
MATEC Web of Conferences 210, 04042 (2018) https://doi.org/10.1051/matecconf/201821004042
CSCC 2018

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
License 4.0 (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author: varacha@utb.cz

Modeling of distributed file System in big data storage by event-
B

Ammar Alhaj Ali1, Pavel Varacha1, *, Said Krayem1, Roman Jasek1, Petr Zacek1, and Bronislav Chramcov1
1Faculty of Applied Informatics, Tomas Bata University in Zlin, Czech Republic

Abstract. Nowadays, a wide set of systems and application, especially in high performance computing,
depends on distributed environments to process and analyses huge amounts of data. As we know, the
amount of data increases enormously, and the goal to provide and develop efficient, scalable and reliable
storage solutions has become one of the major issue for scientific computing. The storage solution used by
big data systems is Distributed File Systems (DFSs), where DFS is used to build a hierarchical and unified
view of multiple file servers and shares on the network. In this paper we will offer Hadoop Distributed File
System (HDFS) as DFS in big data systems and we will present an Event-B as formal method that can be
used in modeling, where Event-B is a mature formal method which has been widely used in a number of
industry projects in a number of domains, such as automotive, transportation, space, business information,
medical device and so on, And will propose using the Rodin as modeling tool for Event-B, which integrates
modeling and proving as well as the Rodin platform is open source, so it supports a large number of plug-in
tools.

1 Introduction

The ability to process and manage large volumes of data
such as, search engines, databank centers and data
mining systems…etc. require an infrastructure for
storing and retrieving data, where the distributed file
systems are essential component for storing data
infrastructure [1]. DFS provides permanent storage for
sharing multiple files and build a hierarchical and unified
view of these files by federating storage resources
dispersed in a network. So high performance computing
applications heavily rely on these DFSs [2]. A DFS is a
file system that supports the sharing of files in the form
of persistent storage over a set of the network connected
nodes. Many DFS’s have been developed over the years
and almost two decades of research have not succeeded
in producing a fully featured DFS [1]. This paper is
divided into two sections; In First Section, we will define
DFS and show its properties and mechanism to store and
share data; then will show used approaches for big data
systems, and as case study we will offer Hadoop and
HDFS Architecture, and in second section will offer
Event-B and modeling in Event-B by Rodin tool, where
will demonstrate benefits and features for using Event-B
in analysing and modeling the systems.

2 Distributed File Systems

A distributed file system is a client/server-based
application that allows clients to access and process data

stored on the server as if it were on their own computer
[3], The Distributed File System (DFS) is used to build a
hierarchical view of multiple file servers and shares on
the network. Instead of having to think of a specific
machine name for each set of files, the user will only
have to remember one name; which will be the 'key' to a
list of shares found on multiple servers on the network
[1]. Unlike local files systems, storage resources and
clients are dispersed in a network. Files are shared
between users in a hierarchical and unified view: files
are stored on different storage resources but appear to
users as they are put on a single location [2]. Basically,
A Distributed File System (DFS) is simply a classical
model of a file system distributed across multiple
machines. The purpose is to promote sharing of
dispersed files the resources on a particular machine [4].

3 Big data Solutions

In general, there are two Approaches for big data
solution: Traditional Approach and MapReduce
Approach.

3.1 Traditional Approach

In this approach, will have a computer (Server) to store,
process and retrieve big data, where data will be stored
in an RDBMS like Oracle Database, MS SQL Server or
DB2 and sophisticated software can be written to interact
with the database, process the required data and present

2

MATEC Web of Conferences 210, 04042 (2018) https://doi.org/10.1051/matecconf/201821004042
CSCC 2018

it to the users [5], where the traditional database works
on data size in range of Gigabytes. [6]

3.2 MapReduce Approach

Google solved the problem of traditional approach with
huge amount of data using MapReduce [5], MapReduce
is a programming model and an associated
implementation for processing and generating big data
sets with a parallel, distributed algorithm on a cluster [7],
This algorithm divides the task into small parts and
assign those parts to many computers connected over the
networks and collects the results to form the final result
dataset. [5]

4 Hadoop

Hadoop was created by Doug Cutting, the creator of
Apache Lucene, the widely used text search library.
Hadoop has its origins in Apache Nutch, an open source
web search engine; itself a part of the Lucene project [8].
Where Doug Cutting and his team took the solution
provided by Google (MapReduce) and started their
project (HADOOP) [5]. The Apache Hadoop software
library is a framework that allows for the distributed
processing of large data sets across clusters of computers
using simple programming models. It is designed to
scale up from single servers to thousands of machines,
each offering local computation and storage. Rather than
rely on hardware to deliver high-availability, the library
itself is designed to detect and handle failures at the
application layer, so delivering a highly-available service
on top of a cluster of computers, each of which may be
prone to failures [9].

5 Hadoop Distributed File System
(HDFS)

The Hadoop Distributed File System (HDFS) is designed
to store very large data sets reliably, and to stream those
data sets at high bandwidth to user applications. In a
large cluster, thousands of servers both host directly
attached storage and execute user application tasks. By
distributing storage and computation across many
servers, the resource can grow with demand while
remaining economical at every size. We describe the
architecture of HDFS and report on experience using
HDFS to manage 25 petabytes of enterprise data at
Yahoo! [10].

6 HDFS Architecture

HDFS is a file system designed for storing very large
files and it doesn’t require expensive and highly reliable
hardware. It’s designed to run on clusters of commodity
hardware for which the chance of node failure across the
cluster is high, at least for large clusters. HDFS is
designed to carry on working without a noticeable

interruption to the user in the face of such failure [11],
and it has been designed to be easily portable from one
platform to another. This facilitates widespread adoption
of HDFS as a platform of choice for a large set of
applications [12]. An HDFS cluster has two types of
node operating in a master-worker pattern: a namenode
(the master) and a number of datanodes (Slaves) [8].
HDFS Architecture could is represented by Figure 1.

Fig. 1. HDFS Architecture (own source).

Apache Hadoop HDFS Architecture is as following [13]:

• HDFS Master/Slave Topology: Hadoop Distributed
File System (HDFS) is a block-structured file
system where each file is split into one or more
blocks and these blocks of a pre-determined size
(typically 128 megabytes) are stored across a
cluster of one or more DataNodes. HDFS
Architecture follows a Master/Slave Architecture,
where a cluster consists of a single NameNode
(Master node) and all the other nodes are
DataNodes (Slave nodes) [12][13].

• NameNode Name: NameNode can be considered as
a master of the system. It maintains the file system
tree and the metadata for all the files and directories
present in the system. NameNode is a very highly
available server that manages the File System
Namespace and controls access to files by clients.
Namenode has knowledge of all the datanodes
containing data blocks for a given file [13].

• DataNode: The DataNodes are responsible for
serving read and write requests from the file
system’s clients. The DataNodes also perform
block creation, deletion, and replication upon
instruction from the NameNode [12], for every
node in a cluster, there will be a datanode. These
nodes manage the data storage of their system [5].

• Blocks in HDFS: When you store a file in HDFS,
the system breaks it down into a set of individual
blocks and stores these blocks in various
DataNodes in the Hadoop cluster. This is an
entirely normal thing to do, as all file systems break

3

MATEC Web of Conferences 210, 04042 (2018) https://doi.org/10.1051/matecconf/201821004042
CSCC 2018

files down into blocks before storing them to disk
[14].

If we had a block size of let’s say of 4 KB, as in Linux
file system, we would be having too many blocks and
managing this number of blocks will create huge
overhead. That's why we need to have such a huge
blocks size i.e. 128 MB. The blocks are of fixed size, so
it is very easy to calculate the number of blocks that can
be stored on a disk[13]. Blocks in HDFS are represented
by Figure 2.

Fig. 2. Blocks in HDFS (own source).

• Replication Management: The blocks of a file are
replicated for fault tolerance. The replication factor
can be specified at file creation time and can be
changed later [12]. As you can see in Figure 3,
where each block is replicated three times and
stored on different DataNodes. Here, was used
default replication factor 3 [13].

Fig. 3. Replication management of blocks (own source).

All the replicas are not stored on the same rack or on a
single rack. It follows an in-built Rack Awareness
Algorithm to reduce latency as well as provide fault
tolerance [13]. Rack Awareness algorithm is shown in
Figure 4.

Fig. 4. 6 Rack Awareness algorithm (own source).

• HDFS Read: HDFS follows next steps to achieve
Read operation [13] [15, 16]. The HDFS Read
operation is illustrated by Figure 5.

1. Client initiates read request by calling Open()
method of FileSystem object, which for HDFS is an
instance of DistributedFileSystem.

2. This object connects to namenode using RPC
(Remote Procedure Call) and gets metadata
information such as the locations of the blocks of
the file, where these addresses are of first few block
of file.

3. For each block the namenode returns the addresses
of the datanodes that have a copy of that block and
datanodes are sorted according to their proximity to
the client.

4. Once addresses of DataNodes are received, an
object of type FSDataInputStream is returned to the
client. FSDataInputStream contains
DFSInputStream which takes care of interactions
with DataNode and NameNode, where client
invokes Read() method which causes
DFSInputStream to establish a connection with the
first DataNode with the first block of file.

5. Data is read in the form of streams wherein client
invokes Read() method repeatedly. This process of
Read() operation continues till it reaches end of
block.

6. Once end of block is reached, DFSInputStream
closes the connection and moves on to locate the
next DataNode for the next block

7. Once client has done with the reading, it calls
Close() method.

Fig. 5. HDFS Read Operation (own source).

• HDFS Write: HDFS follows next steps to achieve
write operation [13] [15, 16], see Figure 6.

4

MATEC Web of Conferences 210, 04042 (2018) https://doi.org/10.1051/matecconf/201821004042
CSCC 2018

1. Client initiates write operation by calling Create()
method of DistributedFileSystem object which
creates a new file.

2. DistributedFileSystem object do a RPC (Remote
Procedure Call) to namenode to create a new file in
FileSystem namespace with no blocks associated to
it, the client should has permissions to create a file
or not.

3. Once new record in NameNode is created, an
object of type FSDataOutputStream is returned to
the client. Client uses it to write data into the
HDFS.

4. FSDataOutputStream contains DFSOutputStream
object which looks after communication with
DataNodes and NameNode. While client continues
writing data, DFSOutputStream continues creating
packets with this data. These packets are en-queued
into a queue which is called as DataQueue.

5. DataQueue is then consumed by a DataStreamer
which also asks NameNode for allocation of new
blocks thereby picking desirable DataNodes to be
used for replication.

6. Now, the process of replication starts by creating a
pipeline using DataNodes. In our case, we have
chosen replication level of three and there will be
three nodes in the pipeline.

7. The DataStreamer pours packets into the first
DataNode in the pipeline.

8. Every DataNode in a pipeline stores packet
received by it and forwards the same to the second
DataNode in pipeline.

9. Another queue, acknowledgement Queue is
maintained by DFSOutputStream to store packets
which are waiting for acknowledgement from
DataNodes.

10. Once acknowledgement for a packet in queue is
received from all DataNodes in the pipeline, it is
removed from the acknowledgement Queue. In the
event of any DataNode failure, packets from this
queue are used to reinitiate the operation.

11. After client is done with the writing data, it calls
Close() method, results into flushing remaining
data packets to the pipeline followed by waiting for
acknowledgement.

12. Once final acknowledgement is received,
NameNode is contacted to tell it that the file write
operation is complete.

Fig. 6. HDFS Write Operation (own source).

7 Use formal method Event-B to model

Formal methods-based development is a standard and
popular approach to deal with the increasing complexity
of a system with assurance of correctness in the modern
software engineering practices. Formal methods-based
techniques increasingly control safety-critical
functionality in the development of the highly critical
systems. These techniques are also considered as a way
to meet the requirements of the standard certificates to
evaluate a critical system before use in practice [18]. The
primary concept in doing formal developments in Event-
B is that of a model [19]. An Event-B model is
constructed from a collection of modeling elements. The
modeling elements have attributes that can be based on
Set Theory and Predicate Logic. Set Theory is used to
represent data-types and to manipulate the data. Logic is
used to apply conditions to the data. The development of
an Event-B model goes through two stages; abstraction
and refinement.

• The abstract machine specifies the initial
requirements of the system.

• Refinement is carried out in several steps - with
each step adding more detail to the system [19].

A model contains the complete mathematical
development of a Discrete Transition System. It is made
of several components of two kinds: machines and
contexts[20][21].

8 Formal modeling of HDFS in Event-B

In this section we will offer modeling for writing
operation in HDFS.

5

MATEC Web of Conferences 210, 04042 (2018) https://doi.org/10.1051/matecconf/201821004042
CSCC 2018

8.1 Abstract Model

The cluster in HDFS consists of a single NameNode
(Master node) and all the other nodes are DataNodes
(Slave nodes),

So we will use following variables: DataNode ⊆
CLUSTER, NameNode ∈ CLUSTER. The Hadoop
clients Will send request to create a file and NameNode
will perform some checks before create file (has the
client permissions?), if all checks pass the NameNode
create file and return success to the client see event
ClientCreateFile, in Figure 8. After create the file (empty
file), it is time to start writing data, HDFS clients will
create FSDataOutputStream and start writing data to it,
FSDataOutputStream have many tasks, it queues the data
locally and divides file into blocks (128 MB), once there
is one block of data the DataStreamer connect to
NameNode to ask location of block in DataNode, The
NameNode can easily assign DataNode to store that
block and send back the DataNode name to
DataStreamer, see event AddBlockToNameNode in
Figure 8. Now, the DataStreamer will start send block to
DataNode, if the file is larger than one block the
DataStreamer will again connect to NameNode to get
location of new block, see event AddBlockToDataNode
in Figure 7. Figure 7 is the representation of the source
code.

Fig. 7. A specification of abstract model (own source).

8.2 First refinement

In the first refinement step we extend the abstract model
by add new variables and events to improve performance
NameNode to response all requests to get location of
data blocks, where the block in NameNode will pass in
three stages: Buffer, Inprocessing and Processed, so add
extra variable and events. In Figure 8 you can see the
result of the First refinement as the representation of
source code.

Fig. 8. A specification of First refinement (own source).

8.3 Second refinement

In HDFS, NameNode will receive many requests from
DataStreamer from many HDFS clients to assign
location of blocks in DataNode, so will add new
variables

Fig. 9. A specification of Second refinement (own source).

8.4 Results and proof statistics

In table 1, we can see proof statistics for our model using
the Rodin3.2 platform, the statistics give us the proof
obligations generated and discharged by the Rodin, The
finial development of our model results in 59 POs (Proof
obligations), around (95%) of them have been proved
automatically by the Rodin platform and the rest have
been proved manually in the Rodin interactive proving
environment [20] [21].

6

MATEC Web of Conferences 210, 04042 (2018) https://doi.org/10.1051/matecconf/201821004042
CSCC 2018

Table 1. HDFS Architecture HDFS (Our model)

9 Conclusion

In this paper, we have presented some of the basic
concepts in formal method using Event-B to model a
distributed file system in big data systems, Where
Formal method is one of the mechanisms which help us
to understanding the complex specification of systems
and how to analyse and build its. And we proposed
Hadoop distributed file system (HDFS) as study case to
proof that Event-B is a formal method allowing a
stepwise development of reactive distributed systems,
and we proposed using Event-B to helpful the
specification and the safe development of distributed
systems. So we can say, Event-B is a formal method that
is used for specifying and reasoning about complex
systems and Rodin tool is a platform where verification
of the program is done and offers reactive environment
for constructing and analyzing models as do most
modern integrated development environments, and
provides integration between modeling and proving
whereas this is important feature for the developers to
focus on the modeling task without switch between
different tools to check proving in same time. Our final
models are translated into the Event-B notation to verify
required properties, so we can say; event-B allows us to
define a kind of modeling methodology by write the
correct mathematical notions.

In the future, we will conduct more research on the
modeling in Event-B and Rodin platform as well as offer
techniques and describe code generation approaches and
tools (in Event-B) to generate code(Java or C).

This work was supported by the Ministry of Education, Youth
and Sports of the Czech Republic within the National
Sustainability Programme project No. LO1303 (MSMT-
7778/2014) and by the European Regional Development Fund
under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089.
Also supported by grant No. IGA/CebiaTech/2017/007 from
IGA (Internal Grant Agency) of Tomas Bata University in Zlin.

References
1. T. D. Thanh, S. Mohan, E. Choi, S. B. Kim, P.

Kim, A Taxonomy and Survey on Distributed File
Systems (2008)

2. B. D., G. LeMahec, C. Seguin, Analysis of Six
Distributed File Systems (2013)

3. http://searchwindowsserver.techtarget.com/definiti
on/distributed-file-system-DFS

4. A. Das, D. Tiwari, N. Rajani, R. Moona,
Distributed File Systems:A Case Study (2010)

5. V. K. Jain, Big Data and Hadoop (2017)
6. A. K. Swapnil, S. S. Dangee, A Comparative

Analysis of Traditional RDBMS with MapReduce
and Hive for E-Governance system (2015)

7. https://en.wikipedia.org/wiki/MapReduce
8. T. White, Hadoop: The Definitive Guide,

O'REILLY (2012)
9. http://hadoop.apache.org/
10. K. Shvachko, H. Kuang, S. Radia, R. Chansler, The

Hadoop Distributed File System (2010)
11. http://www.corejavaguru.com/bigdata/hadoop/hdfs-

architecture
12. https://hadoop.apache.org/docs/r1.2.1/hdfs_design.

html
13. http://www.waytoeasylearn.com/2016/11/hdfs-

tutorial.html
14. D. deRoos, Hadoop for Dummies (2014)
15. https://www.guru99.com/learn-hdfs-a-beginners-

guide.html
16. http://www.hadoopinsight.com/blog/hdfs/anatomy_

of_file_write_and_read_in_hadoop
17. http://checkmkblog.blogspot.com/2013/07/hadoop-

vs-rdbms.html
18. N. K. Singh, Using Event-B for Critical Device

Software Systems, Springer (2013)
19. J.-R. Abrial, Modeling in Event-B System and

Software Engineering (2011)
20. Ammar Alhaj Ali, Roman Jasek, Said Krayem, Petr

Zacek; Proving the Effectiveness of Negotiation
Protocols KQML in Multi-agent Systems Using
Event-B(2017);ISBN:978-3-319-57264-2;
https://link.springer.com/chapter/10.1007/978-3-
319-57264-2_40.

21. Ammar Alhaj Ali, Roman Jasek, Said Krayem,
Bronislav Chramcov, Petr Zacek; Improved
Adaptive Fault Tolerance Model for Increasing
Reliability in Cloud Computing Using Event-B
(2018);ISBN:978-3-319-91192-2;
https://link.springer.com/chapter/10.1007/978-3-
319-91192-2_25.

