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Abstract. The quality of mill finishing of shaped surfaces is influenced by a number of input 

parameters. Current automated manufacturing systems allow adaptation of the machining 

process aiming at the final surface quality. Despite all the advantages, these systems require 

a behavioural model, a prediction of the output, based on the input parameters. Some of these 

models are summarized in this paper, including contemporary evaluated models as well as their 

functional dependencies; moreover, offers an application of mill finishing with a ball-end cutter 

incorporating tool axis or surface inclination. 

1.  Introduction  
Milling is a conventional technology in which the material is removed from the workpiece in the form 

of chips with a multi-blade cutting tool. The main rotary movement is performed by the tool and the 

chips are periodically generated according to the number of tool blades. The resulting surface quality of 

the machined surface consists of a series of elementary surfaces formed by individual cutting edge as 

well as by entire cutting process. Surface topography is the result of the material removal process due 

to the relative movement of the tool and the workpiece. In the primary view, it is possible to find a direct 

correlation of the resulting surface quality with the geometric characteristics of the milling tool. 

Predicting surface quality after milling is a challenge at many levels. This is because the surface 

quality and the associated evaluation parameters are influenced by a number of input factors whose 

behavior is often non-linear, moreover some of the factors interact with each other. In addition to the 

primary concern, surface quality is important to the performance of a part and affects, inter alia, 

durability, friction properties, corrosion resistance and lubricant distribution, heat transfer, light 

reflectance and fatigue strength, and last but not least the appearance and cost of the part [1-6]. 

Surface quality is a widespread product quality evaluation parameter and is one of the technological 

requirements. The following article discusses the surface quality after milling, which is used in multi-

axis finish milling. A spherical milling tool is used when milling contoured surfaces with a slope. This 

avoids the known phenomenon where, in the vicinity of the tool axis, the resulting cutting speed 

approximate to zero and at this point the material is not being cut.  

In the industry, especially in the manufacture of forming tools, mold cavities for foundry and 

injection molds in particular, surface quality is characterized as the arithmetical mean roughness Ra. 

The Ra parameter is widely used in manufacturing practice, although it provides limited information on 

the condition and quality of the machined surface. This parameter is most often accompanied by the 

measurement of the parameter Rz, however dependent on Ra. 



Development of Materials Science in Research and Education (DMSRE29)

IOP Conf. Series: Materials Science and Engineering 726 (2020) 012003

IOP Publishing

doi:10.1088/1757-899X/726/1/012003

2

 

 

 

 

 

 

2.  Prediction models and optimization techniques 
Despite the fact that the machining process is influenced by a number of factors related to the machine-

tool-workpiece-fixture relationship [7-9], current process machining models are able to suggest the 

setting of inputs, most often cutting conditions, according to the required surface quality [10]. The 

methodology of surface quality prediction includes various solution approaches; from simpler ones such 

as the determination of the kinematic model of surface creation, experimental investigation and surface 

analysis, the implementation of artificial intelligence (AI) as well as approaches using the design of 

experiment. Despite a number of methods and models, the researches almost without exception describe 

surface quality only for a specific case with given boundary conditions. In the absence of a universal 

surface quality model, re-determination of the input change model is required. A disadvantage of many 

surface quality models is also the fact that the cutting conditions proposed can be given outside the 

machine's working range or require precise adjustment sensitivity. Recent studies have focused on 

investigating the cutting process of the end mill with spherical tool end, known also as a ball end mill 

cutter, for finishing oblique and contour shaped surfaces [11-12]. Yet few researchers are involved in 

this issue and there are not enough surface quality models suitable for application in manufacturing 

practice. 

Several important studies are devoted to the relationship between surface quality and the machining 

process. The authors Benardos and Vosniakos [13] not only determined graphically the factors 

influencing the cutting process, their great contribution in the area of prediction is the summary and 

classification of solution approaches. Another general solution is proposed by Lu [14] in the study of 

the prediction of surface roughness using the artificial intelligence with the contribution of vibration. 

Quintana [15-19] also continually addresses the relationship between ball milling, surface quality and 

process stability. Based on previous research in this area, it is possible to categorize the surface quality 

prediction into the following groups: 

 

a) Kinematic models (based on machining theory) 

b)  Empirical modeling (experimental analysis of effects, regression analysis) 

c)  Planned experiment methods (DOE) 

d)  Artificial intelligence methods (ANFIS, ANN) 

e)  Advanced methods (GA, Fuzzy, Neuro-Fuzzy, Hybrid methods) 

 

Sadilek and Cep [19] present one of the mechanical Ra model (1) for planar surfaces. They emphasize 

the need to mill off-axis due to zero cutting speed near the tool axis. Therefore, they recommend tilting 

the tool or workpiece surface and using multi-axis machining operations. Further mechanical model (2) 

gives Peterka [20], where substitution is performed for inclined tool-workpiece machining, allowing the 

calculation of theoretical Ra values. The model is verified experimentally for various machining 

methods. 
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An important author in this area is Quintana, who presents mechanical Ra models for planar and 

inclined surfaces. The results show a relatively good agreement of the theoretical Ra with the 

measurement, but the theoretical calculation of the height inequality in an independent equation, in some 

cases, varies by up to 75 %. The author explains this mismatch by the thermal contribution and the 

dynamic effect of the milling process. 

Quintana suggests monitoring the process using cause-effect methods using ANN, GA, Fuzzy, or 

expert systems. The artificial neural networks are used in the later study [15], and focuses on Ra 

modeling for planar surfaces. These relationships and equation (3) 
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are inputs for ANN system using a dual-layer feed-forward network, a Levenberg-Marquardt learning 

algorithm and one hidden layer of 20 neurons. The entire model includes, among other inputs, vibration, 

the effect of cooling, and in total Quintana conducted 250 experiments. The obtained excellent degree 

of accuracy between the model and the measured data shows that ANN is the right way for modeling 

the machining process. 

Suresh [21] offers two mathematical models of Ra, which were compiled from measured data and 

evaluated by RSM. However, the first order model in this paper offers limited descriptiveness, and 

therefore a second order polynomial model (4) with a regression coefficient R2 = 0.9305 is established. 

The equation is valid for milling planar surfaces with side radius cutters. The author used genetic 

algorithms with a population size of 20 and a maximum number of 500 generations to find the optimal 

cutting geometry of the tool and cutting conditions for the best surface quality. 
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The Jatti [22] model (5) uses RSM with the Box Behnken method with three-level factorial design 

and other centered, which is a 2nd order polynomic function and serves as input for GA optimization. 
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 The model works with an average error of 5.9 %, a maximum error of 12.84 % for machining  

Al-Si12 alloys, used for specific application in foundry purpose. 
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Explanation of parameters and abbreviations in equations (1-5) and chapter above is given as: 

R  cutting tool radius (mm) 

vc  cutting speed (m/min) 

n  revolutions per minute (min-1) 

vf  feed rate (mm/min) 

fz  feed per tooth (mm) 

ap  axial depth of cut (mm) 

ae  radial depth of cut (mm) 

rε  mill cutter radius (mm) 

α  surface / tool inclination angle (°) 

γ  tool rake angle (°) 

RSM Response surface methodology 

GA Genetic algorithm 

ANN Artificial neural networks 

DOE Design of experiments  

3.  Influence of inclination angle 
Shape surfaces on parts can be classified into two categories for the purpose of this study. Shallow 

surfaces are characterized by the inclination angle α relative to the horizontal surface  

(0 ° - 30 °˃, the steep surfaces then within the inclination angle α (30 ° - 90 °). 

It can be seen from the evaluation and in the figure 1 that, when milling a surface with a slight slope, 

referred to as shallow, the better surface quality is achieved under the same technological conditions 

than in the case of surfaces with a greater steepness. The trend of the dependence on the angle of 

inclination is exponential with slight gradient. The behavior is corresponding to the variating cutting 

forces as the angle of inclination changes, the low stiffness of the tool in the lateral directions, vibrations 

and other dynamic machining phenomena. 

The radial depth of cut ae is identified by literature and analytical analysis as the most significant 

influencing parameter on surface quality when milling with a ball end mill tool. If the parameter ae is 

rising, which means that the spacing between parallel cuts increases, this obviously leads to a 

deterioration of the surface quality. 

 

 

Figure 1. Individual Ra sets of milling surfaces with 

shallow and steep inclination angle (αshallow = 15 %,  

αsteep = 75 %, ae = 0.6 mm,  fz = 0.1 mm). 
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As can be seen in the figure 2, the course of the roughness parameter Ra is exponential, and 

mathematical interpretation can evaluate recursively values that cannot be measured, moreover predict 

the Ra roughness for specific machining conditions. A frequent limiting criterion is the time the tool is 

engaged into the cut. The parameter is directly related to tool life and tool wear; at the same time, it is 

associated with the cost of operating the machine for machining large-dimension parts and allows the 

selection of process parameters with respect to time constraints. 

 

 

Figure 2. Dependence of Ra on the inclination angle α  and the radial depth of cut ae  

(AW 7022, D = 5 mm). 

4.  DOE and significant parameters 
In general, design of experiments (DOE) is used to obtain process information based on a 

methodological plan. Not all possible combinations of options need to be measured to determine process 

parameters, saving time and resources. On the other hand, it requires precious accuracy when 

determining output parameters with minimal variance. 

With respect to the mentioned facts, the data were evaluated during milling of inclined surfaces. DOE 

allows to analyze multiple input parameters in one cycle. Based on the experiments and their values 

transformed into the signal-to-noise ratio, the main effects (table 1) and their order of significance by 

factors were determined. 

 

Table 1. Order of effects by factor. 

Level  1 2 3 4 5 

F1 α D l a vf 

F2 a D l vf α 

F3 D a vf l α 

Ra a vf l D α 

Rz a vf l D α 

Rmr D a vf α l 

 

 

 

F1 passive force (N) 

F2 feed force (N) 

F3 main cutting force (N) 

Ra arithmetical mean roughness value (µm) 

Rz mean roughness depth (µm) 

Rmr material component of the profile (µm) 

α  surface / tool inclination angle (°) 

D  cutting tool diameter (mm) 

a  radial depth of cut (% × ∅D) 

l cutting tool ejection in the clamping system (mm) 

vf  feed rate (mm/min) 
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According to the first two levels, the cutting force components are influenced primarily by the tool 

selection and its diameter D, the radial depth of cut a and the angle of inclination α in one case. The 

main cutting force F3 is the largest component to the total force resultant and its size is influenced by 

the tool diameter D, while the smallest contribution has the inclination angle α, which for the finish 

milling relates to the small size chip cross-section. The feed force F2 is influenced mainly by the radial 

depth of cut a, and similarly to the F3 inclination angle does not play significant role. On the other hand, 

the magnitude of the passive force component F1 is affected by the tool geometry and inclination angle 

α, however the smallest influence has the feed rate. 

The roughness height parameters Ra, Rz are interdependent parameters that are determined from the 

same roughness profile. Therefore, they have the same order of significance as can be seen in the  

table 1. The material proportion Rmr is significantly influenced by the tool (mill cutter diameter D) and 

radial depth of cut a. These are primarily variables that affect the frequency characteristics of the 

roughness profile and can be said to have particular influence on the regularity of movement during 

machining and creation of the new surface. The experiment revealed that the extrusion of the tool and 

the associated stiffness of the tool have no significant effect on the material component of the profile. 

 

 

Figure 3. Surface plot of Ra for radial depth of cut a and tool diameter D. 

 

The most ruling milling parameters for optimum surface quality are radial depth of cut a, and tool 

geometry, characterized by the diameter D of the mill cutter. In the plot of figure 3, a deterioration of 

the surface quality with increasing parameters a and D can be observed. However, it is necessary to note 

instability at smaller radial depths and the for small tool diameters, where surface quality is influenced 

by other associated process phenomena, resulting in an improvement in the observed parameter Ra. The 

overall behavioral model obtained by the DOE has a mathematical interpretation in the following 

equation (6): 
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 (6) 

 

The obtained equation shows the dependence of the parameter Ra on the cutting conditions (a, vf), 

the tool geometry (D) but also on the length of the tool ejection l above the recommended settings. 
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5.  Conclusion 
Only a small percentage of research is contributed to modeling, predicting, and optimizing the surface 

quality of inclined and shaped surfaces after machining. On the basis of the research analysis it can be 

observed that the surface quality prediction of many theoretical models include a significant error 

between the measured and predicted values or the application is possible only in a limited range of 

materials, tools and cutting conditions. Despite this fact, we can observe the increasing demand for the 

new methods of processing engineering data using advanced statistics, design of experiments and 

artificial intelligence. 

Machining technology by milling does not lose its importance even as finishing operation. The mill 

finishing may achieve comparable close surface quality to grinding with commercially available tools 

and machine options. The aim is to minimize or prevent subsequent finishing of the surfaces by grinding, 

which arise undesirable temperature field and stress states into the surface layer. 
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