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Table 6. The results of Wisconsin Breast Cancer
diagnostics using the rough support vector

classifier

Number Decisions [%]of missing
values correct incorrect no decision

0 100.0/65.6 0.0/34.4 0.0/0.0
1 0.3/0.3 0.0/0.0 99.7/99.7

2-8 0.0/0.0 0.0/0.0 100.0/100.0

Figure 11. The results of Wisconsin Breast Cancer
diagnostics using the rough support vector

classifier — reference samples

Figure 12. The results of Wisconsin Breast Cancer
diagnostics using the rough support vector

classifier — testing samples

Conclusions

The paper extends the idea presented in [10] to
support vector machines. The rough support vec-
tor machine has been defined. It has been also ex-
plained how to derive and interpret the result of

classification when the description of the object un-
der classification represents a whole equivalence
class. The results of experiments confirm that in
the case of rough support vector machines, misclas-
sification never results from the imperfection of the
object description. It is a characteristic feature of all
rough set–based classification systems. The exper-
iments with various widths of input intervals have
shown that the classifier is able to make the deci-
sion even with a high width. However, the accept-
able width is different for particular samples. The
results are similar to other types of rough set–based
classification systems.

The high sensibility of the proposed system to
missing values is undoubtedly an unusual surprise.
It has also been confirmed by the tests with other
data sets. In contrast to other rough set–based clas-
sification systems, the rough support vector ma-
chines do not classify the input data when even sin-
gle missing values occur.

The future work on the rough support vector
machines should focus on creating a classifier with
imperfect data, i.e. selecting the support vector
when the reference samples are described by inter-
vals and contain missing values. It is already possi-
ble in the case of other rough set–based classifica-
tion systems. The proposed system should be also
tested as a part of an ensemble which is the main
application of other systems in the group.
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Abstract

Fast content-based image retrieval is still a challenge for computer systems. We present
a novel method aimed at classifying images by fuzzy rules and local image features.
The fuzzy rule base is generated in the first stage by a boosting procedure. Boosting
meta-learning is used to find the most representative local features. We briefly explore
the utilization of metaheuristic algorithms for the various tasks of fuzzy systems opti-
mization. We also provide a comprehensive description of the current best-performing
DISH algorithm, which represents a powerful version of the differential evolution al-
gorithm with effective embedded mechanisms for stronger exploration and preservation
of the population diversity, designed for higher dimensional and complex optimization
tasks. The algorithm is used to fine-tune the fuzzy rule base. The fuzzy rules can also
be used to create a database index to retrieve images similar to the query image fast. The
proposed approach is tested on a state-of-the-art image dataset and compared with the
bag-of-features image representation model combined with the Support Vector Machine
classification. The novel method gives a better classification accuracy, and the time of the
training and testing process is significantly shorter.
Keywords: image retrieval, fuzzy rules, local image features

1 Introduction

Content-based image retrieval (CBIR) systems
allow for browsing, searching and retrieving im-
ages relevant to the query. With the popularity of
imaging devices, the demand for such systems is

growing. To design a CBIR system, we need to
develop image representation in the form of rele-
vant features. Then, we have to compare the fea-
tures efficiently as we usually deal with collections
of thousands to billions of images. The similar-
ity between images is traditionally reflected by the
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similarity between their features. At the beginning
of the century, methods based on local image fea-
tures [38, 41, 42, 45, 64] started to gain popular-
ity with the most popular SURF [5], SIFT [38] or
ORB [57] invariant local features. Despite the pop-
ularity of the image keypoints, image retrieval of
images similar to the query image is not easy. Ob-
jects can be recorded under various angles and per-
spectives. Images and objects can be described by
many kinds of features such as color [29, 33, 47],
textures [14, 23, 31, 65], shape [30, 32, 73] or edge
detectors [85]. The output of these methods is one
or more descriptor vectors which have to be com-
pared in order to search for images. Such com-
parison is enormously time consuming, and there
is ongoing worldwide research aimed at speeding
up the process. The next partial breakthrough, af-
ter local invariant features, was adopting the bag
of words model from information retrieval to com-
puter vision. Yet, the current state of the art in the
case of high dimensional computer vision applica-
tions is not fully satisfactory. The literature presents
countless methods and variants utilizing e.g. a vot-
ing scheme or histograms of clustered keypoints.
They are mostly based on some form of approxi-
mate search. One of the solutions to the problem
can be descriptor vector hashing. In [19] the au-
thors proposed a locality-sensitive hashing method
for the approximate nearest neighbour algorithm. In
[45] the authors built a hierarchical quantizer in the
form of a tree. Such a tree is a kind of an approxi-
mate nearest neighbour algorithm and constitutes a
visual dictionary.

As aforementioned, the bag-of-features (BoF)
approach [27, 48, 64, 78, 82] is a popular im-
age retrieval and classification method. In BoF,
histograms of descriptors are computed and the
method can be modified, e.g. by applying the earth
mover’s distance, presented in [27]. The main prob-
lem with this family of methods is that vector com-
parison is very time consuming, and if we add new
classes, the set of histograms needs to be rebuilt.
Our approach is a fast index of descriptors based
on fuzzy rules. The words used in BoF are a some-
what similar concept to the fuzzy rules from our ap-
proach.

In this paper we present a method for classi-
fying and fast retrieving images (partially inspired
by [70, 77, 84]) which uses boosting metalearning

to search for the most salient image features. In
[70, 77] certain feature values become weak classi-
fiers for detecting faces. In our approach AdaBoost
is used to select the salient image descriptors to gen-
erate fuzzy rules which use fuzzy sets to describe
information [61, 62]. We draw randomly one de-
scriptor from the positive set to make a base for
a new fuzzy rule (new classifier). The parameters
of this rule are changed to better accommodate the
rule to its class. Then, the differential evolution
SHADE algorithm described in Section 2 is used to
optimise the fuzzy rule base. We chose SHADE as
it proved to work well in high-dimensional search
spaces. The presented approach can use various
image local features, hand-crafted (e.g. SIFT or
SURF) and learned ones. The remainder of the pa-
per is organised as follows. In Section 2 we briefly
explore the utilization of metaheuristic algorithms
for the various tasks of fuzzy systems optimization
and the SHADE algorithm. In Section 3 we present
the fuzzy rule generation algorithm. In Section 4 we
provide a description of a new, query image classi-
fication and the retrieval of similar images. Section
5 compares the algorithm with an established im-
age retrieval algorithm and Section 6 concludes the
paper.

2 Metaheuristics for Fuzzy Rules

Currently, there exist many types of fuzzy sys-
tems (FS) and Fuzzy rule–based systems (FRBS)
with different structures, features, and requirements
for robust and effective optimization and learning.
The need for effective optimization and learning of
highly–accurate FSs/FRMSs is in most cases mo-
tivated by the requirement to efficiently process
high–dimensional and high–volume data for which
a manual (apriori knowledge) design by experts is
not feasible [4]. The metaheuristic algorithms are
then a clear choice.

A wide portfolio of metaheuristic techniques,
including all classic evolutionary and swarm-based
algorithms, altogether with the symbolic nature
of some evolutionary methods (e.g., genetic pro-
gramming), have been introduced for the design,
learning, and optimization of FSs/FRBSs [16, 15,
22], thus creating evolutionary (genetic) fuzzy sys-
tems [16]. Algorithms such as ant colony opti-
mization (ACO) [13], genetic algorithms (GA) [12],
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textures [14, 23, 31, 65], shape [30, 32, 73] or edge
detectors [85]. The output of these methods is one
or more descriptor vectors which have to be com-
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method can be modified, e.g. by applying the earth
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lem with this family of methods is that vector com-
parison is very time consuming, and if we add new
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on fuzzy rules. The words used in BoF are a some-
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proach.
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fiers for detecting faces. In our approach AdaBoost
is used to select the salient image descriptors to gen-
erate fuzzy rules which use fuzzy sets to describe
information [61, 62]. We draw randomly one de-
scriptor from the positive set to make a base for
a new fuzzy rule (new classifier). The parameters
of this rule are changed to better accommodate the
rule to its class. Then, the differential evolution
SHADE algorithm described in Section 2 is used to
optimise the fuzzy rule base. We chose SHADE as
it proved to work well in high-dimensional search
spaces. The presented approach can use various
image local features, hand-crafted (e.g. SIFT or
SURF) and learned ones. The remainder of the pa-
per is organised as follows. In Section 2 we briefly
explore the utilization of metaheuristic algorithms
for the various tasks of fuzzy systems optimization
and the SHADE algorithm. In Section 3 we present
the fuzzy rule generation algorithm. In Section 4 we
provide a description of a new, query image classi-
fication and the retrieval of similar images. Section
5 compares the algorithm with an established im-
age retrieval algorithm and Section 6 concludes the
paper.

2 Metaheuristics for Fuzzy Rules

Currently, there exist many types of fuzzy sys-
tems (FS) and Fuzzy rule–based systems (FRBS)
with different structures, features, and requirements
for robust and effective optimization and learning.
The need for effective optimization and learning of
highly–accurate FSs/FRMSs is in most cases mo-
tivated by the requirement to efficiently process
high–dimensional and high–volume data for which
a manual (apriori knowledge) design by experts is
not feasible [4]. The metaheuristic algorithms are
then a clear choice.

A wide portfolio of metaheuristic techniques,
including all classic evolutionary and swarm-based
algorithms, altogether with the symbolic nature
of some evolutionary methods (e.g., genetic pro-
gramming), have been introduced for the design,
learning, and optimization of FSs/FRBSs [16, 15,
22], thus creating evolutionary (genetic) fuzzy sys-
tems [16]. Algorithms such as ant colony opti-
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genetic programming (GP) [25, 24, 7], multi–
gene genetic programming [34], artificial bee
colony (ABC) optimization [6], differential evo-
lution (DE) [36, 53, 71, 40], especially its state-
of-the-art version SHADE/L-SHADE [72], have
all been used to address research tasks. Also,
multi-objective optimization has become an impor-
tant approach for optimal design and learning of
FSs/FRBSs [58, 56, 2].

All above-mentioned metaheuristic methods
have addressed various aspects of FSs/FRBSs de-
sign including rule base learning [13, 7, 16, 4, 34,
6, 1] and optimization [16, 25, 44, 37], membership
function scaling and tuning [16, 12], evolutionary
synthesis of fuzzy rules [35], and so on.

There is a broad application field of evolu-
tionary optimized (synthesized) FSs such as fuzzy
intrusion detection system [20], classification of
healthcare data [44], decision support in health-
care [1], medical diagnostics [26], advanced driver
assistance systems [36], linguistic modelling [15,
16] or deep evolving fuzzy neural networks [52].

Finally, FS/FRBS optimization and design can
be seen as a challenging high–dimensional opti-
mization problem, mostly with many objectives.
Since the modern DE versions have been used in the
most recent frameworks (like DECO3RUM) [72,
71] and single/multi-objective applications [36], the
following text is focused on this powerful algo-
rithm.

Among the existing implementations of meta-
heuristic algorithms for fuzzy rules optimization,
DE [66] modifications such as DISH [75] and oth-
ers [18, 50, 51] can be considered. DE has been
thoroughly investigated with an emphasis on the
theoretical insight and insights into inner popula-
tion dynamics [81, 76, 68, 46]. The DE algorithm-
based family is often represented in contests at the
Congress on Evolutionary Computation (CEC) [54,
17, 43, 39, 55, 79]. For this reason, we ex-
pect these advanced versions of DE to be effec-
tive for the fuzzy rules optimization problem, espe-
cially in high dimensional applications. One of the
newest DE algorithms is the Success-History based
Adaptive Differential Evolution (SHADE) [67],
which has a line of recent improvements following
JADE [83] that is based on jDE [9], upgraded as L-
SHADE [69], SPS-L-SHADE-EIG [28], LSHADE-
cnEpSin [3], jSO [11], aL-SHADE [49], and most

recently, DISH [75]. To make the paper self-
contained we describe the canonical DE followed
by necessary improvements leading to the most re-
cent DISH version.

The canonical 1995 DE computes the parame-
ters via evolution of a set of solutions of population
P of size NP and is based on parameter estimation
through evolution from a randomly generated set
of solutions using population P, which has a pre-
set size of NP. Individuals are vectors x of length
D. Objective function f (x) expresses the quality of
the solution. First, all individuals in the initial pop-
ulation P are uniformly generated at random with
constraints [xlower, j,xupper, j], ∀ j = 1, . . . , D

xi = {U
[
xlower, j, xupper, j

]
};

∀ j = 1, . . . , D;∀i = 1, . . . , NP,
(1)

then, three indices r1, r2, and r3, are used to com-
pute a differential vector (hence the name DE for
the algorithm) and combine it

vi = xr1 +F (xr2 − xr3) , (2)

which is then taken into crossover with the current
vector at index i

u j,i =

{
v j,i if U [0,1]≤CR or j = jrand
x j,i otherwise

, (3)

and then a selection operator yields a new vector
xi,G+1 at this location i for next generation G+1

xi,G+1 =

{
ui,G if f (ui,G)≤ f (xi,G)
xi,G otherwise

. (4)

The SHADE algorithm has a self-adaptive mech-
anism of control parameters i.e. scaling factor F
and crossover rate CR and is inspired slightly by
JADE [83]. The main difference is in the historical
memories MF and MCR for successful scaling factor
and crossover rate values with their update mecha-
nism.

The mutation scheme “current-to-pbest/1”
combines four index-wise mutually different vec-
tors in computation of the mutated vector v, with
the index of xpbest being different from r1, r2, and
i, as

vi = xi +Fi (xpbest − xi)+Fi (xr1 − xr2) , (5)

where xpbest is a randomly selected individual from
the best NP × p individuals in the current popula-
tion. The p value is generated randomly for each
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mutation by PRNG, with the uniform distribution
from the range [pmin, 0.2] and pmin = 2/NP. Vec-
tor xr1 is selected randomly from the current pop-
ulation P. Vector xr2 is obtained randomly from
the union of the current population P and external
archive A. The scaling factor value Fi is given by

Fi = C [MF,r,0.1] , (6)

where MF,r is a randomly selected value (index r is
generated by PRNG from the range 1 to H) from
MF memory, and C stands for the Cauchy distribu-
tion. Therefore the Fi value is generated from the
Cauchy distribution with location parameter value
Mr and scale parameter value of 0.1. If the gener-
ated value Fi is higher than 1, it is truncated to 1,
and if Fi is less or equal to 0, it is generated again
by (6).

The crossover uses the very same scheme as in
(3), only with the difference, that CR value is not
static, but it is generated from a Gaussian distri-
bution with a mean parameter value MCR,r selected
from the crossover rate historical memory MCR by
the same index r as in the scaling factor case and
Standard Deviation value of 0.1:

CRi = N [MCR,r,0.1] . (7)

When the generated CRi value is less than 0, it is
replaced by 0, and when it is greater than 1, it is re-
placed by 1. Selection process is again the same as
for the canonical DE (4).

Historical memories MF and MCR serve to store
successful values of F and CR used in the mutation
and crossover steps. During every single genera-
tion, these successful values are stored in their cor-
responding arrays SF and SCR. After each genera-
tion, one cell of MF and MCR memories is updated.
This cell is given by index k, which starts at 1 and
increases by 1 after each generation. When it over-
flows the memory size H, it is reset to 1. The new
values of the k-th cell for MF and MCR are calcu-
lated, respectively

MF,k =

{
meanWL (SF) if SF �= /0

MF,k otherwise
, (8)

MCR,k =

{
meanWL (SCR) if SCR �= /0

MCR,k otherwise
, (9)

where meanWL() stands for the weighted Lehmer
mean

meanWL (S) =
∑|S|

k=1 wk •S2
k

∑|S|
k=1 wk •Sk

(10)

and the weight vector w is based on the improve-
ment in the objective function value between the
trial and the original individuals in current gener-
ation G, as follows

wk =
abs( f (uk,G)− f (xk,G))

∑|SCR|
m=1 abs( f (um,G)− f (xm,G))

. (11)

Because both arrays SF and SCR have the same size,
it is arbitrary which size will be used for the upper
boundary for m in Equation (11).

Another operation that distinguishes L-SHADE
from SHADE algorithm is the linear population de-
crease. The basic idea is to reduce the population
size to promote exploitation in later phases of the
evolution. Therefore, a new population size is cal-
culated after each generation (12). Whenever the
new population size NPnew is smaller than the cur-
rent population size NP, the population is sorted
according to the objective function value, and the
worst NP – NPnew individuals are discarded. The
size of the external archive is reduced as well, using
the formula

NPnew = round(NPinit−

− FES
MAXFES

∗ (NPinit −NPf)),
(12)

where NPinit is the initial population size and NPf

is the final population size. FES and MAXFES are
objective function number evaluations and a maxi-
mum number of objective function evaluations, re-
spectively.

Later, the iL-SHADE [10] extends L-SHADE
by initializing all values in MF and MCR at 0.8, ad-
ditional historical memory entry MF,H = MCR,H =
0.9, limiting F and CR values in the early stages,
and a new formula for computing p for pBest mu-
tation strategy.

Finally, the next algorithmic evolution was rep-
resented by the jSO algorithm [11] as the an-
nounced winner at the CEC 2017 Competition, and
introduces mainly a new weighted version of the
mutation strategy and further parameter setup im-
provements (for details, please, refer to [11]).

Bereitgestellt von  Univerzita Tomase Bati ve Zline | Heruntergeladen  07.01.20 12:45   UTC



61Marcin Korytkowski, Roman Senkerik, Magdalena M. Scherer, Rafal A. Angryk, Miroslaw Kordos, Agnieszka Siwocha

mutation by PRNG, with the uniform distribution
from the range [pmin, 0.2] and pmin = 2/NP. Vec-
tor xr1 is selected randomly from the current pop-
ulation P. Vector xr2 is obtained randomly from
the union of the current population P and external
archive A. The scaling factor value Fi is given by

Fi = C [MF,r,0.1] , (6)

where MF,r is a randomly selected value (index r is
generated by PRNG from the range 1 to H) from
MF memory, and C stands for the Cauchy distribu-
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(10)

and the weight vector w is based on the improve-
ment in the objective function value between the
trial and the original individuals in current gener-
ation G, as follows
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abs( f (uk,G)− f (xk,G))

∑|SCR|
m=1 abs( f (um,G)− f (xm,G))

. (11)

Because both arrays SF and SCR have the same size,
it is arbitrary which size will be used for the upper
boundary for m in Equation (11).

Another operation that distinguishes L-SHADE
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crease. The basic idea is to reduce the population
size to promote exploitation in later phases of the
evolution. Therefore, a new population size is cal-
culated after each generation (12). Whenever the
new population size NPnew is smaller than the cur-
rent population size NP, the population is sorted
according to the objective function value, and the
worst NP – NPnew individuals are discarded. The
size of the external archive is reduced as well, using
the formula
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∗ (NPinit −NPf)),
(12)

where NPinit is the initial population size and NPf

is the final population size. FES and MAXFES are
objective function number evaluations and a maxi-
mum number of objective function evaluations, re-
spectively.

Later, the iL-SHADE [10] extends L-SHADE
by initializing all values in MF and MCR at 0.8, ad-
ditional historical memory entry MF,H = MCR,H =
0.9, limiting F and CR values in the early stages,
and a new formula for computing p for pBest mu-
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The jSO algorithm was used later as a final
stage of the evolving of the DISH algorithm which
uses distance based parameter adaptation. The orig-
inal adaptation mechanism for the scaling factor
and the crossover rate values uses weighted forms
of the means (11), where weights are based on the
improvement in the objective function value (10).
This approach promotes exploitation over explo-
ration and, therefore, might lead to premature con-
vergence.

The distance approach is based on the Eu-
clidean distance between the trial and the original
individual (11). In this modification, the scaling
factor and crossover rate values connected with the
individual that have moved the furthest will have the
highest weight

wk =

√
∑D

j=1
(
uk, j,G − xk, j,G

)2

∑|SCR|
m=1

√
∑D

j=1 (um, j,G − xm, j,G)
2
. (13)

Therefore, the exploration ability and higher popu-
lation diversity are rewarded, and this should lead to
avoidance of the premature convergence in higher
dimensional objective spaces. This distance based
approach can be easily implemented to any variant
of SHADE/L-SHADE family of algorithms [74].

3 Boosting-Generated Simple
Fuzzy Classifiers

In this Section, we find the most representative
fuzzy rules for visual class ωc, c = 1, . . . ,V which
we use to retrieve similar images or to just index
images in a large repository. As we use the SIFT
descriptors, classifiers have N = 128 features. The
fuzzy rules have the following form

Rc
t : IF x1 is Gc

1,t AND x2 is Gc
2,t AND . . .

. . . AND x128 is Gc
128,t THEN image i ∈ ωc(βc

t )
,

(14)
where t = 1, . . . ,T c is the rule number in the current
run of boosting, T c is the number of rules for the
class ωc and βc

t is the weak hypothesis significance.
In the paper we use the Gaussian membership func-
tions

Gc
n,t(x) = e

−
(

x−mc
n,t

σc
n,t

)2

, (15)

where mc
n,t is the center of the Gaussian function

(15) and σc
n,t is its width. For the clarity of presen-

tation this Section describes generating the ensem-
ble of weak classifiers for a class ωc, thus the class
index c will be omitted.

The training dataset has I images (Ipos positive
ones and Ineg negative ones). Initially, descriptors
have the same boosting weights

Dl
1 =

1
L

for l = 1, . . . ,L , (16)

where L is the number of descriptors. Two matrices
are the training dataset of image descriptors

Pt =




p1 D1
t

...
...

pLpos DLpos
t


=




p1
1, . . . , p1

N D1
t

...
...

pLpos
1 , . . . , pLpos

N DLpos
t


 ,

(17)

Nt =




n1 D1

...
...

nLneg DLneg
t


=




n1
1, . . . , p1

N D1

...
...

nLneg
1 , . . . , pLneg

N DLneg
t


 .

(18)
The learning process consists in creating T simple
classifiers (weak learners in the boosting terminol-
ogy) in the form of fuzzy rules (14). After each run
t, t = 1, . . . ,T , of the algorithm, we create rule Rt

and the algorithm is presented below.

1. Randomly choose one vector pr, 1 ≤ r ≤ Lpos

from the positive samples using normalized dis-
tribution of elements D1

t , . . . ,D
Lpos
t in matrix

(17). This drawn vector becomes a basis for
generating a new classifier and the learning set
weights contribute to the probability of choos-
ing a keypoint.

2. For each image from the positive image set find
the feature vector which is nearest to pr (for ex-
ample according to the Euclidean distance) and
store this vector in matrix Mt of the size Ip ×N.
Every row represents one feature from a differ-
ent image vi, i = 1, . . . , Ipos, and no image occurs
more than once

Mt =




p̃1
t,1 · · · p̃1

t,N
... · · ·

...

p̃ j
t,1

. . . j̃ j
t,N

... · · ·
...

p̃Ipos
t,1 · · · p̃Ipos

t,N



, (19)

Each vector
[

p̃ j
t,1 · · · p̃ j

t,N

]
, j = 1, . . . , Ipos, in

matrix (19) contains one visual descriptor from
set {pi; i = 1, ..,Lpos}.
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3. In this step a weak classifier is built, i.e. we
find centres and widths of Gaussian functions
which are membership functions of fuzzy sets
in a fuzzy rule (14).

(a) Compute absolute value dt,n as the difference
between the smallest and the highest values
in each column of the matrix (19)

dt,n = | min
i=1,...,Ip

pi
n − max

i=1,...,Ip
pi

n, | (20)

where n = 1, . . . ,N. Compute the center of
fuzzy Gaussian membership function (15)
mt,n in the following way

mt,n = max
i=1,...,Ip

pi
n −

dt,n

2
. (21)

Now we have to find the widths of these
fuzzy set membership functions. We have
to assume that for all real arguments in the
range of

[
mt,n − dt,n

2 ;mt,n +
dt,n
2

]
, the Gaus-

sian function (fuzzy set membership func-
tion) values should satisfy Gn,t(x) ≥ 0.5.
Only in this situation do we activate the fuzzy
rule. As we assume that Gn,t(x) is at least 0.5
to activate a fuzzy rule, using simple substi-
tution x = mt,n − dt,n

2 , we obtain the relation-
ship for σt,n

σt,n =
dt,n

2
√

− ln(0.5)
. (22)

Finally, we have to calculate values mt,n and
σn,t for every element of the nth column of
matrix (19), thus we have to repeat the above
steps for all N dimensions. In this way, we
obtain N Gaussian membership functions of
N fuzzy sets. Of course, we can label them
using fuzzy linguistic expressions such as
’small’, ’large’ etc., but for the time being we
mark them only in a mathematical sense by
Gn,t , where n, n = 1, ..,N, is the index associ-
ated with feature vector elements and t means
the fuzzy rule number.

(b) Using values obtained in point a) we can con-
struct a fuzzy rule which creates a fuzzy clas-
sifier (14).

4. Now we have to evaluate the quality of the clas-
sifier obtained in step 3. We do this using the

standard AdaBoost algorithm [60]. Let us deter-
mine the activation level of the rule Rt which is
computed by a t-norm of all fuzzy sets member-
ship function values

ft(x̄) =
N
T

n=1
Gn,t(x̄n) , (23)

where x̄ = [x1, . . . ,xN ] is a vector of the values of
linguistic variables x1, . . . ,xN . In the case of the
minimum t-norm, formula (23) becomes

ft(x̄) =
N

min
n=1

Gn,t(xn) . (24)

As a current run of the AdaBoost is for a given
class ωc, we can treat the problem as a binary
classification (dichotomy) i.e. yl = 1 for descrip-
tors of positive images and yl = 0 for descriptors
of negative images. Then the fuzzy classifier de-
cision is computed by

ht(x̄l) =

{
1 if ft(x̄l)≥ 1

2
0 otherwise

. (25)

For all the keypoints stored in matrices Pt and
Nt we calculate new weights Dl

t . To this end,
we compute the error of classifier (25) for all
L = Lpos + Lneg descriptors of all positive and
negative images

εt =
L

∑
l=1

Dl
t I(ht(x̄l) �= yl) , (26)

where I is the indicator function

I(a �= b) =
{

1 if a �= b
0 if a = b

. (27)

If εt = 0 or εt > 0.5, we finish the training stage.
If not, we compute new weights

αt = 0.5ln
1− εt

εt
. (28)

Dl
t+1 =

Dl
t exp{−αt I(ht(x̄l) = yl)}

C
, (29)

where C is a constant such that ∑L
l=1 Dl

t+1 = 1.
Finally, classifier importance is determined by

βt =
αt

∑T
t=1 αt

. (30)

The obtained set of rules R is then fine-tuned by the
SHADE algorithm described in Section 2 against
achieving the best image classification accuracy.
Later, we present image indexation and retrieval.
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3. In this step a weak classifier is built, i.e. we
find centres and widths of Gaussian functions
which are membership functions of fuzzy sets
in a fuzzy rule (14).

(a) Compute absolute value dt,n as the difference
between the smallest and the highest values
in each column of the matrix (19)

dt,n = | min
i=1,...,Ip

pi
n − max

i=1,...,Ip
pi

n, | (20)

where n = 1, . . . ,N. Compute the center of
fuzzy Gaussian membership function (15)
mt,n in the following way

mt,n = max
i=1,...,Ip

pi
n −

dt,n

2
. (21)

Now we have to find the widths of these
fuzzy set membership functions. We have
to assume that for all real arguments in the
range of

[
mt,n − dt,n

2 ;mt,n +
dt,n
2

]
, the Gaus-

sian function (fuzzy set membership func-
tion) values should satisfy Gn,t(x) ≥ 0.5.
Only in this situation do we activate the fuzzy
rule. As we assume that Gn,t(x) is at least 0.5
to activate a fuzzy rule, using simple substi-
tution x = mt,n − dt,n

2 , we obtain the relation-
ship for σt,n

σt,n =
dt,n

2
√

− ln(0.5)
. (22)

Finally, we have to calculate values mt,n and
σn,t for every element of the nth column of
matrix (19), thus we have to repeat the above
steps for all N dimensions. In this way, we
obtain N Gaussian membership functions of
N fuzzy sets. Of course, we can label them
using fuzzy linguistic expressions such as
’small’, ’large’ etc., but for the time being we
mark them only in a mathematical sense by
Gn,t , where n, n = 1, ..,N, is the index associ-
ated with feature vector elements and t means
the fuzzy rule number.

(b) Using values obtained in point a) we can con-
struct a fuzzy rule which creates a fuzzy clas-
sifier (14).

4. Now we have to evaluate the quality of the clas-
sifier obtained in step 3. We do this using the

standard AdaBoost algorithm [60]. Let us deter-
mine the activation level of the rule Rt which is
computed by a t-norm of all fuzzy sets member-
ship function values

ft(x̄) =
N
T

n=1
Gn,t(x̄n) , (23)

where x̄ = [x1, . . . ,xN ] is a vector of the values of
linguistic variables x1, . . . ,xN . In the case of the
minimum t-norm, formula (23) becomes

ft(x̄) =
N

min
n=1

Gn,t(xn) . (24)

As a current run of the AdaBoost is for a given
class ωc, we can treat the problem as a binary
classification (dichotomy) i.e. yl = 1 for descrip-
tors of positive images and yl = 0 for descriptors
of negative images. Then the fuzzy classifier de-
cision is computed by

ht(x̄l) =

{
1 if ft(x̄l)≥ 1

2
0 otherwise

. (25)

For all the keypoints stored in matrices Pt and
Nt we calculate new weights Dl

t . To this end,
we compute the error of classifier (25) for all
L = Lpos + Lneg descriptors of all positive and
negative images

εt =
L

∑
l=1

Dl
t I(ht(x̄l) �= yl) , (26)

where I is the indicator function

I(a �= b) =
{

1 if a �= b
0 if a = b

. (27)

If εt = 0 or εt > 0.5, we finish the training stage.
If not, we compute new weights

αt = 0.5ln
1− εt

εt
. (28)

Dl
t+1 =

Dl
t exp{−αt I(ht(x̄l) = yl)}

C
, (29)

where C is a constant such that ∑L
l=1 Dl

t+1 = 1.
Finally, classifier importance is determined by

βt =
αt

∑T
t=1 αt

. (30)

The obtained set of rules R is then fine-tuned by the
SHADE algorithm described in Section 2 against
achieving the best image classification accuracy.
Later, we present image indexation and retrieval.

EFFICIENT IMAGE RETRIEVAL BY . . .

4 Classification of a Query Image

Each group of images ωc, c = 1, . . . ,V requires
generation of fuzzy rules, thus after the training pro-
cedure and the evolutionary optimization, we obtain
a set of V strong classifiers. A new query image has
its u descriptors in Q

Q =




q1

q2

...
qu


=




q1
1 . . .q

1
N

q2
1 · · ·q2

N
...

qu
1 · · ·qu

N


 . (31)

Let us determine the value of

Ft(Q) =
u
S

j=1

(
N
T

n=1
Gn,t(q j

n)

)
, (32)

where S and T are t-norm and t-conorm, respec-
tively (see [59]). To compute the overall output of
the ensemble of classifiers designed in Section 3,
for each class ωc we sum weak classifiers outputs
(32) taking into consideration their importance (30),
i.e.

Hc(Q) =
T c

∑
t=1

βtFt(Q) . (33)

Eventually, we assign a class label to the query im-
age in the following way

f (Q) = arg max
c=1,...,V

H∗c(Q) . (34)

In formulas (33) and (34) we restored class label in-
dex c, which had been removed at the beginning of
Section 3. In formula (32) t-norm and t-conorm can
be chosen as min and max operators, respectively.

The fuzzy rules created during the boosting
learning and tuned by the metaheuristic are used
to fast retrieve images similar to the query im-
age, which we show in Figure 1. We create a
database index by identifying the ranges in the
Gaussion functions having values greater than 0.5.
The database index determines which image feature
values fall into the ranges in which the fuzzy sets
which constitute the predecessor of the rule have
values greater than 0.5.
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Figure 1. Set of fuzzy rules for image
classification created by boosting and differential
evolution (left part). Right part: database index
from the rules allowing fast retrieval of similar

images.

5 Experiments

We evaluated the presented approach on im-
ages taken from the PASCAL Visual Object Classes
(VOC) dataset [21] by checking the speed and ac-
curacy. We present some examples in Fig. 2. We
divided each class of objects into training and test-
ing examples (15 %). We generated local keypoint
descriptors with the SIFT algorithm; for complex
images there would be even thousands of descrip-
tors.
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Figure 2. Examples of images from the PASCAL
Visual Object Classes (VOC) dataset, namely

aeroplanes, bicycles, boats and cars.

We used negative images from a different kind
of images from the dataset. We checked the pro-
posed method performance against the Support
Vector Machine (SVM) with the Chi-Square ker-
nel. The training procedure described in Section 3
requires a set of negative examples for each consid-
ered class of objects. We picked randomly negative
examples from other classes. We ran it with a dic-
tionary of the size of 400 words. We created dic-
tionaries for BoF in C++ language, based on the
OpenCV Library [8]. Both methods were evalu-
ated with the same images (Table 1). In the BoF
algorithm the column “Training time” is empty as
the training is performed for the whole dataset. As
we can see, the algorithm presented in the paper is
faster and more accurate than the BoF approach.

6 Conclusions

We proposed a new method of creating fuzzy
rules from image local features by boosting and dif-
ferential evolution. We briefly described content-
based image retrieval and utilization of metaheuris-
tic algorithms for various tasks in fuzzy system op-
timization. Further, we gave a comprehensive de-
scription of the current best-performing DISH al-
gorithm, which represents a powerful version of a
differential evolution algorithm with effective em-
bedded mechanisms for stronger exploration and
preservation of the population diversity, designed
for higher dimensional and complex optimization
tasks. We used the DISH algorithm to fine-tune
the fuzzy rules obtained by the boosting procedure.
The proposed approach outperformed the state-of-
the-art method in image retrieval, which is a com-
bination of the bag of features method with SVM.
Our approach is faster and more accurate. More-
over, contrary to the bag-of-features approach, it is
relatively simple to train the system to recognize
new image classes. We used the SIFT image fea-
tures, but the proposed method can use other image
keypoint detectors and descriptors, hand-crafted as
SURF or ORB and learned ones as LIFT [80] or that
proposed in [63].

Acknowledgements

This work was supported by the project fi-
nanced under the program of the Polish Minister of
Science and Higher Education under the name “Re-
gional Initiative of Excellence” in the years 2019–
2022 project number 020/RID/2018/19, the amount
of financing 12,000,000.00 PLN.

References
[1] Alharbi, A., Tchier, F.: Using a genetic-fuzzy algo-

rithm as a computer aided diagnosis tool on saudi
arabian breast cancer database. Mathematical Bio-
sciences 286, 39 – 48 (2017)

[2] Antonelli, M., Ducange, P., Marcelloni, F.: A fast
and efficient multi-objective evolutionary learning
scheme for fuzzy rule-based classifiers. Informa-
tion Sciences 283, 36 – 54 (2014). New Trend of
Computational Intelligence in Human-Robot Inter-
action

[3] Awad, N.H., Ali, M.Z., Suganthan, P.N., Reynolds,

Bereitgestellt von  Univerzita Tomase Bati ve Zline | Heruntergeladen  07.01.20 12:45   UTC



65Marcin Korytkowski, Roman Senkerik, Magdalena M. Scherer, Rafal A. Angryk, Miroslaw Kordos, Agnieszka Siwocha

Figure 2. Examples of images from the PASCAL
Visual Object Classes (VOC) dataset, namely

aeroplanes, bicycles, boats and cars.

We used negative images from a different kind
of images from the dataset. We checked the pro-
posed method performance against the Support
Vector Machine (SVM) with the Chi-Square ker-
nel. The training procedure described in Section 3
requires a set of negative examples for each consid-
ered class of objects. We picked randomly negative
examples from other classes. We ran it with a dic-
tionary of the size of 400 words. We created dic-
tionaries for BoF in C++ language, based on the
OpenCV Library [8]. Both methods were evalu-
ated with the same images (Table 1). In the BoF
algorithm the column “Training time” is empty as
the training is performed for the whole dataset. As
we can see, the algorithm presented in the paper is
faster and more accurate than the BoF approach.

6 Conclusions

We proposed a new method of creating fuzzy
rules from image local features by boosting and dif-
ferential evolution. We briefly described content-
based image retrieval and utilization of metaheuris-
tic algorithms for various tasks in fuzzy system op-
timization. Further, we gave a comprehensive de-
scription of the current best-performing DISH al-
gorithm, which represents a powerful version of a
differential evolution algorithm with effective em-
bedded mechanisms for stronger exploration and
preservation of the population diversity, designed
for higher dimensional and complex optimization
tasks. We used the DISH algorithm to fine-tune
the fuzzy rules obtained by the boosting procedure.
The proposed approach outperformed the state-of-
the-art method in image retrieval, which is a com-
bination of the bag of features method with SVM.
Our approach is faster and more accurate. More-
over, contrary to the bag-of-features approach, it is
relatively simple to train the system to recognize
new image classes. We used the SIFT image fea-
tures, but the proposed method can use other image
keypoint detectors and descriptors, hand-crafted as
SURF or ORB and learned ones as LIFT [80] or that
proposed in [63].

Acknowledgements

This work was supported by the project fi-
nanced under the program of the Polish Minister of
Science and Higher Education under the name “Re-
gional Initiative of Excellence” in the years 2019–
2022 project number 020/RID/2018/19, the amount
of financing 12,000,000.00 PLN.

References
[1] Alharbi, A., Tchier, F.: Using a genetic-fuzzy algo-

rithm as a computer aided diagnosis tool on saudi
arabian breast cancer database. Mathematical Bio-
sciences 286, 39 – 48 (2017)

[2] Antonelli, M., Ducange, P., Marcelloni, F.: A fast
and efficient multi-objective evolutionary learning
scheme for fuzzy rule-based classifiers. Informa-
tion Sciences 283, 36 – 54 (2014). New Trend of
Computational Intelligence in Human-Robot Inter-
action

[3] Awad, N.H., Ali, M.Z., Suganthan, P.N., Reynolds,

EFFICIENT IMAGE RETRIEVAL BY . . .

Table 1. Comparison of the proposed method with the bag of words combined with the support vector
machines.

Proposed approach Bag of features and SVM
Classification
accuracy on
testing set

Training
time [s]

Testing
time [s]

Classification
accuracy on
testing set

Training
time [s]

Testing
time [s]

bicycle 87.45% 2.236 69.54% 7.141
boat 77.55% 2.435 66.84% 6.274
bus 86.38% 3.023 70.89% 5.241
car 78.43% 3.274 88.45% 7.274
cat 78.74% 3.137 88.72% 5.134
plane 86.89% 3.272 80.45% 6.233
train 73.53% 3.458 54.34% 5.381
Total 81.28% 287.381 20.925 74.17% 544.323 42.678

R.G.: An ensemble sinusoidal parameter adap-
tation incorporated with L-SHADE for solving
CEC2014 benchmark problems. In: 2016 IEEE
Congress on Evolutionary Computation (CEC), pp.
2958–2965. IEEE (2016)

[4] Aydogan, E.K., Karaoglan, I., Pardalos, P.M.: hga:
Hybrid genetic algorithm in fuzzy rule-based clas-
sification systems for high-dimensional problems.
Applied Soft Computing 12(2), 800 – 806 (2012)

[5] Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.:
Speeded-up robust features (surf). Comput. Vis.
Image Underst. 110(3), 346–359 (2008)

[6] Beloufa, F., Chikh, M.: Design of fuzzy classi-
fier for diabetes disease using modified artificial
bee colony algorithm. Computer Methods and Pro-
grams in Biomedicine 112(1), 92 – 103 (2013)

[7] Berlanga, F., Rivera, A., del Jesus, M., Herrera, F.:
Gp-coach: Genetic programming-based learning
of {COmpact} and {ACcurate} fuzzy rule-based
classification systems for high-dimensional prob-
lems. Information Sciences 180(8), 1183 – 1200
(2010)

[8] Bradski, G.: The opencv library. Doctor Dobbs
Journal 25(11), 120–126 (2000)

[9] Brest, J., Greiner, S., Bošković, B., Mernik, M.,
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