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Abstract

The reaction of 1-phenyl-2H,6H-imidazo[1,5-c]quinazolino-3,5-dione (4) with 3-molar excess ethylene oxide was de-
scribed. The resulting product was characterized by spectroscopic techniques (‘H-, '>C-NMR, IR, and UV) and by X-ray
crystallography. It was expected to produce a product of the subsequent reaction in the hydroxyl groups of the initially
formed diol—I1-phenyl-2,6-bis(2-hydroxyethyl)imidazo[1,5-c]quinazoline-3,5-dione (7) with ethylene oxide (5).
However, crystallographic studies revealed that the proper and only product of the reaction is 3-{2-[1,3-bis(2-
hydroxyethyl)-2-oxo0-4-phenylimidazolidin-5-yl]phenyl}-1,3-oxazolidin-2-one (8). This product was formed by
quinazoline ring opening which occurred in the presence of more than 2-molar excess ethylene oxide. In the work, the
exemplary reaction mechanism explaining the formation of the unexpected product was proposed. In order to understand
the reasons of quinazoline ring opening, the quantum mechanical modeling was performed. Energy of transition states
indicated that the reaction with the third mole of ethylene oxide was controlled by kinetics.

Keywords Imidazo[1,5-c]quinazolino-3,5-dione ring - Oxirane - Intramolecular substitution - Crystallographic structure -

Quantum mechanical modeling

Introduction

During the reaction of 3-amino-3R-1H-quinoline-2,4-diones
(1) with urea at the boiling point of acetic acid, 1R-2H,6H-
imidazo[1,5-c]quinazoline-3,5-diones (2) were produced in-
stead of the expected 3a-R-3H,5H-imidazo[4,5-c]quinoline-
2,4-diones (3), (Fig. 1) [1].
1-R-2H,6H-Imidazo[1,5-c]quinazoline-3,5-diones were
formed by intramolecular rearrangement as described in
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details in [2]. A similar situation took place during the reaction
of 1-substituted or 1,1-disubstituted urea with 3-amino-3-R-
1H-quinoline-2,4-diones [3]. Then, the substituent in the urea
molecule was disconnected, and 1-R-2H,6H-imidazo[1,5-c]-
quinazoline-3,5-diones (2) were formed just as during the re-
action with urea.

When nitrourea was applied, 1-R-2H,6H-imidazo[1,5-
c]quinazoline-3,5-diones (2) and 9b-hydroxy-3-R-3a,5,9b-
tetrahydro-1H-imidazo[4,5-c]quinoline-2,4-diones were
formed depending on the solvent type [3].

If 3-amino-1-R’-3-R-quinoline-2,4-diones—comprising ter-
tiary lactam group—took part in the reaction, three different
products were obtained [2]. An intramolecular rearrangement
also took place during the reaction but this time from quinolone
to indolinone system and 3-(3-acylureido)-2,3-dihydro-1-R’-
indol-2-ones or 4-alkylidene-10H-spiro[imidazolidine-5,30-
indol]-2,20-diones were formed. The typical product—3a-R-
3H,5H-imidazo[4,5-c]quinoline-2,4-dione—was also made [2].

Reaction of 3-amino-3-phenylquinoline-1H,3H-2,4-dione
(1, R="Ph) with urea resulted in the production of 1-phenyl-
2H,6H-imidazo[1,5-c]quinazoline-3,5-dione (2, where R =
Ph, i.e., 4) in a yield of approx. 84 wt%.
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Fig. 1 Reaction scheme of 3-
amino-3-R-1H-quinoline-2,4-
diones with urea
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where: R - alkyl or aryl group

The compound (4) could be reacted with ethylene oxide
(EO, 5), and then, alcohol (6) [4] and diol (7) [5] with the
imidazoquinazoline rings were successively produced accord-
ing to the scheme shown in Fig. 2.

Compounds containing imidazoquinoline and
imidazoquinazoline rings have interesting properties.
Quinazoline derivatives have a wide spectrum of biological
properties, which allow their use in the production of anti-
inflammatory [6], anti-parasitic [7], anti-histamine [8], anti-
diuretic [9], and anti-cancer [10] drugs. In turn,
imidazoquinazoline derivatives have wide application in medi-
cine and pharmacy due to their anti-tumor, anti-viral, anti-
bacterial or anti-convulsive, and anti-oxidative activity [11-16].

Compounds that contain in their structure a ring of imidaz-
ole, imidazolone, or oxazole also show biological activity, e.g.,
imidazole derivatives with alkyl phenyl substituents described
in [17] are used in the treatment of mental disorders, i.e., schizo-
phrenia, bipolar disorder, obsessive-compulsive disorder, and
autism spectrum disorder. Imidazole derivatives with aryl or
heteroaryl substituents are used in the prevention and treatment
of cancer as well as in the treatment of RAF kinase—mediated
disorders [18]. 4,5-Disubstituted imidazole derivatives are used
as anti-inflammatories and cytokine inhibitors in the treatment
of p38/MAP kinase-mediated disorders [19]. Imidazolone de-
rivatives are used to modify biological signaling processes and
as reagents in biological tests [20]. The compounds with the
imidazole and oxazole moieties are also used in the treatment of
neuropsychiatric disorders [21].

In this work, we have studied the reaction product of (4)
with 3-molar excess of EO. It resulted in a completely
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Fig. 2 Reaction scheme of 1-
phenyl-2H,6H-imidazo[1,5-
c]quinazoline-3,5-dione (4) with
EO
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unexpected reaction course, during which the quinazoline ring
was opened and 3-{2-[1,3-bis(2-hydroxyethyl)-2-ox0-4-
phenylimidazolidin-5-yl]phenyl}-1,3-oxazolidin-2-one (8)
was formed as shown in Fig. 3.

The resulting product (8) was characterized by means of
instrumental methods. The structure of the product was unam-
biguously confirmed by single-crystal X-ray crystallography.
The product can also have biological activity.

Quantum mechanical calculations can explain the reasons
of the unexpected reaction course. An exemplary mechanism
of'the reaction product formation of (4) with 3-molar excess of
EO was proposed. The possible mechanism was also con-
firmed by quantum mechanical modeling.

Results and discussion

Predicted reaction course

of 1-phenyl-2H,6H-imidazo[1,5-c]
quinazoline-3,5-dione with 3-molar excess
of ethylene oxide

The compound (4) due to its high melting point (>400 °C)
could be used as a starting material for the synthesis of thermal-
ly stable polymers [22, 23]. However, this compound was in-
soluble in water and common organic solvents. Therefore, it
was necessary to obtain its more soluble derivatives. This was
why the hydroxyalkylation reactions were carried out using an
excess of EO. The reactions were catalyzed with triethylamine
(TEA) and maintained at 70—80 °C. An alcohol (6) and diol (7)
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Fig. 3 Reaction scheme of (4)
with 3-molar excess of EO OH
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with imidazoquinazoline ring were obtained with an equimolar
amount of EO or 2-molar excess of EO as described in
“Introduction” [4, 5]. It was expected to produce etherols (9—
11) with the imidazoquinazoline ring in the reaction of (4) with
3-molarexcess of EO, under conditions analogous to the syn-
thesis of (6) and (7). The synthesis scheme was given in Fig. 4.

Yellow crystals were obtained as the only product in a yield of
74 wt%. The melting point of this compound was 162-163 °C.

Results of elemental analysis confirmed composition of the
product. The calculated element shares are consistent with the
experimental ones (see Experimental Part).

The electrospray ionization mass spectrum (Fig. 1S) of the
product studied showed the protonated molecules [M + H]" as
the only ions in the spectrum, which confirms unambiguously
the expected molecular weight.

Compound was also analyzed using electron impact ioniza-
tion mass spectrometry (EI-MS). Contrary to the ESI-MS exper-
iments, the direct loss of one or two water molecules is the typical
fragmentation pathway observed in the EI-MS (Fig. 2S).

A preliminary spectral analysis suggested that the deriva-
tive (10) was obtained. All signals in the "H-and "*C-NMR
spectra were assigned to the corresponding atoms on the basis
of COSY, NOESY, HSQC, and HMBC experiments (Figs.

EtsN
(8) 043 on

3S-78S), and their positions were in agreement with the pro-
posed structure.

The 'H-NMR spectrum of the product was shown in Fig. 5,
in which the proton signals of two hydroxyl groups at a chem-
ical shift of 4.8 ppm were observed.

Furthermore, additional signals appeared above 4 ppm,
compared to the spectrum of the diol (7) (Fig. 8S). There were
two doublets of triplets at 4.05 and 4.25 ppm, whereas just one
triplet was observed at 4.1 ppm in the diol (7) spectrum (Fig.
8S). These signals were derived from the enantiotopic protons
of the methylene group linked to the nitrogen atom no. 6 of
(10). The protons of the next methylene group behaved sim-
ilar. The difference of their chemical shift was higher than
1 ppm. They appeared at 3.68 and 2.65 ppm. Methylene pro-
tons of the hydroxyethyl group combined with an ethoxy
group at the nitrogen atom no. 6 existed in the form of two
triplets at 3.45 and 3.58 ppm for -O—CH, and —CH,OH, re-
spectively. The signals of the methylene protons of the 2-
hydroxyethyl group at the nitrogen atom no. 2 were in the
form of two triplets at 3.62 and 3.72 ppm for -N—CH, and —
CH,OH, respectively.

3C-NMR spectrum of the obtained derivative has been
presented in Fig. 6. There were six signals in the range from
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Fig. 4 The expected reaction products of (4) with excess of EO

where:n+3=x+y, X =y or x£y
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Fig. 5 "H-NMR spectrum of the
reaction product of (4) with
3-molar excess of EO in DMSO
solvent
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43 to 62 ppm of carbon atoms with sp® hybridization. They
corresponded to the carbon atoms of three ethylene groups.

Signals of carbonyl groups were present at 155.27 and
153.21 ppm. They were shifted to higher values of & com-
pared to the spectrum of the starting compound (4) and alco-
hol (6) or diol (7) with imidazoquinazoline ring. There, they
were observed at 147.96 and 144.8 ppm (Fig. 8S).

Signals in the range of 115-140 ppm originated from the
carbon atoms of the phenyl ring and imidazoquinazoline ring.
Their positions were a bit different from the corresponding
peaks found in the '*C-NMR spectra of alcohol (6) and diol
(7) with imidazoquinazoline ring [4, 5] (Fig. 8S).

Similarly, a comparison of the 'H-NMR spectra of the ob-
tained derivatives, i.e., alcohol (6) and diol (7), showed that

Fig. 6 '>C-NMR spectrum of the &8
reaction product of (4) with 33
3-molar excess of EO in DMSO ‘ '
solvent | }
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75 7.0 6.5 6.0 55

the proton signals of the phenyl and imidazoquinazoline rings
had slightly different location (Fig. 7S).

The IR spectrum of the product aroused further doubts
concerning the presence of the imidazoquinazoline ring in
the product structure. It appeared that the bands at 1631,
1587, and 1485 cm ™' in the IR spectrum (Fig. 9S) character-
istic for the imidazoquinazoline ring were not observed.

Ultimately, crystallographic studies revealed that the analyzed
reaction was not running according to the reaction scheme shown
in Fig. 4. The analyzed product was not the product 10. The
crystallographic structure of the obtained product indicated that
during the reaction, the imidazoquinazoline ring was opening.
The reaction ran according to the scheme shown in Fig. 7. In
fact, the product (8) was formed.
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Fig. 7 The scheme of reaction
course of (4) with 3-molar excess
of EO
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X-ray crystallography of 3-{2-[1,3-bis(2-hydroxyethyl)
-2-oxo0-4-phenylimidazolidin-5-yl]
phenyl}-1,3-oxazolidin-2-one

The identity of (8) was proven by the single-crystal X-ray dif-
fraction analysis. It turned out that investigated compound crys-
tallizes in monoclinic P2,/c space group with one molecule of
compound in the asymmetric part of the unit cell (Fig. 8).

The details of crystallographic data and refinement param-
eters were summarized in Table 1. The values of bond lengths,
valency, and torsion angles were gathered in Table 18S.

In the molecule of (8), the mean planes defined by C6-C11
and C19-C25 atoms of the phenyl rings were inclined by the
angles of 49.84(4) and 125.91(4)° with respect to the mean
plane defined by atoms of the imidazolidinone moiety. The
angle between the mean planes defined by the non-hydrogen
atoms of the oxazolidinone moiety and the phenyl ring, which
was directly linked to this fragment, equaled to 122.66(4)°.

In turn, the mean planes defined by the non-hydrogen
atoms of the oxazolidinone moiety and the phenyl ring de-
scribed by the atoms C6—C11 were inclined to themselves
by a relatively small angle (6.23(4)°). These moieties were
involved in the intramolecular C—H---7t contact (Fig. 8,
Table 2S). There were also two weak C—H---O hydrogen
bonds formed by 2-hydroxyethyl chains, oxazolidin-2-one
moiety, and the phenyl ring defined by the C6-C11 atoms
(Fig. 8, Table 2S), as well as the C=0---7t contact, the carbonyl
oxygen atom of the oxazolidin-2-one fragment, and the imid-
azole ring (Fig. 8, Table 3S).

Detailed analysis carried out with the PLATON program
[24] revealed various types of intermolecular interactions (and
in the consequence short contacts shorter than the sum of the
van der Waals radii) in the crystal lattice of the studied com-
pound. Such short contacts were listed in Tables 2S and 3S. In
the crystal, adjacent molecules of (8) were incorporated in the
network the O—H--O hydrogen bonds, which resulted in the
formation of infinite chains of the molecules running along the
a-direction (Fig. 9a, Table 2S). The abovementioned chains
were additionally stabilized by the presence of the weak C—
H---7t intermolecular contacts (Fig. 9a, Table 2S). The adjacent
molecules in the neighboring chains were further interacting
by the weak C—H:--O and C—H---7t intermolecular interactions

L

{12) o

H
.
0

(Table 2S), and the complex supramolecular framework
depicted on Fig. 9b was finally created.

Considering the percentage contribution of various con-
tacts to the Hirshfeld surface (Figs. 10 and 11), it became clear
that the largest share was attributed to the presence of the H-
H contacts (54.9%), which was common in organic molecular
crystals [25]. The existence of hydrogen bonds was manifest-
ed by the 25.7% share of the O--H contacts to the Hirshfeld
surface (Figs. 10e and 11). Two characteristic spikes on the
fingerprint plot associated with the O--H contacts (Fig. 10e)
resulted from the presence of the O—H--O hydrogen bonds.
The C—H---7t interactions had the 17% and 2.1% share of the
C-H and the N--H contacts, respectively (Figs. 10f, g and
11). Performed analysis indicated also the presence of the
C:-O contacts; however, their share was hardly perceptible
(only 0.1%) (Figs. 10h and 11).

Fig. 8 The molecular structure of (8) with atomic labels. Displacement
ellipsoids were drawn at the 25% probability level, and the H-atoms were
shown as small spheres of arbitrary radius. The intramolecular C-H--O
hydrogen bonds were represented by the dashed lines, and the C—H-7t
and C=0--7t interactions by the dotted lines. The Cg2 and Cg3 denote the
geometric centers of gravity of the rings defined by the C1-C5 and C6—
C11 atoms, respectively

@ Springer
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Table 1 Crystallographic data

and structural refinement of (8) Empirical formula CH23N305
Formula weight 409.43
Temperature (K) 100(2)
Wavelength (A) CuKa (A=1.54184)
Crystal system Monoclinic
Space group P2/c
Unit cell dimensions
aA) 8.80563(8)
b (A) 22.0556(2)
c(A) 10.01246(10)
6(°) 90.6100(9)
V(A% 1944.45(3)
V4 4
Deatea (g cm ) 1.399
Fo00 864.0
Crystal description Colorless plate
Crystal size (mm) 0.42 x0.32%x0.09
O range for data collection (°) 8.02-149.00
Limiting indices —11<h<l11
—27<k<27
-12<i<12
Reflections collected/unique 71,460/3985 [Riy = 0.0390, Rgjgma =0.0110]
Completeness of data (%) 100
Data/restraints/parameters 3985/0/278
Goodness-of-fit on F> 1.054

Final R indices [/>20(/)]

R indices (all data)

Largest diff. peak and hole (eA™)
CCDC number

R, =0.0350, wR, =0.0902
R, =0.0381, wR,=0.0933
0.29 and — 0.21

CCDC 1540190

To better understand the nature of packing of molecules in
the crystal of the investigated compound, the Hirshfeld sur-
face analysis using CrystalExplorer program was performed
[26]. Examination of two dimensional (d./d;) fingerprint plots
associated with the Hirshfeld surface (Fig. 10) confirmed the
occurrence of intermolecular interactions identified by
PLATON [8] (Tables 3S-5S).

Quantum mechanical modeling
of 3-{2-[1,3-bis(2-hydroxyethyl)
-2-ox0-4-phenylimidazolidin-5-yl]
phenyl}-1,3-oxazolidin-2-one

The crystal study of compound (8) showed that only one pair
of its conformers (Fig. 12) was formed whereas theoretically,
there were 32 pairs of enantiomers possible.

Compound (8) has no chiral atoms but the molecule was
asymmetrical. The imidazolidinone ring was flat; the phenyl
rings were set at determined angles towards the plane of the
imidazolidinone ring. Each phenyl ring could take two limited

@ Springer

positions. The oxazolidinone ring also could have two limited
positions relative to the phenyl ring. Additionally, the
hydroxyethyl groups could be located above or below the
imidazolidinone ring plane. Therefore, (8) could theoretically
exist in the form of 32 pairs of conformers.

Quantum mechanical calculations for the compound (8)
were carried out based on the total energy of the conformers
as an optimization criterion and on the assumption that there
was no interaction between the conformers. Quantum mechan-
ical calculations revealed that there were 12 pairs of stable
conformers of (8). Twelve conformers were illustrated in Fig.
11S. The rest of conformers constituted their mirror reflections.

Next, the percentage shares of all the 24 conformers of (8)
weredetermined based ontheirvaluesofthe Gibbs freeenergy
(enthalpy). Theresults,whichwereshowninTable2,indicated
thatone pair of conformers (GBGBF and its mirror reflection)
constituted 95.58% ofall conformers. This was the pairwhich
was found in the crystal. Another pair of the (8) conformers
(DBGBF and its mirror reflection) constituted 4%. The total
amountoftherest20 conformers wasnegligibly small.
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Fig. 9 The arrangement of molecules of (8) in the crystal, where a an infinite
chain of molecules incorporated in the O—H:+O and C—H-O hydrogen bonds
running along the a-direction; b a general view on the supramolecular frame-
work created by the molecules of investigated compound viewed along the a-
direction (single chain of molecules viewed from the top is highlighted in
green). The O-H-+O and C—H--O hydrogen bonds are represented by the
dashed lines and C—H-+7t intermolecular interactions by the dotted lines. The
H-atoms not participating in intermolecular interactions were omitted for clar-
ity. Symmetry codes: (1) —x+ 1,—y+ 1,—z+2; (i) —x, —y + 1,— 2+ 2; (iii) x,
yz—Lav)—x+1L,—-y+L,—z+LLW)x,—y+32,z—12; vi)x— 1,12

The reaction course of 1-phenyl-2H,6H-imidazo[1,5-]
quinazoline-3,5-dione with 3-molar excess
of ethylene oxide

The said reaction of (4) with 3- molar excess of EO can be
divided into four stages as shown in Fig. 13.

(A) 06 08 10 12 14 16 18 20 22 24 @ 06 08 10 12 14 16 18 20 22 24

e) 24

O 06 08 10 12 14 16 18 20 22 24 @ 06 08 10 12 14 16 18 20 22 24

h  [d

N.IH 21% di C.{0 011%| di
(8} 06 08 10 12 14 16 18 20 22 24 (8} 06 08 10 12 14 16 18 20 22 24

Fig. 10 The Hirshfeld surface (front (a) and reverse view (b)) of (8)
molecule with associated fingerprint plots (c—h)

In the first step, the molecule (4) attacks the EO molecule (5)
by the nitrogen atom no. 2 and 1-phenyl-2-(2-hydroxyethyl)-
6H-imidazo[ 1,5-c]quinazoline-3,5-dione (6) is formed [4].

In the second step, the molecule of (6) attacks another mol-
ecule EO by the nitrogen atom no. 6. It leads to the obtaining of
I-phenyl-2,6-bis(2-hydroxyethyl)-6H-imidazo[1,5-
c]quinazoline-3,5-dione molecule (7) [5].

In the third step, the intramolecular reaction of (7) takes
place. Then, the 2-hydroxyethyl group at the sixth position
reacts with the carbonyl group at the fifth position. This results
in the imidazoquinazoline ring opening to give 3-{2-[1-(2-
hydroxyethyl)-2-0x0-4-phenylimidazolidin-5-yl]phenyl}-
1,3-oxazolidin-2-one (12).

In the final step, the compound (12) reacts with the third
mole of EO giving 3-{2-[1,3-bis(2-hydroxyethyl)-2-ox0-4-
phenylimidazolidin-5-yl]phenyl}-1,3-oxazolidin-2-one (8).

@ Springer
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Fig. 11 The contributions of
various contacts to the Hirshfeld
surface of (8) (%)

-,H.HH

It was tested that the necessary condition for the
imidazoquinazoline ring opening was the presence of a higher
than 2-M excess of EO. Carrying out the reaction of (4) with two
moles of EO in the presence of an increased amount of TEA, an
extension of the reaction time or increasing the reaction temper-
ature to 90 °C did not lead to the ring opening.

Explanation of reaction course based on quantum
mechanical modeling

In order to clarify the reasons for this unexpected reaction
product of (4) with 3-molar excess of EO, quantum mechan-
ical modeling was used.

Initially, the values of the Gibbs free energy of conformers
of the expected derivatives (9) and (10) (Fig. 12S) were cal-
culated. The number of the (9) and (10) conformers was de-
termined based on their structures. Quantum mechanical cal-
culation revealed that phenyl ring could only be in two limited
positions: inclined to the plane of the imidazoquinazoline ring
at an angle smaller or greater than 90° (with the “top” inclined
to the left or right as it was shown in Fig. 11S). The value of
angle was determined by Gaussian program.

The hydroxyethyl and hydroxyethoxyethyl groups could be
attached to one possible position. In each position, those substit-
uents could be above or below the plane of imidazoquinazoline
ring—this gives four possibilities. Hydroxyethyl and
hydroxyethoxyethyl substituents could rotate with a multiplied
number of conformers. Nevertheless, after optimization, the
hydroxyethyl and hydroxyethoxyethyl chains became straight-
ened. This resulted in the compact set of eight conformers
shown in Fig. 12S.

Next, the Gibbs free energy values for conformers (9) and
(10) and conformers of compound (8) resulting from the X-ray
diffraction study (Fig. 12) were juxtapositioned in Table 3.

Fig. 12 Structure of (8)
conformers revealed by crystal
study 7

GBGBF

@ Springer
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Assuming that both derivatives (10) and (8) were formed
and based on the free energy of the individual conformers, the
conformer’s shares were calculated (Table 3).

The calculations indicated that the derivative (8) was likely
to occur as the energy of the conformers (8) was slightly
higher than that of the conformers (9) and (10).

In a next step, the Gibbs free energy conformers of the in-
termediate product—the diol (7) (Fig. 13S) and 3-{2-[3H-1-(2-
hydroxyethyl)-5-ox0-3-phenylimidazolidin-3-yl]phenyl}-1,3-
oxazolidin-2-one (12) (Fig. 14S)—were calculated and shown
in Table 4.

Energy values were used to determine the shares of the
conformers (7) and (12) in the entire population. The energy
of the conformer (12) was higher than in the case of the con-
formers of the diol (7). We observed the total lack of con-
formers (12). This explained the lack of the derivative (12)
in this reaction. The use of the three moles of EO caused the
quinazoline ring to open because the derivative (12) of a
higher energy (app. — 3,251,300 kJ/mol) than the diol (7)
(app. — 3,251,585 kJ/mol) could be reacted with EO to give
the product (8) with a lower energy (— 3,655,292 kJ/mol).

However, we still have remembered that derivatives (9) and
(10) had lower energy than the compound (8).

Ultimately, the shape of HOMO orbitals of the diol (7)
allowed us to understand why hydroxyethyl groups of the diol
(7) did not react with oxirane, why quinazoline ring was
opened, and why the imidazole ring remained unaffected.

Figures 14 and 15 illustrate the electron density distribution
in the diol (7) and EO (5) molecules, respectively. The elec-
tron deficit of carbon atom no. 5 of diol (7) was much higher
than in the carbon atoms in the EO molecule (Figs. 14 and 15).

This caused the intramolecular substitution in the diol
(7) molecule to be easier than the reaction between the
diol (7) and EO, despite the lower energy (— 3,656,280 kJ/
mol) of the derivative (9) or (10) than compound (8) (—

GBGBF’
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Table 2  Gibbs free energy and content of the possible conformers (8)
No. Conformer Energy [kJ/mol] Conformer content
[% mol]
1. DBDBB —3,655,241.70 0.0000
2. DBDBF —3,655,269.53 0.0053
3. DBGBB —3,655,249.84 0.0000
4. DBGBF —3,655,284.23 2.0869
5. DSDSB —3,655,246.42 0.0000
6. DSDSF —3,655,153.48 0.0000
7. GBDBB —3,655,254.04 0.0000
8. GBDBF —3,655,277.14 0.1186
9. GBGBB —3,655,262.18 0.0003
10. GBGBF —3,655292.11 47.7866
11. GSDSB —3,655,250.62 0.0000
12. GSDSF —3,655,153.22 0.0000
13. DBDBB’ —3,655,241.70 0.0000
14. DBDBF’ —3,655,269.53 0.0053
15. DBGBB’ —3,655,249.84 0.0000
16. DBGBF’ —3,655,284.23 2.0913
17. DSDSB’ —3,655,246.42 0.0000
18. DSDSF’ —3,655,153.48 0.0000
19. GBDBB’ —3,655,254.04 0.0000
20. GBDBF’ —3,655,277.14 0.1186
21. GBGBB’ —3,655,262.18 0.0003
22. GBGBF’ —3,655292.11 47.7866
23. GSDSB’ —3,655,250.62 0.0000
24. GSDSF’ —3,655,153.22 0.0000

3,655,292 kJ/mol). Due to the higher energy of the com-
pound (12) than the diol (7), the intramolecular substitu-
tion occurred only in the presence of EO. This allowed for
further reaction leading to the product (8) of lower energy
than the compound (12).

The deficit of the electron density was clearly marked on
the carbon atom of the carbonyl group no. 5 as opposed to
carbon atom no. 3. Thus, the intramolecular nucleophilic sub-
stitution was possible only with the participation of the
quinazoline ring (carbonyl group no. 5), instead of the imid-
azole ring (carbonyl group no. 3) with the formation of the
alternative product (14)—DDS1 (Fig. 16).

It should be emphasized that the energy of the product (14)
(— 3,252,402 kJ/mol) was lower than the product (12) (—
3,251,300 kJ/mol). It suggested that the product (14) should
be formed easier, and consequently, the product (15)—
DDSD—too. Energies of the product (15)—DDSD—and
(8) were comparable, —3,655,291.46 kJ/mol and —
3,655,292.11 kJ/mol, respectively.

However, as mentioned earlier, the energies of the final
products (8 and 15) and intermediate products (7, 12, and
14) did not determine the reaction course, only HOMO or-
bitals’ shape of diol (7).
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Fig. 13 Reactlon scheme of 1-phenyl-2H,6H-imidazo[1,5
3,5-dione (4) with 3-molar excess of EO

-c]quinazoline-

In the next step, Gibbs free energies of transition states
of three different alternative reaction paths were computed
and compared. Reaction paths were shown schematically
in Fig. 17. Comparison of Gibbs free energies of all
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Table 3  Gibbs free energy conformers (10) and (8) Table 4  Gibbs free energy conformers (7) and (12)
No. Conformer Energy [kJ/mol] Conformer No. Conformer Energy [kJ/mol] Conformer
content [% mol] content [% mol]
L. 2-BUU ~3,656,280.49 11.95 | CHA (8) —3.251.584.75 20.88
2. 2-BDU —3,656,280.01 9.87 2. CHB (8) ~3,251,586.48 42.02
3. 2-SBF —3,656,280.60 12.49 3. CHC (8) ~3,251,583.88 14.75
4. 2-SDD —3,656,281.77 20.08 4. CHE (8) ~3,251,584.91 2235
5. 6-BUU ~3,656,280.12 10.32 5. UUs (12) 305130473 0.00
6. 6-BDU ~3,656,281.37 17.04 6. DDB (12) ~3.251.204.02 0.00
7. 6-SBF —3,656,279.60 8.35 7. DDS (12) -3,251,310.81 0.00
8. 6-SDD —3,656,280.02 9.90 8. UUB (12) —3,251,300.14 0.00
9. GBGBF —3,655,330.24 0.00 0. DUB (12) 325130672 0.00
10. GBGBF’ —3,655,330.24 0.00 0. UDS (12) 3.251293.5 0.00
11. DUS (12) -3,251,306.92 0.00
12. UDB (12) -3,251,299.21 0.00

products and transition states was illustrated in Fig. 18.
Precise data of the change of Gibbs free energies were
juxtapositioned in Table 5.

The change of Gibbs free energies of transition states dur-
ing transformation of the diol (7) into the derivative (12) and
reaction of the (12) with EO to the diol (8) was 1350.14 and
1361.18 kJ/mol, respectively, whereas the change of Gibbs
free energy of reaction (the diol 8) with EO to the (9) or the
(10) was 1390.36 and 1384.68 kJ/mol, respectively. Thus, the
reaction of intramolecular substitution in the diol (7) molecule
forming (12) has been easier than the reaction of hydroxyl
group of the diol (7) with EO.

This meant that the reaction of the diol (7) with the third
mole of EO was controlled by kinetics. It provided strong
support for the proposed mechanism.

Experimental
Materials

1-Phenyl-2H,6H-imidazo[1,5-c]quinazoline-3,5-dione was
prepared according to literature procedures [1]. The rest re-
agents were purchased and used as obtained. Acetone and
ethanol, CP, were supplied by POCH Poland. Dimethyl sulf-
oxide (DMSO) and triethylamine (TEA), CP, were supplied
by Avocado, Germany, and ethylene oxide (EO), CP, by
Merck, Germany.

Analytical methods

'H- and "*C-NMR spectra of the product were recorded
with the use of a Bruker spectrometer (operating frequency
500 MHz). The compound was dissolved in deuterated
dimethyl sulfoxide (dg-DMSO). Hexamethyldisiloxane
(HMDS) and tetramethylsilane (TMS) were used as an in-
ternal standard. All two-dimensional (2D) experiments

@ Springer

("H-COSY, 'H-NOESY, HSQC, and HMBC) were per-
formed with the use of the manufacturer’s software.
Proton spectra were assigned using COSY. Protonated car-
bons were assigned by HSQC. Quaternary carbons were
assigned by HMBC.

The MS-ESI measurements were performed using the
QExactive system (Thermo, Switzerland). The mass detec-
tor used was an LXQ linear ion trap mass spectrometer
detector (Thermo Mod. Finnigan TM LXQTM) equipped
with an electrospray ionization (ESI) source and then
interfaced to a computer. The MS/MS parameters were as
follows: positive mode; ESI source voltage, 5.0 kV; capil-
lary voltage, 36 V; sheath gas flow rate, 11 arb; aux gas
flow rate, 0 arb; sweep gas flow rate, 0 arb; capillary tem-
perature, 320 °C; and scan range, 0-500 m/z. Samples were
dissolved in methanol.

IR spectrum was recorded on a Bruker ALPHA FT-IR
spectrophotometer with samples prepared as KBr discs. The
measurement resolution was 0.01 cm™".

Elemental analysis (C, H, N) of the product was carried out
using an elemental analyzer Vario EL III C, H, and N from
Elementar.

UV-Vis spectrum was recorded at 25 °C in the range of
200-700 nm with a spectrometer Hewlett Packard 8943 in a
methanol solution. The measuring cell was 1 cm thick.

Single-crystal X-ray diffraction data was collected on a
Rigaku Oxford Diffraction SuperNova Double Source dif-
fractometer with CuK o radiation (A = 1.54184 A) at 100(2)
K using CrysAlis RED software [27]. The multi-scan em-
pirical absorption correction using spherical harmonics
was applied as implemented in SCALE3 ABSPACK scal-
ing algorithms [27]. The structural determination proce-
dure was carried out using the SHELX package [28]. The
structure was solved with direct methods, and then, succes-
sive least-squares refinements were carried out based on
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Fig. 14 Molecular orbitals HOMO and LUMO of diol (7)

the full-matrix least squares on F~ using the XLMP pro-
gram [28]. All H-atoms bound to C-atoms were positioned
geometrically, with C—H equal to 0.93 A or 0.97 A for the
aromatic and methylene H-atoms, respectively, and
constrained to ride on their parent atoms with Uj,(H) =
xUcq(C), where x = 1.2. The hydroxyl H-atoms were locat-
ed on a Fourier difference map and refined as riding with
Uiso(H) = 1.5Uc4(O). The figures for this publication were
prepared using ORTEP-3 and Mercury programs [29, 30].
The molecular interactions were identified and analyzed by
the PLATON [24] and CrystalExplorer programs [26].

Quantum mechanical calculations

Quantum mechanical calculations were performed using
the Gaussian 09, based on the density functional theory
(DFT). Calculations were performed using the
exchange-correlation functional Becke-3-Lee-Yang-Parr
(B3LYP) [31-33] and the functional set 6-311++G(d,p)
[34]. This combination of functional B3LYP and func-
tional set is used as the most appropriate tool to opti-
mize the structure of organic compounds [35, 36]. The
theoretical calculations were made with the inclusion of
Grimme dispersion correction which took into account
intramolecular hydrogen bonds and electrostatic interac-
tions. Frequency calculations were performed at the
same level of theory as the geometry optimization to
confirm whether the obtained structures were minima
(no imaginary frequency) or transition states (only one
imaginary frequency). Gibbs free energy values were
read by the application Notepad++ and EDA-Reader
[37, 38]. The mixtures’ contents of conformers were
determined based on the value of Gibbs free energy
(enthalpy) using formula:

Emin—E;)-F Emin—Ei)F\
C;= exp(%)-ijexp(%) 100%
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where:
G molar concentration of the j-th conformer,
E;, E; Gibbs free energy for, respectively, the i-th and j-th

conformers,
F, unit conversion factor 1 kcal/mol-hartree = 627.5095,
R gas constant 1.987 cal/(K mol),
T temperature 298.15 K.

Visualization of the structures was performed using the
software GaussView and Mercury [30, 39].

Synthetic procedure

General procedure for synthesis

of 3-{2-[1,3-bis(2-hydroxyethyl)
-2-ox0-4-phenylimidazolidin-5-yl]
-phenyl}-1,3-oxazolidin-2-one (Fig. 19)

1.38 g (5 mmol) 1-phenyl-2H,6H-imidazo[1,5-c]quinazoline-
3,5-dion, 20 cm® of DMSO, 0.1 g (1 mmol) triethylamine
(TEA), and 0.66 g (15 mmol) EO were placed into a high pres-
sure reactor with a volume of 100 cm®. The reaction mixture
was stirred with a magnetic stirrer and heated to a temperature of
70-80 °C. The reaction was terminated when the sample of the
reaction mixture showed no weight loss (when measured on an
analytical balance) and its epoxy number (EP) was zero. EP was
determined according standard [40]. DMSO was distilled under
reduced pressure (p =7 mmHg, liquid distillation temperature

HOMO

LUmMmo

Fig. 15 Molecular orbitals HOMO and LUMO of EO (5)
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Fig. 16 One of conformers of
compound (14)—DDS1—and
(15)—DDSD

Fig. 17 Alternative reaction paths W oH
of (4) with 3-M excess of ethylene O o O o O oH O ~
oxide 4) NH A (5) N_}:'zC\éHZ ©) NF/ /\ (5) N>§
. . - o
seqiveq - o
NH’k NH/KO O NH NTe "

o H \
)
H Ten,
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Fig. 18 Energy profile for the AH
formation of 3-{2-[1,3-bis(2- (kJ/mol]
hydroxyethyl)-2-ox0-4- 1600
phenylimidazolidin-5-
yl]phenyl}-1,3-oxazolidin-2-one
®)

1550
1500
1450
1400
1350

75:0

700

-150

-200

-250

TS(7-10)

TS(7-9) e ’\/1 v

65-110 °C, vapor distillation temperature 68—72 °C). The reac-
tion product was precipitated with acetone and then crystallized
from ethyl alcohol. The purity of substance was monitored by
TLC (elution systems chloroform—ethanol, 9:1) on Alugram
SIL G/UV254 foils (Macherey-Nagel).
3-{2-[1,3-bis(2-hydroxyethyl)-2-oxo-4-phenylimidazolidin-5-
yilphenyl}-1,3-oxazolidin-2-one: yield 74%, mp = 162—163 °C;
IR (KBr), v =3453.4 and 3320.3 (s, O-H valence), 2932.9 (w,
—CH,—, asym. valence), 2892.2 (w, —CH,—, sym. valence),
1738.0 (s, C=0, valence), 1662.2, 1600.3, 1503.3, 1478.2
(s, skel. Ph ring), 1147.4 (w, C-H planar def.), 752.9 and
679.6 (s, non-planar def.), 1081.2 and 1048.0 (m, C-O-H,
valence) [em ']; ESI-MS: m/z 410 [M + H]* (100%). ESI-
MS/MS of precursor ion m/z 410: m/z 392 [M + H-H,0]",
382 [M + H-C,H,4]", 374 [M + H-2H,0]*, 364 [M + H-C,Hy-
H,0]*, 354 [M + H-2C,H,]*, 305 (100%); '"H-NMR
(500 MHz, ds-DMSO), =2.65 (1 H, dt, -N-CH,—, J3,=
8.60 HZ, J3’3'= 5.64 HZ), 345 (2 H, t, —N—Cﬂz—, J25,26=
6.79 Hz), 3.58 (2H, t, -CH,—OH, J;526=06.73 Hz), 3.62 (2
H, t, N-CH,—, J3,4=7.08 Hz), 3.68 (1 H, dt, -N-CH,—,
J,3=8.89 Hz, J55=5.62 Hz,), 3.72 (2H, t, -CH,—OH,
J23’24:7.02 HZ), 4.08 (1 H, dt, *O*CH2*, J2,3 =8.34 HZ,
J2,2': 8.25 HZ), 4.23 (IH, dt, *O*Cﬂz*, J2,3 =8.78 HZ,

Reaction coordinate [neutral]

J,2=5.71 Hz), 480 (2 H, s, —~OH), 7.19 (2 H, m, C;sH and
CaH), 7.29 (2 H, m, CaoH and CoH), 7.33 (3 H, m, C;oH and
CH and C;H), 7.42 (1 H, m, CgH), 7.53 (1 H, m, C,;oH)

Table 5 The change of Gibbs free energy of all products and transition
states in reaction of 1-phenyl-2H,6H-imidazo[1,5-c]quinazolino-3,5-
dione (4) with 3-M excess of ethylene oxide

Compound AG [kJ/mol]

Products 4) 0.00
6) —88.07
@) —154.46
9 -219.21
(10) —218.01
(12) —143.11
8) 732.72

Transition states TS(4-6) 1486.56
TS(6-7) 1407.96
TS(7-9) 1390.36
TS(7-10) 1384.68
TS(7-12) 1350.14
TS(12-8) 1361.18
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Fig. 19 Synthesis scheme of 3- 20 21
{2-[1,3-bis(2-hydroxyethyl)-2-
ox0-4-phenylimidazolidin-5- 22 OH
yl]phenyl}-1,3-oxazolidin-2-one 19 - 23
® 2
NH N\
/A % 0 18 13 MN14
0 3 f ’: 10 2
P BN ©las
A N 0 Etg N 3 e - R] %
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[ppm]; "*C-NMR (dg-DMSO0), & = 155.27 (Cs), 153.21 (C;35),
137.35 (Cy), 133.40 (Cy), 133.14 (C0), 129.42 (Cy), 129.02
(C1g), 128.96 (Csy), 128.43 (Co), 127.77 (Cap), 126.61 (Cyo
and 21)> 125.80 (C5), 125.32 (Cyy), 120.06 (Cy3), 117.62 (C ),
62.03 (C5), 58.51 (Cay), 58.43 (Cap), 45.42 (C3), 44.05 (Cys),
43.58 (Cy3) [ppm]; EA, Anal. Calcd for C;,H,3N;50s5: C,
64.54; H, 6.07; N, 10.26. Found: C, 64.81; H, 6.09; N,
10.30. UV: 262, 335 [nm].

Conclusions

Reaction of 1-phenyl-2H,6H-imidazo[1,5-c]quinazoline-3,5-
dione with 3-molar excess of ethylene oxide had an unexpected
course. In the synthesis conditions of the alcohol and diol with
imidazoquinazoline ring, in the presence of 3-molar excess of eth-
ylene oxide, the imidazoquinazoline ring was opened. Then,
3-{2-[1,3-bis(2-hydroxyethyl)-2-0x0-4-phenylimidazolidin-5-
yl]phenyl}-1,3-oxazolidin-2-one was yielded. It contained the im-
idazole and oxazole rings in its structure. This was a result of
intramolecular reaction of carbonyl group (Cs) of the intermediate
diol (7) with 2-hydroxyethyl group linked to nitrogen atom no. 6.
Then, quinazoline ring was opened and oxazole ring was formed.
Next, the imidazole ring reacted with the third mole of ethylene
oxide.

The necessary condition for the above reaction was an ex-
cess of ethylene oxide higher than 2 molar. The possibility of
addition of the intermediate product to the next ethylene oxide
molecule caused the opening of the quinazoline ring of diol
(7) and formation of oxazole ring.

The driving force of the intramolecular substitution was the
shape of HOMO orbitals (distribution of electron density in
diol (7) molecule). The electron density deficit at carbon no. 5
of carbonyl group determined the entire reaction course.

The reaction of diol (7) with the third mole of ethylene oxide
was controlled by kinetics. The Gibbs free energy of transition

@ Springer

state of diol (7) transformation has a lower value than that of the
diol reaction with the third mole of ethylene oxide.

The new product obtained was characterized by the spec-
troscopic method, and its structure was confirmed beyond all
doubt by means of crystallography.

In this way, a new method of obtaining diols with imidaz-
ole ring comprising oxazole ring additionally was found.

The obtained diol may have potential biological activity,
e.g., anti-cancer.
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