of future outputs of the
process. A trajectory of future manipulated variables
is given by solving an optimization problem
incorporating a suitable cost function and
constraints. Only the first element of the obtained
control sequence is applied. The whole procedure is
repeated in following sampling period. This
principle is known as the receding horizon strategy.

Some technological processes in industry are
characterized by high-order dynamic behaviour or
large time constants which increase the difficulty of
controlling it. However using the approximation of a
higher-order process by a lower-order model with
time-delay provides simplification of the control
algorithms. The paper then introduces a design and
verification of an algorithm for predictive control of
second order linear systems with two steps time
delay. A number of higher order industrial processes
can be approximated by this model.

Typical technological processes require the
simultaneous control of several variables related to
one system. Each input may influence all system
outputs. The design of a controller for such a system
must be quite sophisticated if the system is to be
controlled adequately. One of the most effective
approaches to control of multivariable systems is
model predictive control. An advantage of model
predictive control is that multivariable systems can
be handled in a straightforward manner. In technical
practice also often occur multivariable processes
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with time delay. Typical examples of such processes
are e.g. liquid storing tanks, distillation columns or
some types of chemical reactors. The paper then
deals also with a design of an analogical algorithm
for predictive control of multivariable processes
with time-delay. Both for control of the single input-
single output and multivariable systems was applied
the same approach. The predictive controllers are
based on input-output models. In case of the SISO
control it is a transfer function model and in case of
the MIMO control the model is considered in the
form of the matrix fraction. The models are used for
a recursive computation of predictions which was
extended for the time-delay systems. In case of the
input-output model it is not necessary to examine
observability. Feasibility is ensured by a suitable
setting of constraints. The proposed algorithms
were verified by simulation.

2 Model of the Controlled System

2.1 Model of SISO System

A model of the second order which is widely used in
practice and has proved to be effective for control of
a range of various processes was applied. The model
without a time-delay is described by the transfer

function
S4) bzt b,z _B(z’l)
G(Z )_ 1+a,z "t +a,z° B A(z’l)

1)

A(z’l):1+aiz’1+azz’2; B(z’l):blz’1+bzz’2 (2)

Model predictive control has an ability to deal
with control difficulties such as nonlinearity,
constrained variables, time-delay and also control of
unstable systems. A system described by transfer
function (1) may be then also unstable i.e. with roots
of the denominator outside the Unite Circle. The
proposed predictive controller then ensures BIBO
(Bounded Input Bounded Output) stability of the
whole closed loop system despite the fact that the
controlled system is unstable. The model can be also
written in the form

Az y(k)=B(z* (k) 3)

A widely used model in general model predictive
control is the CARIMA model which we can obtain
from the nominal model (3) by adding a disturbance
model

-1

Alz k)= Bz k) + S (k)

where  n(k) is a non-measurable random
disturbance that is assumed to have zero mean value

(4)
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and constant covariance and the operator delta is
1-z7".

The polynomial C(z*l) will be further considered
as C(z')=1. The CARIMA description of the
system is then in the form

a4z y(k) =Bz Mulk —1)+ n(k) (5)

The nominal model with time-delay is
considered as

4 B(z’l) 4 bzteb,z?
G(z ): 77 = 52 (6)

Azt 1razteaz
The CARIMA model for time-delay system takes
the form

Az y(k) =z B(z * Jau(k —1)+n(k) @)
where d is the dead time. In our case d is equal to 2.

2.2 Model of MIMO System
Let us consider a two input — two output system.
The two — input/two — output (TITO) processes are
very often encountered multivariable processes in
practice and many processes with inputs/outputs
beyond two can be treated as several TITO
subsystems [10].

A general transfer matrix of a two-input-two-
output system with significant cross-coupling
between the control loops is expressed as:

_[Gu(2) Gu(2)
ole)= {Gn(z) Gy (Z)} ©
Y(2)=G(z(2) (9)

where U(z) and Y (z) are vectors of the manipulated
variables and the controlled variables, respectively.

U(2)=[u,(2)u, (@] Y(2)=[y:(2) v, @) (10)

It may be assumed that the transfer matrix can be
transcribed to the following form of the matrix
fraction:

G(2)= A" (2 )Blz )=,z () (1)
where the polynomial matrices
AcR, [z ] BeRy ] are the left coprime

factorizations of matrix G(z) and the matrices
AleRzz[z*ll BleRzz[z*l] are the right coprime
factorizations of G(z). The model can be also
written in the form

Alz Y (2)=Bl ()

(12)
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As an example a model with polynomials of
second degree was chosen. This model proved to be
effective for control of several real TITO processes
[11], where controllers based on a model with
polynomials of the first degree failed. The model
has sixteen parameters. The matrices A and B are
defined as follows

A(Zl)_{lJralz1+azz2 a,z2"t +a,z”? J (13)
a2t +a,z?  l+a,zt+az’
4 | bzt +b,z? bzt +b,z7
B(Z 1):{blzzﬂbzzz b32’1+b42’2 (14)
5 6 7 8

the CARIMA model in the MIMO case is as follows

Az )y(k) =Bz Ju(k)+Clz a2 (k) (15)
where
alz)- {1‘02 N 1_0Z 1J (16)

C is a colouring polynomial matrix. For purpose of
simplification it was supposed to be equal to the
identity matrix [4].

The nominal model with d steps of time-delay is
considered as

G(z)= Az Bz ) =Bl At

For the purpose of simplification it was
considered an equal time-delay in all particular
transfer functions of the transfer matrix. The
CARIMA model for time-delay system then takes
the form

Alz)ylk) =2 *Blz* ulk)+Clz M) (e " pik)

(17)

(18)

3 Implementation of

controller

predictive

The basic idea of MPC is to use a model of a
controlled process to predict N future outputs of the
process. A trajectory of future manipulated variables
is given by solving an optimization problem
incorporating a suitable cost function and
constraints. Only the first element of the obtained
control sequence is applied. The whole procedure is
repeated in following sampling period. This
principle is known as the receding horizon strategy.
The computation of a control law of MPC is based
on minimization of the following criterion

30)= Selcr 1 + 23 aulk

N
=N, [

(19)

E-ISSN: 2224-2856

501

Marek Kubalcik, Vladimir Bobal

where e(k+j) is a vector of predicted control errors,
Au(k+j) is a vector of future increments of the
manipulated variable (for the system with two
inputs and two outputs each vector has two
elements), N is a length of the prediction horizon, N,
is a length of the control horizon and A is a
weighting factor of control increments.
A predictor in a vector form is given by

¥y =GAu+y, (20)

where § is a vector of system predictions along the

horizon of the length N, Au is a vector of control
increments, Y, is the free response vector. G is a
matrix of the dynamics. It contains values of the
step sequence. In SISO case it is given as

99 0 0 - 0
g, 0, 0 0
G=|0; 9> 9; 0 (21)
_gN Onat One2 ngN“+1_

In TITO case the matrix G takes the following
form

G, 0 - - 0
: G, O
GN—l GO

where sub-matrices G; have dimension 2x2 and
contain values of the step sequence.
The criterion (12) can be written in a general

vector form
J=(9-w)" (§—w)+Au" Au (23)

where w is a vector of the reference trajectory. The
criterion can be modified using the expression (19)

to
J =2g" Au+Au’ HAu (24)

where the gradient g and the Hess matrix H are
defined by following expressions

gT =GT(yo _W)

H=G'G+Al

(25)
(26)

is one of main
control.  General

Handling of constraints
advantages of  predictive
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formulation of predictive control with constraints is
then as follows

min 29" Au+Au’ HAu 27
owing to
AAU<D (28)

The inequality (28) expresses the constraints in a
compact form.

4 Computation of predictions — SISO

system
An important task is computation of predictions for
arbitrary prediction and control horizons. Dynamics
of most of processes requires horizons of length
where it is not possible to compute predictions in a
simple straightforward way. Recursive expressions
for computation of the free response and the matrix
G in each sampling period had to be derived. There
are several different ways of deriving the prediction
equations for transfer function models. Some papers
make use of Diophantine equations to form the
prediction equations [12]. In [13] matrix methods
are used to compute predictions. We derived a
method for recursive computation of both the free
response and the matrix of the dynamics.
Computation of the predictor for the time-delay
system can be obtained by modification of the
predictor for the corresponding system without a
time-delay. At first we will consider the second
order system without time-delay and then we will
modify the computation of predictions for the time-
delay system.

4.1 Computation of predictions without time-
delay

The difference equation of the CARIMA model
without the unknown term can be expressed as:

y(k)=0-a)y(k 1)+ (a, - a,)y(k -2)+

+a,y(k —3)+bAu(k —1)+b,Au(k - 2) (29)

It was necessary to directly compute three steps-
ahead predictions in a straightforward way by
establishing of previous predictions to later
predictions. The model order defines that
computation of one step-ahead prediction is based
on the three past values of the system output.
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Jlk+1)=(-a)y(k)+(a, —a,)y(k —1)+a,y(k —2)+

+b1Au( )+ (k l)

Jk+2)=(-a)yk+1)+(a -a,)yk)+ayk-1)+  (30)
+bAu(k +1)+b,Au(k)

9k +3)=(1-2)9(k +2)+(a, —a,)y(k +1)+a,y(k)+

+bAu(k +2)+b,Au(k +1)

The predictions after modification can be written
in a matrix form

glk+1 g 0 7
. Aulk
r2)1=192 01 Lu(uk(+)l) !
Jlk+3 93 9 -
P Yy Yy Y3 i (31)
1P ufk-1)+ %91 9o T3 yg;_;;
Py Gy Gy Oy |
gk +1 (k)
) Aulk
¥k+2 :G{Au(k()l)}r PAu(k—1)+Q yEIi—l% (32)
Jlk+3 ylk -2
y(k +1)=GAu(k + j—1)+ PAu(k 1)+ Qy(k + j 1) (33)
i<N
where
[ Au(k)
G_Au(k+1)j|_
' bl : (34)
- by(1-a) b, by [ AUA (uk(i)l)}

_(31 ~aghy + (1- a1)2b1 #i-ab, (1-ak b,

(35)

K
Q v(ilil:) =
vl -2
‘;I’aJ

( \2 \
Llfah] \a a\

\\al azw a

5[4

zjala\[a a‘ a\la’ ‘al az\az

L1 a Ha a2J+a

a a[laHa

[1 a\‘\a 2(1 a ‘a
(ERYREY (R

(36)

The coefficients of the matrices G, P and Q for
further predictions are computed recursively. Based
on the three previous predictions it is repeatedly
computed the next row of the matrices P and Q in
the following way:
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= (1 ) ( -, )pz +a,0; (37)
(1 al)q31 ( 2)q21 +a,0y,
= ( - )qsz (al a, )qzz +38,0s, (38)

C143 —(1 al)q33 ( a, — 2)q23+a2q13

The recursion of the matrix G is similar. The
next element of the first column is repeatedly
computed and the remaining columns are shifted.
This procedure is performed repeatedly until the
prediction horizon is achieved. If the control horizon
is lower than the prediction horizon a number of
columns in the matrix is reduced. Computation of a
new element is performed as follows:

942(1_a1)gs+(ai_az)gz+azgl (39)

4.2 Computation of predictions with time-delay
In order to compute the control action it is necessary
to determine the predictions from d+1 to d+N.

The predictor (31) is then modified to

aufk) }

(el
}f +2 92 91 Au(k+1)
Jik +3 93 9
_ Aulk -1

%9 %a1 7 Yava-1 Mo | a2
%1 %e2 7 Yed Mol MKV

: 4

992 %43 7 Ygeder Paeol | aulk-a-1) (40)

+

Mrah el ek vk
Cordh 2ral Yo+ak yg(_i;
_(3+d)l (3+d) (3+d)3

Recursive computation of the matrices is
analogical to the recursive computation described in
the previous section.

The predictor modified for two steps of time —
delay is then given as follows

auk) }

Au (k + 1)

Wk+2)|=9; 91

glk+1 91 Ol:
gk +3 93 99

9 O Py [aulk-1]] | %1 % %3 vl (41)
19 9 Py i”t_g %1 Y Y3 y:_;
ulk - ylk -
9 9% P %1 % %3
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5 Computation of predictions — TITO

system

5.1 Computation of predictions without time
delay

The difference equations of the CARIMA model
without the unknown term are as follows

yl(k +1): (1_ a‘l)yl(k)+ (a‘l - az)yl(k _1)+ azyl(k - 2)_
- asYz(k)"' (as - a4)y2(k _1)"' a4y2(k - 2)+
+b,Au, (k) + byAu, (k —1)+ byAu, (k) + b,Au, (k —1)

Yalk +1) = (L—a7 )y, (k)+(a; — 8 )y, (k —1)+ agy,(k —2)-
—agy;(k)+ (a5 —ag )ya(k —1)+ agyy(k — 2)+
+bsAu; (k) + bsAuy (k —1)+ b, Auy (k )+ bgAu, (k —1)

These equations can be written into a matrix
form

(42)

y(k+1)= Ary(k)+ A, y(k—1)+ Agy(k —2)+ (43)
+B,Au(k)+ B,Au(k -1)
where
C|l-a -ag _|ama a-ay
Al_L_aﬁ 1—a7JA2 [as—ae a7—a8J
a, a
_|%2 & 44
. Las aBJ o
b by b, by
7 Lbs b7J 2 Lbe st *

The computation of three steps-ahead predictions
can be expressed as

Jk+1)= Ary(k)+ Ap y(k—1)+ Agy(k —2)+
+B,Au(k)+ B,Au(k —1)

Ik +2)= A y(k +1)+ Ay y(k)+ Ay y(k 1)+

+BAu(k-+1)+ B, Au(k) (46)

Ik +3)= A y(k+2)+ A, y(k +1)+ Agy(k)+
+B;Au(k +2)+ B,Au(k +1)
The equations (46) can be written in a compact
form using (20) as follows
9k +1)
9(k + 2)
9(k +3)

=GAU+Y, (47)

It is possible to divide computation of the
predictions to recursion of the free response and
recursion of the matrix of the dynamics. The free
response vector predictions can be expressed as:
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P Pr G O |Chs e | Ghs G | Yalk)
P O Q1 Oop [G23 Gos [ U5 26 Y2 (k)
Vo= Psy Pe |:Au1 (k *1)} 4G G2 |G s O Gas yi(k—1) _
’ Py Pa Au, (k - 1) O Y2 |Gss Y4 | Gas Gas || Y2 (k — 1)
Psi  Ps2 O Os2 | Oss Oss | Oss Gss || Yalk—2)
Pe1  Pe2 Os1 G2 [ Ges Gos | Uos oo JLY2 (k- 2)
P, Qi Q Quf vk) [ ylk)
= |:P2 Au(k - 1) + l:Qn Qz Qs ]]: ( ) = PAu(k 1) +Q Y(k _1)]
P3 Q31 Q32 Q33 y(k 2) Y(k - 2)
48)

The coefficients of the matrices P and Q for
further predictions are computed recursively. Based
on the three previous predictions it is repeatedly
computed the next row of the matrices P and Q in
the following way:

P72

P, = {pn = AP+ AP + APy (49)

Ps1  Ps2 |
|91 G2 |

Qa1 = = AQ31+AQy + AQyq (50)
| Os1 U2 |

Qq2 = s Gna = AQ3+A Q2 + AQ, (51)
| Ug3  Uss |

Qu3= s s = AQ33tAQp3+ AQy5 (52)
| Uss  Jse

The recursion of the matrix G is analogical. The
computation is similar as it was introduced in
section 4.1. It is apparent from equations (53) and
(54).

011 912 | O 0 |
91 92| O 0 Aul(k)
GAU = 931 932 | 9112 912 Auz(k) _
941 942 | 921 922 AUl(k"‘ﬂ
Os1 052 [ 931 932 _Auz(k”-) (53)
1961 962 | a1 Y42 |
G 0
! Au(k)
Au(k +1)
G; G,
| 971 972 54
G, = = AG3+AG; + AG, (54)
Os1 Ys2

The predictions can be written in a compact matrix
form

9k + j)=Gau(k + j—1)+ PAu(k 1)+ Qy(k
i<N

—j+1) (55)

5.2 Computation of predictions with time-delay
The predictor modified for an arbitrary time —delay
is given as follows.
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gk +1+d)
J(k+2+d)
J(k+3+d)

=GAU+ Y, (56)

The computation of the free
modified to

response is then

Gap  Jeee | Yeean Yewsp || Yaeoen  Yiasosrp | Passp  Plosap
Ge2n  9(as22 | Gavap  Geava | | Y(@edr2n  G(araezn | Pavap  Plarap
Yo = Gan Jeap | Yesp Yoesie | | Yasawan  J(owasan | Plossp  Plassp
° O(+an  G(a+ap | Yasen  G(ase)2 | | G(ardran  Y(araran | Pasen  Plave
Gassp  Gasse | Gern Giaerz || Y(avassn  J(@rassp | Pasrn  Prasre
g(d+6}1 g(ma)z g(meh g(me)z = | O(dsdren g(d+d+6)1 Pa:sp p(d+s)z
Auy(k-1)
Au,(k-1)
Au, (k-2 Qsan  Y+3)2 | A3 Yigsape | =3 Gasap yl(k)
Auy(k-2) Quosay Yiasar | Qaraps Aiasa | Qorals Aioeats |y, (k)
g N Qassp Uiass)e | Yasspp Yiassp | Yass)s  A(ass)e Yy, (k-1) _
AU (k—d—2) Oason  Yeas6)2 | Y63 G(aso)s | Yases  Aaso)s yz(k—l)
Al(k d 2) Q(nn‘n q(un)z Q(dn)z q(d+7)4 q(d+7}5 Ya+7)6 y1(k_2)
u.(k—d—
Auz(k D Qoeon s | Gorap Ao | Qasos Gioumgs JLY2(k—2)
(k—d—
Au,(k—d-1)
Au(k-1)
Gy Gyu Gy Paa | Auk-2)
=|Gya Gy Gy Pu.z : +
_deZ Gy.s Gygn P AU(k*d*Z)
Q(d n Qd +1)2 Qd +1)3
+| Quizn  Qus2re Quusap y
Q(u s Q. 3)z Quap y
Au(k-1)
Au(k-2) y(k)
=P, : +Q,| y(k-1)
Au(k—d -2) y(k-2)
Au(k —d -1)
(57)

The computation of the forced response is again
given by equation (53)

6 Simulation Verification

6.1 SISO control

As simulation examples were chosen a fifth order
linear system described by following transfer
function

2 2
(s +1)5  §°+5s* +10s° +10s? +5s +1

and a fifth-order linear system with non-minimum
phase

Ga(s) = (58)

2(1-5s)
s° +5s* +10s° +10s? +5s +1

GB (S) =

(59)
The systems were identified by model (6) using

off-line LSM (least squares method) [14]. System
(58) was approximated by
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G (z’l)— 0,0424z 7" +0,02967 2 ,-2
A 1-1,68362 * +0,7199z 2 (60)
and system (59) was approximated by
_ -1 -2
GB(z‘1)= 07723z +08514z° __, (61)

1-1,6521z 7 +0,6920z 2

Both for sampling period T, =0.5s. The step
responses of models (58) and (59) together with
discrete step responses of their approximations (60)
and (61) are in the following figures

Step Response

Amplitude

Time [sec)

Fig. 1 Step responses of models (58) and (60)

Step Response
T

Ampltude

L L L
15 20 25 30
Time [sec)

Fig. 2 Step responses of models (59) and (61)

Control responses are in figures 3, 4, 5 and 6.

The tuning parameters that are lengths of the
prediction and control horizons and the weighting
coefficient 1 were tuned experimentally. There is a
lack of clear theory relating to the closed loop
behavior to design parameters. The length of the
prediction horizon, which should cover the
important part of the step response, was in both
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cases set to N = 40. The length of the control
horizon was also set to N, = 40. The coefficient 4
was taken as equal to 0,5.

25

¥

0.5 H

I I I ! I I I
1} a0 100 150 200 250 300 350 400
k

Fig. 3 Control of model (60)

45

145

05 I 1 I ! I 1 I
1} a0 100 150 200 250 300 350 400

k

Fig. 4 Control of model (60) —manipulated variable

25

I I I ! I I I
a0 100 150 200 250 300 3580 400
k

Fig. 5 Control of model (61)
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I I I I
200 280 300 350
k

I ! I
a0 100 180 400

Fig. 6 Control of model (61) —manipulated variable

6.2 TITO control
A TITO system with two steps of time-delay

G(2)=A (Bl )

described by polynomial matrices (63) —(64) was
chosen as an example

(62)

-0.02z71+0.17272

A(z’l)— 1-058271+0.17272
1-0.45z271-0.08272

63
0.01z ™" -0.082 7 J( )
0.14z71+0.21772

B(z’l)— —0.0035271+0.09z72
—~0.03z71-0.34z72

0.27z71+0.31272

J (64)

In order to compute the right control action it
was necessary to determine the predictions from
2+1 to 2+N.

9(k +3)
J(k +4)|=GAu+y,
9(k +5)

The computation of the free response was then
modified to

(65)
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(05 U5 | 9 U2 | Po Ps [ Auy(k=1)]
9 Uo | s e | Pe Pep | AUy(k-1)
|91 9s2 | 911 O Pz Pr AU1(k - 2)
Yo = +
961 Y62 | a1 Yso | Par DPeo Auz(k - 2)
91 97 | 9u e | Por  Pe || AU(k—3)
19 e | Y01 Guoo | Prox  Puoo J| AU (K — 3)_
[0 O | O Os | G5 G | (k) |
9o % |9 O | s Ges | Yo(k)
+ U O | Oz G | Os G | Ya(k—1)
O G | oo Gus | Oos o | Yolk=1)
Qoo G | Oss Osa | Gos  Oos || Va(k—2)
Gios o2 | Y103 Yes | Ghos  Chos || Y2 (k- 2)_
Gz Ga P3 Au(k _1) Q31 Qsz Q33 Y(k)
Ga GA P4 Au(k - 2) + Q41 Q42 Q43 y(k _1) =
_GA Gs Ps Au(k - 3) Q51 Qsz Q53_ L y(k - 2)
Au(k ~1) y(k)
e/ sulk-2) 40, ylc-1)
Au(k -3) y(k-2)
(66)

Control responses are in Fig. 7 and Fig. 8.

The length of the prediction horizon was set to N
= 10. The length of the control horizon was also set
to Ny = 10. The coefficient A was taken as equal to
0,5.

L L L L L
100 1200 1400 B0 180

L L L L
0 20 40 B0 80

200

¥

I 1 I 1 I
100 1200 1400 10 180
k

I 1 I 1
0 20 40 60 80 200

Fig. 7 Simulation results — controlled variable.
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I I I I I I I I I
1} 20 40 60 a0 100 120 140 160 180 200

U2

I I I I I
100 120 140 160 180
k

Fig. 8 Simulation results — manipulated variable.
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7 Conclusions

The algorithm for control of the higher-order
processes based on model predictive control was
designed. The  higher-order  process  was
approximated by the second-order model with time
delay. The predictive controller is based on the
recursive computation of predictions by direct use
of the CARIMA model. The computation of
predictions was extended for the time-delay system.
The control of two modifications of the higher-order
processes (stable and non-minimum phase) were
verified by simulation. The simulation verification
provided good control results. Asymptotic tracking
of the reference signal was achieved in both cases.
The control of non-minimum phase system was
rather sensitive to tuning parameters. Experimental
tuning of the controller was more complicated in
this case. The analogical algorithm for control of the
multivariable time-delay systems was also designed.
The control of the two — input/two — output system
with two steps of time-delay was verified by
simulation. Good simulation control results were
achieved. Further research can be focused on an
extension of the proposed method for control of 2-D
(two-Dimensional) discrete time systems.
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