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Abstract: - Non-linear optimization, particularly quadratic programming (QP), is a mathematical method which 

is widely applicable in model predictive control (MPC). It is significantly important if constraints of variables 

are considered in MPC and the optimization task is then computationally demanding. The result of the 

optimization is a vector of future increments of a manipulated variable. The first element of this vector is 

applied in the next sampling period of MPC in the framework of a receding horizon strategy. In practical 

realization of a multivariable MPC, the optimization is characterized by higher computational complexity. 

Therefore, reduction of the computational complexity of the optimization methods has been widely researched. 

Besides the generally used numerical Hildreth’s method of QP, a possible suitable modification is based on 

precomputing operations proposed by Wang, L. This general optimization strategy is further modified. Two 

modifications, which could be applied separately each, were interconnected in this paper. The first modification 

was published previously; however, its application can be more efficient in connection with the second 

proposed approach, which modifies precomputing operations. Decreasing of the computational complexity of 

the optimization by using of the proposal is discussed and analyzed by measurements of floating point 

operations and control quality criterions using hypotheses tests – paired T-test and Wilcoxon test. 

 

Key-Words: - Model Predictive Control; Multivariable Control; Optimization; Quadratic Programming; 

Hildreth's Method; Constraints.    

 

1 Introduction 
Model predictive control (MPC) [1]-[2] has been 

widely applied in controlling of industrial processes 

with respect to its ability to deal with control 

difficulties such as constrained variables [3], time-

delay [4], nonlinearity [5] and non-minimum phase 

[6]. Theoretical research has a great impact on the 

industrial world in this area of predictive control. 

There are many applications of predictive control in 

industry [7]-[8]. Research of the predictive control 

has been significantly related to industrial practice. 

Predictive control is also one of the most effective 

approaches for control of multivariable systems 

(MIMO) [9]. An advantage of model predictive 

control is that the multivariable systems can be 

handled in a straightforward manner. 

A predictive controller can be divided into two 

subsystems, a predictor and an optimizer, which are 

cooperating on a receding horizon strategy [10]. In 

the MPC, the basic idea is to use a model of a 

controlled process to predict future outputs of the 

process [11] and a trajectory of future manipulated 

variables is given by solving an optimization 

problem incorporating a suitable cost function with 

constraints [12]. Only the first element of the 

obtained control sequence is applied in a framework 

of the receding horizon strategy. One of the 

advantages of the predictive control is its ability to 

do on-line constraints handling in a systematic way, 

which frequently appears in industrial applications.  

A significantly important part of the constrained 

MPC is an optimization task. A frequently used type 

of optimization in MPC is the quadratic 

programming [13], where constraints are 

considered. Previous, current and predicted control 

variables of MPC are included in a cost function 

[14]. In case of constrained multivariable predictive 

control, many constraints are processed in the 

optimization problem. Therefore, a selection of an 

appropriate numerical method is a necessary 

condition for successful achievement of the vector 

of future increments of the manipulated variables. 

The Hildreth’s method [15] has been widely used 

for purpose of solving of the quadratic programming 
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problems in MPC. This approach can be categorized 

as a dual method [15], which manipulates with the 

Lagrangian multipliers [15]. Its modifications 

applied in MPC have not been widely described in 

literature. 

However, a general modification, presented by 

Wang, L., has been published in [15] and is 

frequently utilized in MPC algorithms [16]. 

Reduction of a computational complexity is based 

on testing of the occurrence of a multidimensional 

extreme, which is computed in the current sampling 

period in MPC under all constraints.  

In this paper, an observed modification [18] of 

the optimization strategy following Wang, L. [15] is 

further improved by interconnecting together with 

an efficient approach to Hildreth's method [17], 

which is based on from algorithmic point of view. 

As evaluation of all defined constraints is 

significantly time-demanding in multivariable MPC, 

the proposed modification of the Wang’s approach 

can be advantageous due to significant reduction of 

numerical iterative operations required by the 

optimization algorithm.  

 

 

2 Multivariable Model Predictive 

Control  
In the multivariable model predictive control [1]-

[2], a system with two inputs and two outputs 

(TITO) will be further considered. The TITO 

processes are frequently encountered multivariable 

processes in practice [9]. A general transfer matrix 

[11] of a TITO system can be expressed as (1), 

where U and Y are vectors of the manipulated 

variables and the controlled variables. 

 
   

   
11 12

21 22

G z G z
z

G z G z

 
  
 

G                       (1) 

     z z zY G U                             (2) 

     1 2,
T

z u z u z   U ,      1 2,
T

z y z y z   Y    (3) 

It may be assumed that the transfer matrix (1) 

can be transcribed to form (4) of the matrix fraction. 

         1 1 1 1 1 1

1 1z z z z z      G A B B A         (4) 

The model can be also written in form (5). 

       1 1z z z z A Y B U                     (5) 

As an example, a model with polynomials of 

second degree was chosen in (6)-(7). This model 

proved to be effective for control of several TITO 

laboratory processes [7]-[8], where controllers based 

on a model with polynomials of the first degree 

failed. The model has sixteen parameters. The 

matrices A and B are defined as follows: 

 
1 2 1 2

1 1 2 3 4

1 2 1 2

5 6 7 8

1

1

a z a z a z a z
z

a z a z a z a z

   



   

   
  

   
A       (6) 

 
1 2 1 2

1 1 2 3 4

1 2 1 2

5 6 7 8

b z b z b z b z
z

b z b z b z b z

   



   

  
  

  
B             (7) 

A widely used model in model predictive control 

is the CARIMA (Controller Autoregressive 

Integrated Moving Average) model which we can 

obtain by adding a disturbance model (8), where n is 

a non-measurable random disturbance that is 

assumed to have zero mean value and constant 

covariance and (9) in case of TITO system. 

             1 1 1 1 1z k z k z z k     A y B u C Δ n    (8) 

 
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
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For purposes of simplification, polynomial 

matrix C will be further supposed to be equal to the 

identity matrix [19].  

The difference equations (10) of the CARIMA 

model are used for computation of predictions in 

predictive control. These equations can be further 

written into a matrix form (11)-(12). 
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  (10) 
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       1 3
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       2 4

3

6 8
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It was necessary to directly compute three steps-

ahead predictions by establishing of previous 

predictions to later predictions. The model order 

defines that computation of one step-ahead 

prediction is based on the three past values of the 

system output: 

       
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Computation of the predictions can be divided 

into recursion of the free response and recursion of 

the matrix of dynamics. The free response vector 

can be expressed as: 
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(14) 

Coefficients of matrices P and Q for further 

predictions are computed recursively. Based on the 

three previous predictions it is repeatedly computed 

the next row of the matrices P and Q in the 

following way: 

71 72

4 1 31 2 21 3 11

81 82

p p

p p

 
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 
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Recursion (19)-(20) of the matrix G is similar. 

The next element of the first column is repeatedly 

computed and the remaining columns are shifted. 

This procedure is performed repeatedly until the 

prediction horizon is achieved. If the control horizon 

is lower than the prediction horizon a number of 

columns in the matrix is reduced. Predictions can be 

written in a compact matrix form (21). 
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2.1 Implementation of MPC 
In the framework of the optimization subsystem of 

MPC, the computation of a control law of MPC is 

particularly based on minimization of quadratic 

criterion (22). This specific form of the optimization 

problem is then related to quadratic optimization 

[13]-[14]. 

     



uN

j

N

j

jkjkkJ
1

2

1

2
ue 

            

(22) 

where e(k+j) is a vector of predicted control 

errors, Δu(k+j) is a vector of future increments of 

the manipulated variable, N is a length of the 

prediction horizon, Nu is a length of the control 

horizon and λ is a weighting factor of control 

increments. A predictor in a vector form is given by: 

0
ˆ yuGy 

                               
(23) 

where ŷ  is a vector of system predictions along 

the horizon of the length N, Δu is a vector of control 
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increments, y0 is the free response vector. G is a 

matrix of the dynamics given by equation (24).    




















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 01
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


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



N                 

(24) 

where sub-matrices Gi have dimension 2x2 and 

contain values of the step sequence. 

The criterion (22) of the optimization problem 

can be written in a general vector form (25). 

    uuwywy  TT
J ˆˆ

                  
(25) 

where w is a vector of the reference trajectory. 

The criterion can be modified using the expression 

(25) to (26).   

uHuug  TTJ 2                        
(26) 

where the gradient g and the Hess matrix H are 

defined by following expressions: 

 wyGg  0
TT

                            
(27) 

GGH
T                                   

(28) 

In context of the quadratic programming 

optimization with constraints, general formulation 

of predictive control is as follows 

uHuug
u
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

TT2min                        (29) 

with respect to matrix inequality in a compact 

form: 
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2.2 Optimization Algorithm Widely Used in 

MPC 

In practical applications of MPC, a modification 

proposed by Wang, L. has been widely implemented 

[15]. This advantageous approach represents a new 

insight to the optimization strategy used in MPC. 

MPC is characteristic by a frequent occurrence of a 

situation, when the quadratic programming problem 

can be completely substituted by a simple multi-

dimensional extreme problem.  

The main idea of the modification is based on a 

pre-computed vector of future increments of the 

manipulated variables in form of a multi-

dimensional extreme (31). If the inequality (30) is 

fulfilled, then the whole problem of quadratic 

programming is eliminated and the solution has 

form (31). 

     bHΔu
1                                (31) 

If the multi-dimensional extreme is achieved, 

then the computational complexity significantly 

decreases. Otherwise the quadratic programming 

problem has to be solved using Hildreth’s method, 

which results in equation (32). 

                       )( T
bdMHΔu  T-1

-                        (32) 

 

 

3 Proposal of Interconnection of 

Convenient Optimization Strategies  

For purposes of further decreasing of computational 

complexity of the optimization algorithm, the 

approach described in the previous section was 

further improved. The approach presented by Wang. 

L [15] spends a large amount of the computational 

time by evaluation of all conditions in (33).  

This approach was published in [18]. It was 

focused on improving of precomputing operations 

based on constraints in QP.  
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





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i
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 2 1 

11

)(

;

; :;1 ,

 ;

mm

bHΔum

mΔ

R



  (33) 

The condition (33) can be effectively modified 

while maintaining the original advantages of the 

modification presented by Wang. L. A new form of 

the conditions is defined by (34). The testing of the 

conditions is progressively divided into partial 

operations. 
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In case of the first failure the testing is terminated 

and the rest of the conditions is not evaluated. The 

multi-dimensional extreme problem is then solved. 

This enables saving of the computational time. This 

is significant particularly in case of multivariable 

MPC where the number of operations is large. If all 

the conditions are fulfilled and the testing is 

completed, then the quadratic programming problem 

must be solved. 

The second approach, focused on improving the 

Hildreth’s method, was published in [17]. This 

method was primarily based on improving the 

numerical algorithm of the Hildreth’s method. The 

main principles are bound with including of a new 

exit condition of the iterative algorithm. This 

modified exit condition did not significantly affect 

quality of control, as can be seen in simulation 

results in [17]. Instead the comparison of equality of 

last computed results in main numerical cycle, 

further condition of fulfilling constraints (30) is 

being tested [17, p. 78]. 

In this paper, modification [17] is denoted as the 

first modification. As the second modification, the 

methodological extension [18] is entitled.  

 

 

4 Simulation Results 

MPC with both modifications was compared with 

the MPC without modifications by simulation of 

constrained multivariable predictive control in 

MATLAB. The comparison was based on a 

measurement of floating point operations [20] of a 

whole MPC algorithm which was applied for 

simulation control of a simulation controlled system 

defined by (35)-(36). A setting of further parameters 

of control is defined by (37). 
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(36)  

min max max1.7,  1.75,  0.07u u u                    (37) 

Constraints of the manipulated variables and 

increments of the manipulated variables were 

considered which is obvious from definition (37). 

Setting of constraints has an appropriate form, as 

can be seen in (38). Where I is an identity matrix 

[19] and E is a unit matrix [19]. 
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(38) 

Floating point operations of particular cases of 

MPC were computed using rules in [20]. The 

complexity variable , which is equal to a maximum 

horizon N, was incrementally increasing. As can be 

seen in Table 1, a significantly lower number of 

floating point operations F* was achieved when 

using MPC with both modifications. In F, a 

maximum number of operations was achieved for 

case of non-modified MPC. Application of only the 

first modification of MPC was active in small 

horizons µ=10 and µ=15 with a number of 

operations F1. In other cases with horizons greater 

than µ=15, the second modification got better 

results, as can be seen in F2. Interconnection of both 

modifications caused decreasing of floating point 

operations.  

Simulation results of MPC without modifications 

can be seen in Fig. 1-2 and with proposed 

modifications in Fig. 3-4. 
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Table 1: Analysis of Number of Floating Point 

Operations using Proposed Modifications in MPC 

  

MPC without 

Modification 

MPC with 1st 

Modification 

MPC with 2nd 

Modification 

MPC with 
Both 

Modifications 

µ F F1 F2 F* 

10 20488351 19881556 20487679 19880947 

15 70640181 40643698 70638817 40642365 

20 169256574 169256574 169254155 169254155 

25 332731867 332731867 332728093 332728093 

30 577460460 577460460 577455031 577455031 

35 919836753 919836753 919829369 919829369 

40 1376255146 1376255146 1376245507 1376245507 

45 1963110039 1963110039 1963110039 1963097845 

An order of the computational complexity can be 

expressed by using a function O=O() [20]. F
*
 is the 

number of flops and O
*
 expresses the order of the 

complexity function for the proposed approach with 

both modifications.  O is a complexity function for 

the case of MPC without modifications. In equations 

(39) and (40), the results are obtained using a non-

linear regression [21]. 
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Results of analyses of floating point operations 

for MPC without modifications F and for MPC with 

both modifications F* can be seen in Fig.5 and 

Fig.6. 

F = 21859µ3 - 14376µ2 + 6666.1µ
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 Fig. 5 Analysis of Floating Point Operations for 

MPC without Modifications 
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Fig. 6 Analysis of Floating Point Operations for 

MPC with Both Modifications 

Further, quality of control was analyzed using 

criterions (41) and (42) generally used in research 

focused on control engeneering e.g. [4], [17]. 
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kk

kykwkykwJ  (42) 

These criterions of quality (41)-(42) were 

measured in whole MPC control in case with both 

proposed modification and without modifications 

depending on horizons defined by µ, as can be seen 

in Table 2 and Table3. Where both criterions J1 and 

J2 are depended on a number of horizons µ. 

Table 2: Analysis of Control Quality using 

Criterion J1=J1(µ)  

  

MPC 

without 

Modification 

MPC with 

1st 

Modification 

MPC with 

2nd 

Modification 

MPC with 

Both 

Modifications 

µ J1 J1 J1 J1 

10 58,3219 58,3219 58,3219 58,3219 

15 56,0261 56,0260 56,0261 56,0260 

20 55,0907 55,0907 55,0907 55,0907 

25 55,6287 55,6286 55,6287 55,6286 

30 58,1919 58,1917 58,1919 58,1917 

35 58,2704 58,2704 58,2704 58,2704 

40 58,3068 58,3068 58,3068 58,3068 

45 58,4951 58,4951 58,4951 58,4951 

 

 

 

 

 

 

 

Table 3: Analysis of Control Quality using 

Criterion J2=J2(µ)  

  

MPC 
without 

Modification 

MPC with 
1st 

Modification 

MPC with 
2nd 

Modification 

MPC with 
Both 

Modifications 

µ J2 J2 J2 J2 

10 195,4043 195,4043 195,4043 195,4043 

15 196,0840 196,0841 196,0840 196,0841 

20 197,6620 197,6621 197,6620 197,6621 

25 196,7332 196,7333 196,7332 196,7333 

30 193,0959 193,0962 193,0959 193,0962 

35 192,9479 192,9479 192,9479 192,9479 

40 192,7495 192,7495 192,7495 192,7495 

45 192,1464 192,1464 192,1464 192,1464 

According to procedures for testing hypotheses, 

described e.g. in [22]-[23], the measured criterions 

in Table 2 and Table 3 were further tested.  

At first, testing the normality of data [22] was 

provided using a generally applied method Shapiro-

Wilk described in [24]. Table 4 contains results of 

testing normality of data. Testing zero-hypotheses, 

which express fulfilling of the normality, were 

confirmed on the significance level in software 

PAST [25]. 

Table 4: Testing Normality of Data of Criterion 

J1=J1(µ) using Shapiro-Wilk Test 

 

  
MPC 

without 

Modif. 

MPC 

with 1st 

Modif. 

MPC 

with 2nd 

Modif. 

MPC 

with 
Both 

Modif. 

    p-value p-value p-value p-value 

    0,009781 0,009785 0,009781 0,009785 

Result of 
Testing 

Zero-

Hypothesis 
(Fail to 

Reject / 

Reject) 

=0,05
Fail to 
Reject 

Fail to 
Reject 

Fail to 
Reject 

Fail to 
Reject 

=0,01
Fail to 

Reject 

Fail to 

Reject 

Fail to 

Reject 

Fail to 

Reject 

=0,001 Reject Reject Reject Reject 

Table 5: Testing Normality of Data of Criterion 

J2=J2(µ) using Shapiro-Wilk Test 

 

  
MPC 

without 

Modif. 

MPC 
with 1st 

Modif. 

MPC 
with 2nd 

Modif. 

MPC 

with 

Both 
Modif. 

    p-value p-value p-value p-value 

    0,245 0,2451 0,245 0,2451 

Result of 

Testing 
Zero-

Hypothesis 

(Fail to 
Reject / 

Reject) 

=0,05
Fail to 

Reject 

Fail to 

Reject 

Fail to 

Reject 

Fail to 

Reject 

=0,01
Fail to 
Reject 

Fail to 
Reject 

Fail to 
Reject 

Fail to 
Reject 

=0,001
Fail to 

Reject 

Fail to 

Reject 

Fail to 

Reject 

Fail to 

Reject 
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Existence of statically significant differences 

between J1 and J2 with and without modification 

was tested by paired T-test or Wilcoxon test. The 

paired T-test can be applied for data comparison, 

which indicate normality behaviour. The fulfilling 

of normality is obvious from Table 4 or Table 5. In 

other cases, the Wilcoxon test has to be used for non 

parametrical data. 

Depending on testing normality of all data in 

Table 4 and Table 5, zero hypothesis about non-

existence of statistically significant differences were 

performed, as can be seen in Table 6 and Table 7. 

Hypotheses, which were failed to reject, express 

situation with similarities of both data sets (before 

and after modifications in MPC). 

In results of testing hypotheses, similarities in 

criterions J1 and J2 were found. Therefore 

modifications of MPC, proposed in this paper, have 

not statistically significant influence on the control 

quality. These conclusions can be verified using 

Table 2 and Table 3, where differences on the 4th 

decimal places can be seen. 

Table 5: Testing Hypotheses on Non-Existence 

of Differences between Data of Criterion J1=J1(µ) 

before and after Applied Modification in MPC 

Result of 

Testing Zero-
Hypothesis 

(Fail to Reject 
/ Reject) 

MPC without Modif. 

MPC with 

Both 
Modif. 

Applied 

Test 

p-value 

=0,05 p= 0,1036: Fail to Reject 
Paired T-

test 

=0,01 p= 0,1036: Fail to Reject 
Paired T-

test 

=0,001 p= 0,10881: Fail to Reject Wilcoxon 

Table 6: Testing Hypotheses on Non-Existence 

of Differences between Data of Criterion J2=J2(µ) 

before and after Applied Modification in MPC 

Result of 

Testing Zero-

Hypothesis 
(Fail to Reject / 

Reject) 

MPC without 

Modif. 

MPC 

with 

Both 
Modif. 

Applied 

Test 

p-value 

=0,05 p= 0,0796: Fail to Reject 
Paired 

T-test 

=0,01 p= 0,0796: Fail to Reject 
Paired 
T-test 

=0,001 p= 0,0796: Fail to Reject 
Paired 

T-test 

 

 

 

 

 

 

7 Conclusion  

Interconnection of modifications of optimization 

numerical methods was applied in constrained 

multivariable MPC in this paper. Advantages of the 

proposed approach were demonstrated and proved 

by simulations in MATLAB. Multivariability and 

considered constraints in MPC significantly increase 

a computational complexity of the optimization. 

Therefore, the proposed approach can be 

advantageous for multivariable MPC with 

constraints. Analysis of saving of floating point 

operations and influence of the proposed approach 

on quality of control was performed. By analysis of 

the simulation results it was proved that application 

of the proposed modification significantly saves 

floating point operations and concurrently does not 

affect quality of control. It was then proved that the 

proposed method can be successfully applied. 
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