Application of qPCR for multicopper oxidase gene (MCO) in biogenic amines degradation by Lactobacillus casei

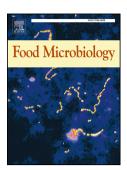
Hana Pištěková, Petra Jančová, Lucie Berčíková, František Buňka, Iveta Sokolová, Tomáš Šopík, Kristýna Maršálková, Olga Maria Reis Pacheco de Amaral, Leona Buňková

PII: S0740-0020(20)30139-8

DOI: https://doi.org/10.1016/j.fm.2020.103550

Reference: YFMIC 103550

To appear in: Food Microbiology


Received Date: 18 October 2019
Revised Date: 12 February 2020

Accepted Date: 20 May 2020

Please cite this article as: Pištěková, H., Jančová, P., Berčíková, L., Buňka, Františ., Sokolová, I., Šopík, Tomáš., Maršálková, Kristý., de Amaral, O.M.R.P., Buňková, L., Application of qPCR for multicopper oxidase gene (*MCO*) in biogenic amines degradation by *Lactobacillus casei*, *Food Microbiology* (2020), doi: https://doi.org/10.1016/j.fm.2020.103550.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

1	Application of qPCR for multicopper oxidase gene (MCO) in biogenic amines
2	degradation by Lactobacillus casei
3	
4	
5	Running title
6	Multicopper oxidase gene in <i>L. casei</i> - application of real-time PCR
7	
8	
9	Hana Pištěková ^a , Petra Jančová ^{a,*} , Lucie Berčíková ^a , František Buňka ^b , Iveta Sokolová ^a ,
10	Tomáš Šopík ^b , Kristýna Maršálková ^a , Olga Maria Reis Pacheco de Amaral ^c , Leona
11	Buňková ^a
12	
13	
14	
15	^a Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín
16	Vavrečkova 275, 76001 Zlín, Czech Republic
17	
18	^b Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275,
19	76001 Zlín, Czech Republic
20	
21	^c Department of Technologies and Applied Sciences, Escola Superior Agária, Instituto Politécnico de Beja,
22	Rua Pedro Soares S/N, Apartado 6155, 7800-295 Beja, Portugal
23	
24	
2526	* Corresponding author: Petra Jančová; Tel.: 00420 576 031 240; e-mail: jancova@utb.cz
	Corresponding audior. Fetta Jancova, 1et., 00420 370 031 240, e-man, jancova@uto.cz
27	

Abstr	act
-------	-----

Degradation of undesirable biogenic amines (BAs) in foodstuffs by microorganisms is considered one of the most effective ways of eliminating their toxicity. In this study, we designed two sets of primers for the detection and quantification of the multicopper oxidase gene (*MCO*), which encodes an enzyme involved in BAs degradation, and endogenous (glyceraldehyde-3-phosphate dehydrogenase) gene (*GAPDH*) in *Lactobacillus casei* group by real-time PCR (qPCR). We tested 15 *Lactobacillus* strains in the screening assays (thus, *MCO* gene possessing assay (PCR) and monitoring of BAs degradation by HPLC-UV), in which *Lactobacillus casei* CCDM 198 exhibited the best degradation abilities. For this strain, we monitored the expression of the target gene (*MCO*) in time (qPCR), the effect of redox treatments (cysteine, ascorbic acid) on the expression of the gene, and the ability to degrade BAs not only in a modified MRS medium (MRS/2) but also in a real food sample (milk). Moreover, decarboxylase activity (ability to form BAs) of this strain was excluded. According to the results, CCDM 198 significantly (P < 0.05) reduced BAs (putrescine, histamine, tyramine, cadaverine), up to 25% decline in 48 hours. The highest level of relative expression of *MCO* (5.21±0.14) was achieved in MRS/2 media with cysteine.

Keywords:

51 Biogenic amines degradation, histamine, qPCR, primers, *Lactobacillus casei*

1. Introduction

53

54	Biogenic amines (BAs) are low-molecular-weight nitrogen compounds that are formed in
55	foods and beverages during fermentation by bacterial species possessing the specific amino
56	acid decarboxylases. BAs could be toxic to human health in higher concentrations (Silla
57	Santos, 1996; Stratton et al., 1991). The most dangerous biogenic amine is histamine, which
58	is responsible for the majority of BAs-related food poisonings. Parente et al., 2001 pointed
59	out that levels of histamine greater than 100 mg.kg ⁻¹ can be health threatening; thus, its
60	quantity in foodstuffs must be monitored. European legislation (Commission Regulation (EC)
61	No 2073/2005, 2005) lays down food safety criteria for histamine in fishery products of up to
62	100 mg.kg ⁻¹ and for fishery products, which have undergone enzyme maturation treatment in
63	brine, of up to 200 mg.kg ⁻¹ . However, high levels of BAs may occur in all fermented
64	foodstuffs and beverages - the threat of their increased accumulation is mainly found in
65	cheeses, sausages and wine. Concentrations of BAs exceeding 1 g.kg ⁻¹ have been reported in
66	cheese, with histamine and tyramine being the most commonly present BAs (Alvarez and
67	Moreno-Arribas, 2014; Fernández et al., 2007).
68	Removing histamine and other BAs formed is very complicated because of their persistence
69	(Zaman et al., 2010). The strategies for diminishing BAs levels in foodstuffs are primarily
70	targeted at reducing their precursors (amino acids), reducing the growth of spoilage bacteria
71	and inoculating starter cultures without amino acid decarboxylases (Callejón et al., 2014).
72	Probably, the most effective solution is to use microorganisms, which can degrade amines
73	formed as a part of the starter or adjunct cultures. The ability to degrade biogenic amines in
74	culture media or foodstuffs is based on the fact that some microorganisms are capable of
75	producing degrading enzymes, such as amine oxidases and multicopper oxidases (MCO)
76	(Alvarez and Moreno-Arribas, 2014; Callejón et al., 2014). Amine oxidases are the large
77	group of enzymes catalysing the degradation of BAs to substances that can be utilised by

microorganisms as a source of energy and growth. Several studies have described these 78 enzymes and deamination pathways (Sekiguchi et al., 2004; Wang et al., 2013; Yagodina et 79 80 al., 2002). Later, Callejón et al., 2014 described the degradation of BAs in wine by lactic acid 81 bacteria (LAB) possessing multicopper oxidases. 82 LAB play an essential role in the production of fermented dairy products, with *Lactococcus* 83 lactis, Leuconostoc sp., Streptococcus thermophilus, Lactobacillus delbrueckii subsp. lactis and Lactobacillus helveticus being the species most commonly used as primary fermentation 84 85 starters (Ladero et al., 2015; Parente et al., 2017; Renes et al., 2019; Silva et al., 2020). The development of the final organoleptic properties of fermented dairy products frequently 86 participate facultative, heterofermentative lactobacilli belonging to the species *Lactobacillus* 87 88 casei/paracasei, Lactobacillus plantarum or Lactobacillus curvatus (Ladero et al., 2015). 89 LAB are generally regarded as safe (GRAS) and thus are used in foodstuffs due to their 90 inhibitory properties against spoilage bacteria and foodborne pathogens (Özogul and Hamed, 91 2018). The Lactobacillus casei group has an important place among LAB, which includes 92 species: L. casei, L. paracasei and L. rhamnosus. These species are well-researched due to 93 their applicability in the food, biopharmaceutical and medical industries. Their health-94 promoting capabilities have been documented in several studies suggesting their potential for 95 their use in the treatment, or prevention, of a variety of diseases (Hill et al., 2018). 96 A powerful tool for searching for strains with degradation abilities could be real-time PCR (qPCR). This advanced technique offers the advantages of speed, sensitivity, simplicity and 97 98 the specific detection and quantification of target genes in one step (Landete et al., 2007). The 99 food industry is increasingly using qPCR for genes detection and quantification involved in BAs production (Elsanhoty and Ramadan, 2016; Ladero et al., 2015, 2010; Postollec et al., 100 101 2011). The situation is different for monitoring the expression of genes involved in BAs degradation. Very few studies have described primers that allow the monitoring of the 102

expression of the degrading genes (Eom et al., 2015; Herrero-Fresno et al., 2012). Some 103 authors have developed primers for the detection of the multicopper oxidase gene in LAB by 104 105 PCR (Callejón et al., 2014; Guarcello et al., 2016), which are not suitable for qPCR due to the 106 length of the PCR amplicons. 107 The purpose of this study is to design new primers for the specific detection of the 108 multicopper oxidase gene (MCO) in the Lactobacillus casei group, which catalyse the 109 degradation of common BAs present in fermented foodstuffs. Using new set of primers, we 110 identified 15 Lactobacillus casei strains capable of degrading BAs. Moreover, we examined 111 all tested strains for decarboxylase activity to eliminate the possibility that potential degraders are also BAs producers. We also specify the degradation capacity of BAs of L. casei CCDM 112 113 198 in broth and milk. Strain CCDM 198 was isolated from aidam cheese and is used as a 114 starter culture, which is declared by the supplier (Laktoflora, Czech Republic). So far as we 115 know, no previous work tested degradation abilities of BAs of this strain. Furthermore, we determine the influence of redox potential treatments cysteine and ascorbic acid on the BAs 116 117 degradation.

118

119

2. Materials and methods

- 120 The number of cells and the growth curve phase have a key effect on the degradation;
- therefore, the growth curves of degrading strains and the effect of redox treatments or
- cultivation media on bacterial growth were also monitored.
- 123 2.1 Strains and cultivation conditions
- 124 **Microorganisms:** The *L. casei* strains used in this study (CCDM 198, CCDM 145) were
- obtained from the Laktoflora, the Culture Collection of Diary Microorganisms (CCDM),
- 126 Czech Republic. Thirteen strains of L. paracasei (S3_1 S3_13) were isolated from

127	sourdough of traditional Portuguese sourdough bread at the School of Agriculture at the
128	Polytechnic Institute of Beja, Portugal.
129	Growth conditions for the production of BAs: All 15 strains were first grown in tubes with
130	7 mL of MRS broth (HiMedia, Mumbai, India) at 37°C in 5% (v/v) CO ₂ for 24 hours. Then
131	a 50 µL culture was inoculated into MRS broth (7 mL) to obtain the initial concentration of
132	bacteria (6.2±0.3 log CFU/mL). The medium was supplemented with amino acids (arginine,
133	ornithine, histidine, tyrosine, lysine and phenylalanine) at 0.2 g.L ⁻¹ each, and hydrochloric
134	acid (0.1 M or 1 M HCl) was added to adjust a pH of the medium to 6.5±0.1. Incubation was
135	performed at 37°C in 5% (v/v) CO ₂ for 48 hours.
136	Growth conditions for the preliminary test of BAs degradation: The inoculum was grown
137	in MRS broth (HiMedia, Mumbai, India) to achieve maximum cell count; however,
138	degradations were performed in a depleted/modified MRS (MRS/2; 50% of weight
139	Lactobacillus MRS broth) medium. The depleted medium provides less nutrients which may
140	support the use of BAs as an alternative source of carbon and nitrogen. All 15 strains were
141	first grown in tubes with 7 mL of MRS broth at 37°C in 5% (v/v) CO ₂ for 24 hours. Then, the
142	50 µL culture was inoculated into 7 mL of MRS/2 broth to obtain initial concentration of
143	bacteria (6.2±0.3 log CFU/mL). The medium was supplemented with biogenic amines
144	(histamine, tyramine, putrescine, and cadaverine) at 0.2 g.L ⁻¹ each, and hydrochloric acid (0.1
145	M or 1 M HCl) was added to adjust a pH of the medium to 6.5±0.1. Incubation was performed
146	at 37°C in 5% (v/v) CO_2 for 48 hours.
147	Growth conditions for the degradation of BAs: L. casei strains were first grown in tubes
148	with 7 mL of MRS broth (HiMedia, Mumbai, India) at 37°C in 5% (v/v) CO ₂ for 24 hours and
149	a 200 μL culture was inoculated into MRS/2 broth (50 mL) to obtain the initial concentration
150	of bacteria (6.2±0.3 log CFU/mL). The medium was supplemented with biogenic amines
151	(histamine, tyramine, putrescine, and cadaverine) at 0.2 g.L ⁻¹ each, and hydrochloric acid

152 (0.1 M or 1 M HCl) was added to adjust a pH of the medium to 6.5±0.1. Incubation was performed at 37°C in 5% (v/v) CO₂. The relative expression level and biogenic amine 153 154 degrading capability were determined after incubation for 0, 12, 24 and 48 hours. Effects of cysteine, ascorbic acid and milk on the growth of L. casei CCDM 198 and 155 156 biogenic amines degradation: To support bacteria growth and/or biogenic amines 157 degradation, 1% (w/v) cysteine (concentration recommended by supplier Laktoflora) or 0.1% (w/v) ascorbic acid (Demain et al., 1961) were added to a 50 mL MRS/2 medium 158 159 (composition described in growth conditions) before inoculation. 160 Growth and degradation of L. casei CCDM 198 were observed not only in the broth but 161 also in the real food - milk. UHT low-fat milk (50 mL) was supplemented with biogenic amines (histamine, tyramine, putrescine, and cadaverine) at 0.2 g.L⁻¹ each, and hydrochloric 162 acid (0.1 M or 1 M HCl) was added to adjust a pH of the medium to 6.5±0.1. Then a 200 µL 163 164 culture (ca. 109 CFU) was inoculated into milk (50 mL) to obtain the initial concentration of bacteria (6.2±0.3 log CFU/mL). Concentration of bacteria during growth cycle was monitored 165 166 by plate method. Incubation was performed at 37°C in 5% (v/v) CO₂ at 30°C and 37°C. 167 Bacterial growth curves: To indicate bacterial growth in MRS/2 with BAs and to determine 168 the effect of cysteine and ascorbic acid on the growth of L. casei CCDM 198, we added 169 200 µL of media to each well followed by inoculation to obtain the initial concentration of 170 bacteria (6.2±0.3 log CFU/mL). The covered microplates were incubated for 72 hours at 171 37°C. During the incubation period, optical density was measured at 550 nm in a Multimode 172 Microplate Reader (Tecan Infinite 200 PRO, Switzerland) at regular intervals. The bacterial counts in milk with BAs were determined by the plate method. Cultured milk 173 174 samples were serially diluted with sterile phosphate buffer (1:9), and 100 µL of each sample 175 was loaded on the plate with MRS agar. Bacterial colonies were counted after 48 hours of incubation at 37°C. Results were expressed as CFU per millilitre. 176

2.2 Primer design Specific gene primers were designed from conserved sequences of the multicopper oxidase gene. In this study, endogenous gene primers were designed for the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Zhao et al., 2011). The sequences of the multicopper oxidase gene (MCO) and endogenous gene (GAPDH) for ten different Lactobacillus casei strains were obtained from the National Centre for Biotechnology Information ("NCBI", 2017). New sets of primers for target genes were designed based on the Primer Design genefisher2 (Giegerich et al., 1996). Furthermore, the properties of sets of primers were verified using the NCBI Primer-Blast tool. Primers in this study were synthesised by Merck (Darmstadt, Germany). 2.3 DNA extraction, Polymerase chain reactions (PCR) To verify the presence of target genes in 15 Lactobacillus strains, DNA was extracted from bacterial cells. Genomic DNA was prepared from 1 mL of bacterial strains that were grown in MRS/2 broth. Pellets of these strains were obtained by centrifuging at 3000 x g for 5 min.

DNA was extracted using the Genomic DNA from Tissue Kit (Macherey-Nagel, Germany) according to the manufacturer's instructions. The purity and concentration of the DNA were measured using a Multimode Microplate Reader Infinite 200 PRO (Tecan, Switzerland).

PCR was performed by using a commercial mix, G2 Hot Start Green Master Mix (ROCHE, Germany). The reaction volume, 25 μL, included 12.5 μL of the commercial mix (ROCHE, Germany), 800 nmol.L⁻¹ of a forward primer, 800 nmol.L⁻¹ of a reverse primer and 10-100 ng of template. Additionally, we prepared a negative control sample without a template. The PCR conditions were as follows: initial denaturing at 95°C for 5 min, followed by 35 cycles

201 each comprising 95°C for 30 sec of denaturing, 61°C for 30 sec of annealing, and 72°C for 30 sec of extension; the final extension was performed at 72°C for 10 min. 202 203 The PCR products were separated into 1% (w/v) agarose gel in a TAE buffer with ethidium bromide by agarose electrophoresis run for 25 min at 90 V on a 1% gel. The GeneRuler 204 205 100 bp Plus DNA Ladder (Thermo Fisher Scientific, USA) was used as molecular weight 206 marker. The partial nucleotide sequence of the amplified genes MCO and GAPDH were verified by 207 208 sequencing with our set of primers (Tab. 1). PCR products were purified using 209 NucleoMag® Tissue (Macherey-Nagel, Germany). The resulting sequences were compared against NCBI database using the Basic Local Alignment Search Tool program (NCBI, 2009). 210 211 212 2.4 Reverse transcriptase and qPCR 213 In order to quantify MCO gene expression, it was necessary to isolate RNA from L. casei 214 strains (CCDM 198, CCDM 145) and transcribe it by reverse transcription into cDNA, which 215 serves as a template for qPCR. RNA isolation was done using the RNeasy PowerLyzer Tissue 216 & Cells Kit (QIAGEN, Germany) according to the manufacturer's instructions. RNA 217 isolation from L. casei CCDM 198 cultivated in milk was also done using the RNeasy 218 PowerLyzer Tissue & Cells Kit, but with a small modification. After the collection of 219 samples, 1 mL of culture was centrifuged at 2000 x g for 5 min at 4°C. The upper layer of fat 220 was sterile removed, and a sample was frozen and thawed three times. Homogenisation was 221 performed with PowerLyzer Ceramic Bead Tubes. The procedure was finished according to 222 the enclosed instructions. First-strand cDNA was synthesized from 11 µL RNA using a 223 Transcriptor First Strand cDNA Synthesis Kit (ROCHE, Germany). 224 qPCR was performed by using thermocycler CFX 96 Real-Time (Bio-Rad, Hercules, CA, USA) with the commercial kit FastStart Universal SYBR Green Master (ROCHE, Germany). 225

The total reaction volume, 25 μL , included 12.5 μL of ROCHE mix, 250 nmol.L⁻¹ of a 226 forward primer, 250 nmol.L⁻¹ of a reverse primer and 1-2 µg of cDNA template. The qPCR 227 conditions were as follows: initial denaturing at 95°C for 3 min, followed by 45 cycles each 228 comprising 95°C for 30 sec of denaturing, 60°C for 30 sec of annealing, and 72°C for 1 min 229 230 of extension; final extension was performed at 72°C for 5 min. Data were normalized to 231 GAPDH expression. Reference control and nontemplate negative controls (using water 232 instead of cDNA) were included in every run for both genes. 233 The baseline and cycle threshold were automatically calculated using the C1000 Touch Thermal Cycler equipped with a CFX 96 TouchTM System Software, version 2.1 (Bio-Rad, 234 CA, USA). The melt curve analysis was performed on the same device (CFX 96 Real-Time) 235 after the completion of qPCR. Obtained PCR products of the MCO and GAPDH had melting 236 237 temperatures of 76±0.5°C and 77±0.5°C, respectively. 238 239 2.5 Determination of biogenic amine content 240 The degrading capacity of the strains was tested in a modified nutrient broth (MRS/2) and 241 milk by HPLC/UV. Samples (3 mL) were collected in determined hours (0, 12, 24 and 48) 242 and centrifuged at 2000 x g for 10 minutes. Supernatant (600 µL) was diluted 1:1 (v/v) with 243 0.6 M perchloric acid (Acros, Belgium). Three independent extractions were performed on 244 each culture sample. Subsequently, mixtures were derivatised using dansyl chloride (Sigma-Aldrich, Missouri, USA) with 1,7-heptanediamine (Fluka, Switzerland) as an internal 245 246 standard according to Dadáková et al., 2009. BAs (histamine, tyramine, putrescine and cadaverine) were detected using high-performance 247 248 liquid chromatography, Dionex HPLC UltiMate 3000 (Thermo Fischer Scientific, Waltham, 249 Massachusetts, USA), following preceding derivatisation using dansyl chloride (Dadáková et al., 2009). The chromatographic column used for separation was an Agilent Zorbax RRHD 250

251	Eclipse Plus C18 with the dimensions of 50 x 3.0 mm, 1.8 μm (Agilent, Paolo Alto, USA).
252	Spectrophotometric detection was carried out at a wavelength of 254 nm and a column
253	temperature of 30°C. The flow rate was 0.453 mL.min ⁻¹ . The detection and separation of
254	biogenic amines were performed according to (Dadáková et al., 2009; Smělá et al., 2004).
255	Data were acquired and evaluated using Chromeleon TM 6.8 software (Thermo Fisher
256	Scientific, USA).
257	
258	2.6 Statistical evaluation
259	Non-parametrical analyses of variance from the Kruskal-Wallis and Wilcoxon tests (Unistat®
260	6.5 software; Unistat, London, UK) were used to evaluate the results obtained (the
261	significance level was 0.05). To estimate of the dependence of threshold cycle on DNA
262	concentration regression line (linear least squares method) was used (Unistat® 6.5; software
263	Unistat, London, UK).
264	
265	3. Results and Discussion
266	3.1 Screening of LAB strains possessing the MCO gene
267	The ability to degrade BAs depends not only on the species but also on the strains. Thus,
268	testing suitable strains using conventional techniques is unreliable or labour intensive and
269	time-consuming. For these reasons, molecular biology methods are increasingly being used in
270	the food industry (Postollec et al., 2011).
271	To allow rapid screening of strains possessing the MCO gene and to examine the expression
272	of this gene, we designed and tested gene-specific primers. Then we searched for a strain with
273	degrading properties using new primers.
274	Firstly, we screened L. casei and L. paracasei strains possessing the multicopper oxidase gene
275	by PCR. Secondly, we performed a preliminary test of the degradative ability of strains when

we grew a culture in 7 mL MRS/2 with BAs for 48 hours. At the end of this test, we monitored the decrease in the content of BAs by HPLC/UV. At the same time, we examined whether or not strains with degradation abilities are producers of BAs. According to obtained results (data not shown), we found that only two strains of *L. casei* (CCDM 198, CCDM 145) are not BAs producers. We subsequently focused attention on the CCDM 198 strain, given that it had significantly higher degradation capabilities than the strain CCDM 145. During the preliminary tests, we also verified that the biogenic amines degradation ability of the CCDM 198 was four times higher in the depleted medium MRS/2 compared to MRS (data not shown). Therefore, depleted medium was preferred in this work. Finally, based on the results, we observed relative expression of the *MCO* gene within 48 hours for the selected CCDM 198 strain and used the CCDM 145 strain as a positive control for qPCR (*3.3 Expression of Gene Encoding Multicopper Oxidase*). We verified the ability of strains CCDM 198 and CCDM 145 to degrade BAs in 50 mL of MRS/2 using HPLC/UV and experienced the effect of redox treatments and milk on the BAs degradation of strain CCDM 198. We also observed the growth of cells during the degradation process.

292 3.2 Specific primer design

In this study, we designed three sets of primers for the multicopper oxidase gene (*MCO*) in *L. casei*, which is responsible for the degradation of BAs. Due to the normalisation of the target gene with an endogenous standard, we designed and tested primers for the glyceraldehyde 3-phosphate dehydrogenase gene (*GAPDH*). According to the PCR tests, we chose the set of primers which do not form dimers or nonspecific products. The new sets of primers anneal to the multicopper oxidase gene of *L. casei* and *L. paracasei* strains. The final length of the PCR product for the detection of the multicopper oxidase gene (*MCO*) is 94 bp, and for the detection of the endogenous gene (*GAPDH*), primers with a length of 137 bp were

301	selected (Table 1). The sequencing followed by analysis in BLAST (NCBI, 2009) confirmed
302	that PCR products corresponded to the MCO and GAPDH partial nucleotide sequences,
303	respectively.
304	
305	Parameters of qPCR: Amplification efficiency values with our sets of primers were in the
306	optimal range between 90% and 110% (Broeders et al., 2014), which corresponds to the slope
307	of the long-linear phase of the amplification reaction between -3.58 and -3.10 (Figure 1). In
308	addition, the linearity of the qPCR reaction used to determine the efficiency r² was ≥0.98 for
309	each target. Post-amplification melting-curve analysis (data not shown) confirmed that the
310	chosen sets of gene-specific primers do not form dimers or non-specific products. The Pfaffl
311	method was used to calculate the relative expression (Pfaffl, 2001).
312	The verification of target genes by PCR and selecting strains to monitor the relative
313	expression of target genes during BAs degradation: Before qPCR analysis, we checked for
314	the presence of the multicopper oxidase gene MCO and endogenous gene GAPDH in bacterial
315	strains using PCR. The presence of the multicopper oxidase gene in L. casei and L. paracasei
316	strains is shown in Figure 2. HPLC/UV showed that all strains possessing the multicopper
317	oxidase gene were able to degrade BAs. However, L. paracasei strains are also BAs
318	producers (for more details, see Chapter 3.4). Therefore, relative expression was only tested
319	in L. casei strains.
320	
321	3.3 Expression of Gene Encoding Multicopper Oxidase
322	qPCR is a standard method for measuring gene expression. This quantitative analysis requires
323	no postprocessing; results are obtained quickly and, therefore, it could be used for the routine
324	detection of bacterial strains that have potential to degrade histamine and other BAs (Wong
325	and Medrano, 2005).

326	We performed qPCR analysis to study the expression of the target gene in the selected
327	bacterial strains. The degradation capacity of total BAs of strain CCDM 145 is only $6\pm0.46~\%$
328	after 48 hours (Figure 3); thus, this strain possesses the MCO gene, but its expression is low.
329	For this reason, the CCDM 145 strain was used as a positive control to calculate relative
330	expression. The relative expression levels are also shown in Figure 3.
331	Strain CCDM 198 exhibited the highest level of relative expression after 12 hours of
332	cultivation in modified MRS/2 media with cysteine (5.21±0.14). A somewhat lower level of
333	relative expression was achieved in MRS/2 broth (5.04±0.45); however, significantly lower
334	levels of relative expression were recorded in milk: 3.58±0.52 at 37°C and 2.53±0.35 at 30°C.
335	Therefore, the highest expression level of multicopper oxidase was recorded in the
336	exponential phase of the growth of cells. This was followed by a decline in relative expression
337	levels of all samples after 24 hours. At this time, the highest values (2.21±0.38) were reached
338	in MRS/2 broth. After 48 hours of cultivation, there was a further decrease in the relative
339	expression levels at values around 1.00. The ability to degrade BAs was confirmed by
340	HPLC/UV analysis.
341	
342	3.4 Detection of biogenic amine content
343	High performance liquid chromatography is the most commonly used technique because of its
344	great versatility, efficiency, sensitivity and reproducibility, and is, therefore, the conventional
345	technique for analysing histamine in foods (Commission Regulation (EC) No 2073/2005,
346	2005; Marcobal et al., 2006).
347	Selection of BAs-degrading LAB strains: We performed a preliminary degradation test of
348	two strains of <i>L. casei</i> and 13 strains of <i>L. paracasei</i> bearing the multicopper oxidase gene to
349	quantify their BAs degrading ability using the HPLC/UV method.

350	The results obtained showed that all strains tested can degrade BAs but with different
351	efficiency (data not shown). The highest decrease of BAs content was observed in the L. casei
352	CCDM 198 strain and was therefore chosen to observe expression during BAs degradation.
353	L. casei CCDM 198 showed approximately 25% degradation of BAs in a preliminary test
354	(data not shown). Other authors confirmed the excellent abilities of L. casei strains. García-
355	Ruiz et al., 2011 demonstrated great potential for histamine, tyramine and putrescine
356	degradation (54%, 55% and 65%, respectively) of the strain L. casei IFI-CA 52 strain in
357	culture media. Herrero-Fresno et al., 2012 isolated 17 L. casei strains with histamine and/or
358	tyramine degradation rate up to 40% in a cheese manufacturing model.
359	Exclusion of BAs-producing LAB strains: Since some lactobacilli are significant BAs
360	producers (Herrero-Fresno et al., 2012), we performed the test to exclude potential BAs
361	producers for industrial applications. L. casei (CCDM 198, CCDM 145) and 13 strains of L.
362	paracasei we tested for biogenic amine production in a medium with biogenic amines
363	precursors. Test results showed that L. casei (CCDM 198, CCDM 145) are not producers of
364	phenylethylamine, histamine, tyramine, cadaverine and putrescine. On the other hand, all
365	strains of L. paracasei are capable of producing one or more biogenic amine in amounts up to
366	30 mg.L ⁻¹ and are not suitable for industrial use (data not shown). Therefore, expression of the
367	target gene was not tested in L. paracasei, although all 13 strains contained the MCO gene
368	(Figure 2).
369	Relationship between BAs (histamine, tyramine, cadaverine, putrescine) content and
370	relative gene expression: The decrease of biogenic amines corresponds to the achieved
371	relative expression values (Figure 3). The highest difference in BAs content was after 12
372	hours of cultivation in broth, when the highest relative expression was also recorded; this was
373	in contrast to cultivation in milk, where the decrease of BAs content was lower than 3%. This

374	was probably caused by the longer lag phase and low cell count after 12-hour cultivation
375	(Figure 4).
376	After 48 hours, the highest decrease in total BAs at 77.36±3.13% was achieved in MRS/2
377	with 1% cysteine. Only a little higher BAs content (78.78±4.17%) remained in MRS/2 broth.
378	Although a significantly higher number of cells was observed in cultivation at 30°C in milk,
379	low relative expression may have caused the highest biogenic amines content (85.02±1.83%)
380	at the end of cultivation.
381	Effects of media on growth pattern of selected LAB strains: Many studies have
382	demonstrated the positive effect of oxygen scavenging agents (cysteine and ascorbic acid) on
383	viability of probiotic bacteria (Dave and Shah, 1997; Demain et al., 1961; Rickes et al., 1949;
384	Shah, 2000). Oxygen reduces the growth of these bacteria, and the use of cysteine and
385	ascorbic acid may lower redox potential by scavenging oxygen, thus affecting their growth
386	(Shah, 2000). The positive effect of cysteine on the growth of cells of the CCDM 198 strain
387	was also observed in our test (Figure 4), but there was no marked effect on the increase of
388	multicopper oxidase expression level (Figure 3). This corresponds to the results recorded in
389	Figure 5. Lower amounts of histamine, tyramine and cadaverine were observed in samples
390	with 1% cysteine, but the difference was not significant (P>0.05) compared to MRS/2 broth.
391	Moreover, the highest degradation, thus the lowest content was observed for putrescine in
392	MRS/2 (75.18±3.95%). The final amount of putrescine in the 1% cysteine medium was
393	slightly higher (75.60 \pm 3.43%). On the other hand, the lowest degradation capacity was
394	recorded for tyramine, where the content of no sample falls below 80% (Figure 5). L. casei
395	CCDM 198 also significantly (P < 0.05) reduced histamine, the most dangerous BA, in
396	MRS/2 (76.86 \pm 4.21%) and in MRS/2 with 1% cysteine (76.35 \pm 2.87%) after 48 hours (Figure
397	5). Based on obtained results, the presence of ascorbic acid may not support the degradation

398	of BAs because the content of all monitored BAs was higher in samples with 0.1% ascorbic
399	acid than in MRS/2 and MRS with cysteine (Figure 3 and 5).

The effect of milk environment on content of histamine, tyramine, cadaverine and putrescine: After 48 hours, the content of all monitored BAs was 3-6% higher in milk than in MRS/2 broth with exception of tyramine. A temperature of 37°C is more preferable for the CCDM 198 strain because results showed lower histamine, cadaverine and putrescine content at the end of cultivation than at growth temperature of 30°C (Figure 3 and 5). Although strain CCDM 198 is isolated from the dairy product and therefore well adapted to the dairy environment, our results are consistent with some studies showing that *L. casei* prefers MRS medium (Avonts et al., 2004; Zuraw E A et al., 1960). Avonts et al., 2004 demonstrated that *L. casei* strains were able to develop to high cell numbers in a milk medium, but fermentation of milk was slow, and the production of bacteriocin was lower compared to the MRS medium. We observed lower multicopper oxidase expression in this medium, which can also be caused by amino acid imbalances in milk. Nevertheless, *L. casei* CCDM 198 proved to significantly (P<0.05) decrease of histamine, tyramine, cadaverine and putrescine in milk after 48 hours of cultivation.

3.5 Growth of cells

During degradations tests of *L. casei* CCDM 198, we monitored bacterial growth curves to examine the effect of cysteine, ascorbic acid to the growth of bacterial cells. In order to follow the growth curve at half-hour intervals, we used a spectrophotometric method for cultivation in MRS/2 broth. The bacterial counts in milk were determined by the plate method at times of collection of samples for qPCR and HPLC/UV. The findings of growth bacteria in both media supplemented by BAs during 72 hours of cultivation are reported in Figure 4.

422	The growth of L. casei CCDM 198 and CCDM145 in MRS/2 broth: The lag phase of both
423	strains was approx. 2 hours when OD_{550} was almost unchanged. Then OD_{550} rose rapidly, and
424	the exponential phase occurred between 4 and 17 hours of cultivation. After 22 hours, the
425	growth curves of both strains came into a stationary phase. While the OD_{550} of strain CCDM
426	198 slightly decreased at the beginning of the stationary phase, the OD ₅₅₀ of strain CCDM
427	145 maintained moderate growth until the end of the cultivation.
428	The effect of cysteine and ascorbic acid on L. casei CCDM 198 growth: Since L. casei is
429	a facultative anaerobic bacterium, reducing agents cysteine and ascorbic acid were added to
430	promote cells growth. So far few authors reported the stimulatory effect of ascorbic acid on
431	the growth of <i>L. casei</i> with various recommended concentrations. Demain et al., 1961 tested
432	stimulating and toxic amounts for Lactobacillus heterohiochi. These results follow the study
433	Rickes et al., 1949, which dealt with the stimulating amount of ascorbic acid for L. casei
434	growth. In accordance with previous studies, two different concentrations of ascorbic acid
435	(0.1% and 0.01%) were chosen for our tests. Although the OD_{550} was slightly higher at 0.01%
436	compared to 0.1% concentration, the degradation of BAs decreased by approximately 10%
437	(data not shown). Thus, further tests were performed with 0.1% ascorbic acid. The addition of
438	0.1% (w/v) ascorbic acid significantly decreased OD ₅₅₀ throughout the growth curve, in
439	particular in the exponential phase. In contrast, the effect of 1% (w/v) cysteine in MRS/2
440	broth resulted in a slight increase of OD_{550} over the entire growth curve compared to growth
441	in MRS/2 itself. Strain L. casei CCDM 145 was used as a control sample for the relative
442	expression level; therefore, the effect of cysteine and ascorbic acid on the growth was not
443	tested.
444	The effect of UHT low-fat milk on L. casei CCDM 198 growth: Some strains are unable to
445	develop in unsupplemented milk because pure milk is generally low in free amino acid
446	content. Nevertheless, for a considerable number of different lactobacilli species is cow's

milk a naturally complex medium that supports their growth (Elli et al., 1999). The strain
CCDM 198 was originally isolated from a dairy product thus is well adapted to a milk
environment. In our test, the inoculum was grown in MRS; therefore, the lag phase in milk
was longer (approx. 2 hours), and the stationary phase came after 48 hours of cultivation
(Figure 4). Although the optimum cultivation temperature for CCDM 198 is 37°C,
significantly higher CFU values were achieved at 30°C (2.6 · 10 ⁹ CFU/mL).

4. Conclusion

In this work, we designed and tested new sets of primers for the detection of the multicopper oxidase gene and endogenous gene for species *L. casei* and *L. paracasei*. We have proved that the primers allow the detection and quantification of target genes by qPCR. Using this method enables faster and easier searching for the strains capable of reducing histamine and tyramine, the two abundant toxic BAs in foodstuffs and beverages. We also described a new way to isolate RNA from curled milk.

In conclusion, we demonstrated that *L. casei* CCDM 198 used in dairy technology is not a BAs producer and can significantly reduce histamine, tyramine, cadaverine, and putrescine in milk. However, a noteworthy positive effect of cysteine and ascorbic acid on the degradation of BAs has not been demonstrated. *L. casei* has been recognised as GRAS and was placed on the QPS (qualified presumption of safety) list by the European Food Safety Authority (EFSA, 2016); therefore, nothing prevents the use of the CCDM 198 strain to reduce BAs in dairy products.

Acknowledgement

- The financial support from the Grant Agency of the Czech Republic (GAČR No. 17-09594S)
- and Internal Grant of TBU in Zlín (No. IGA/FT/2020/009) is greatly acknowledged.

- 473 **References**
- 474 Alvarez, M.A., Moreno-Arribas, M.V., 2014. The problem of biogenic amines in fermented
- foods and the use of potential biogenic amine-degrading microorganisms as a solution.
- 476 Trends Food Sci. Technol. https://doi.org/10.1016/j.tifs.2014.07.007
- 477 Avonts, L., Uytven, E. Van, Vuyst, L. De, 2004. Cell growth and bacteriocin production of
- 478 probiotic Lactobacillus strains in different media. Int. Dairy J. 14, 947–955.
- 479 https://doi.org/10.1016/j.idairyj.2004.04.003
- 480 Callejón, S., Sendra, R., Ferrer, S., Pardo, I., 2014. Identification of a novel enzymatic
- activity from lactic acid bacteria able to degrade biogenic amines in wine. Appl.
- 482 Microbiol. Biotechnol. 98, 185–198. https://doi.org/10.1007/s00253-013-4829-6
- 483 Commission Regulation (EC) No 2073/2005, 2005. The Commission of the European
- 484 Communities [WWW Document]. URL https://eur-lex.europa.eu/legal-
- 485 content/EN/ALL/?uri=CELEX%3A32005R2073 (accessed 1.16.20).
- 486 Dadáková, E., Křížek, M., Pelikánová, T., 2009. Determination of biogenic amines in foods
- using ultra-performance liquid chromatography (UPLC). Food Chem. 116, 365–370.
- 488 https://doi.org/10.1016/j.foodchem.2009.02.018
- Dave, R.I., Shah, N.P., 1997. Effectiveness of ascorbic acid as an oxygen scavenger in
- improving viability of probiotic bacteria in yoghurts made with commercial starter
- 491 cultures. Int. Dairy J. 7, 435–443. https://doi.org/10.1016/S0958-6946(97)00026-5
- 492 Demain, A.L., Rickes, E.L., Hendlin, D., Barnes, E.C., 1961. Nutritional studies on
- Lactobacillus heterohiochi. J. Bacteriol. 81, 147–53.
- 494 EFSA, 2016. European Food Safety Authority | Trusted science for safe food [WWW
- 495 Document]. URL http://www.efsa.europa.eu/ (accessed 1.27.20).
- 496 Elli, M., Zink, R., Reniero, R., Morelli, L., 1999. Growth requirements of Lactobacillus

497	johnsonii in skim and UHT milk. Int. Dairy J. 9, 507-513.		
498	https://doi.org/10.1016/S0958-6946(99)00127-2		
499	Elsanhoty, R.M., Ramadan, M.F., 2016. Genetic screening of biogenic amines production		
500	capacity from some lactic acid bacteria strains. Food Control 68, 220-228.		
501	https://doi.org/10.1016/j.foodcont.2016.04.002		
502	Eom, J.S., Seo, B.Y., Choi, H.S., 2015. Biogenic amine degradation by Bacillus species		
503	isolated from traditional fermented soybean food and detection of decarboxylase-related		
504	genes. J. Microbiol. Biotechnol. 25, 1523–1531. https://doi.org/10.4014/jmb.1506.06006		
505	Fernández, M., Linares, D.M., Rodríguez, A., Alvarez, M.A., 2007. Factors affecting		
506	tyramine production in Enterococcus durans IPLA 655. Appl. Microbiol. Biotechnol. 73,		
507	1400–1406. https://doi.org/10.1007/s00253-006-0596-y		
508	García-Ruiz, A., González-Rompinelli, E.M., Bartolomé, B., Moreno-Arribas, M.V., 2011.		
509	Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int. J. Food		
510	Microbiol. 148, 115–120. https://doi.org/10.1016/j.ijfoodmicro.2011.05.009		
511	Guarcello, R., de Angelis, M., Settanni, L., Formiglio, S., Gaglio, R., Minervini, F.,		
512	Moschetti, G., Gobbetti, M., 2016. Selection of amine-oxidizing dairy lactic acid bacteria		
513	and identification of the enzyme and gene involved in the decrease of biogenic amines.		
514	Appl. Environ. Microbiol. 82, 6870-6880. https://doi.org/10.1128/AEM.01051-16		
515	Herrero-Fresno, A., Martínez, N., Sánchez-Llana, E., Díaz, M., Fernández, M., Martin, M.C.,		
516	Ladero, V., Alvarez, M.A., 2012. Lactobacillus casei strains isolated from cheese reduce		
517	biogenic amine accumulation in an experimental model. Int. J. Food Microbiol. 157		
518	297–304. https://doi.org/10.1016/j.ijfoodmicro.2012.06.002		
519	Hill, D., Sugrue, I., Tobin, C., Hill, C., Stanton, C., Ross, R.P., 2018. The Lactobacillus case		
520	group: History and health related applications. Front. Microbiol.		
521	https://doi.org/10.3389/fmicb.2018.02107		

- 522 Ladero, V., Fernández, M., Cuesta, I., Alvarez, M.A., 2010. Quantitative detection and
- identification of tyramine-producing enterococci and lactobacilli in cheese by multiplex
- 924 qPCR. Food Microbiol. 27, 933–939. https://doi.org/10.1016/j.fm.2010.05.026
- Ladero, V., Martín, M.C., Redruello, B., Mayo, B., Flórez, A.B., Fernández, M., Alvarez,
- M.A., 2015. Genetic and functional analysis of biogenic amine production capacity
- among starter and non-starter lactic acid bacteria isolated from artisanal cheeses. Eur.
- 528 Food Res. Technol. 241, 377–383. https://doi.org/10.1007/s00217-015-2469-z
- Landete, J.M., de las Rivas, B., Marcobal, A., Muñoz, R., 2007. Molecular methods for the
- detection of biogenic amine-producing bacteria on foods. Int. J. Food Microbiol.
- 531 https://doi.org/10.1016/j.ijfoodmicro.2007.05.001
- Marcobal, A., De Las Rivas, B., Muñoz, R., 2006. Methods for the detection of bacteria
- producing biogenic amines on foods: A survey. J. fur Verbraucherschutz und Leb.
- 534 https://doi.org/10.1007/s00003-006-0035-0
- 535 NCBI, 2009. The NCBI BioSystems database [WWW Document]. URL
- https://www.ncbi.nlm.nih.gov/ (accessed 1.11.20).
- Özogul, F., Hamed, I., 2018. The importance of lactic acid bacteria for the prevention of
- bacterial growth and their biogenic amines formation: A review. Crit. Rev. Food Sci.
- Nutr. 58, 1660–1670. https://doi.org/10.1080/10408398.2016.1277972
- Parente, E., Cogan, T.M., Powell, I.B., 2017. Starter Cultures: General Aspects, in: Cheese:
- Chemistry, Physics and Microbiology: Fourth Edition. Elsevier Inc., pp. 201–226.
- 542 https://doi.org/10.1016/B978-0-12-417012-4.00008-9
- Parente, E., Martuscelli, M., Gardini, F., Grieco, S., Crudele, M.A., Suzzi, G., 2001.
- Evolution of microbial populations and biogenic amine production in dry sausages
- 545 produced in Southern Italy. J. Appl. Microbiol. 90, 882–891.
- 546 https://doi.org/10.1046/j.1365-2672.2001.01322.x

- 547 Pfaffl, M.W., 2001. A new mathematical model for relative quantification in real-time RT-
- 548 PCR. Nucleic Acids Res. 29, 45e 45. https://doi.org/10.1093/nar/29.9.e45
- Postollec, F., Falentin, H., Pavan, S., Combrisson, J., Sohier, D., 2011. Recent advances in
- quantitative PCR (qPCR) applications in food microbiology. Food Microbiol.
- 551 https://doi.org/10.1016/j.fm.2011.02.008
- Renes, E., Ladero, V., Tornadijo, M.E., Fresno, J.M., 2019. Production of sheep milk cheese
- with high γ -aminobutyric acid and ornithine concentration and with reduced biogenic
- amines level using autochthonous lactic acid bacteria strains. Food Microbiol.
- 555 https://doi.org/10.1016/j.fm.2018.09.003
- Rickes, E.L., Koch, P.J., Wood, T.R., 1949. Additional observations on the rate of growth of
- Lactobacillus casei. J. Biol. Chem. 178, 103–11.
- 558 Sekiguchi, Y., Makita, H., Yamamura, A., Matsumoto, K., 2004. A thermostable histamine
- oxidase from Arthrobacter crystallopoietes KAIT-B-007. J. Biosci. Bioeng. 97, 104–110.
- 560 https://doi.org/10.1263/jbb.97.104
- 561 Shah, N.P., 2000. Probiotic bacteria: Selective enumeration and survival in dairy foods. J.
- Dairy Sci. 83, 894–907. https://doi.org/10.3168/jds.S0022-0302(00)74953-8
- 563 Silla Santos, M.H., 1996. Biogenic amines: Their importance in foods. Int. J. Food Microbiol.
- 29, 213–231. https://doi.org/10.1016/0168-1605(95)00032-1
- 565 Silva, L.F., Sunakozawa, T.N., Amaral, D.M.F., Casella, T., Nogueira, M.C.L., De Dea
- Lindner, J., Bottari, B., Gatti, M., Penna, A.L.B., 2020. Safety and technological
- application of autochthonous Streptococcus thermophilus cultures in the buffalo
- Mozzarella cheese. Food Microbiol. https://doi.org/10.1016/j.fm.2019.103383
- 569 Smělá, D., Pechova, P., Komprda, T., Klejdus, B., Kubáň, V., 2004. Chromatografické
- stanovení biogenních amin°U v trvanlivých salámech během fermentace a skladování.
- 571 Stratton, J.E., Hutkins, R.W., Taylor, S.L., 1991. Biogenic amines in cheese and other

572	fermented foods: A review. J. Food Prot. https://doi.org/10.4315/0362-028X-54.6.460		
573	Wang, C.C., Billett, E., Borchert, A., Kuhn, H., Ufer, C., 2013. Monoamine oxidases is		
574	development. Cell. Mol. Life Sci. https://doi.org/10.1007/s00018-012-1065-7		
575	Wong, M.L., Medrano, J.F., 2005. Real-time PCR for mRNA quantitation. Biotechnique		
576	https://doi.org/10.2144/05391RV01		
577	Yagodina, O. V., Nikol'skaya, E.B., Khovanskikh, A.E., Kormilitsyn, B.N., 2002. Amir		
578	oxidases of microorganisms. J. Evol. Biochem. Physiol.		
579	https://doi.org/10.1023/A:1020714607203		
580	Zaman, M.Z., Bakar, F.A., Selamat, J., Bakar, J., 2010. Occurrence of biogenic amines and		
581	amines degrading bacteria in fish sauce. Czech J. Food Sci. 28, 440-449.		
582	https://doi.org/10.17221/312/2009-cjfs		
583	Zuraw E A, Speck, M.L., Aurand, L.W., Tove, S.B., 1960. Purification of stimulants from		
584	condensed corn-fermentation solubles active for Lactobacillus casei in milk. J. Bacterio		
585	80, 457–63.		
586			

Table 1

Primer sequences for multicopper oxidase gene (MCO) catalysing BAs degradation and housekeeping glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) used in qPCR.

Primers	Sequence 5'-3'	Amplicon length (bp)
LCMCO4-L	GCGTGGTGACATCAAAATAGGG	0.4
LCMCO4-R	TGGGACTACCGGGCTGATTA	94
LCGAPD4-L	GCACAGCGTGTTTCTGTTGT	137
LCGAPD4-R	TCGTTCCAGCCAAAGCTAGG	137

Figure captions

Figure 1

qPCR standard curves of multicopper oxidase gene (*MCO*) and endogenous gene (*GAPDH*). The templates were cDNA purified from bacterial cells grow in MRS/2 broth after 48 hours cultivation.

Figure 2

PCR testing of new primers. **a)** DNA fragments of multicopper oxidase gene (*MCO*) were amplified by primers LCMCO4-L and LCMCO4-R from *L. casei* strains: CCDM 198 (1) and CCDM 145 (2). **b)** DNA fragments of endogenous gene (*GAPDH*) were amplified by primers LCGAPD4-L and LCGAPD4-R from *L. casei* strains: CCDM 198 (1) and CCDM 145 (2). **c)** DNA fragments of multicopper oxidase gene (*MCO*) were amplified by primers LCMCO4-L and LCMCO4-R from 13 strains of *L. paracasei*.

Figure 3

Comparison of the relative expression levels of the multicopper oxidase gene in *L. casei* CCDM 198 performed by qPCR with the biogenic amines content in media determined by HPLC/UV during 48 hours of cultivation.

Figure 4

Growth of the *L. casei* strains during BAs degradation in MRS/2 broth supplemented by histamine, tyramine and putrescine at 37° C, pH 6.5 ± 0.1 for 72 hours performed by optical density measurement and influence of 1% cysteine and 0.1% ascorbic acid on the growth. Compared to the growth of the *L. casei* CCDM 198 during BAs degradation in milk, which was determined by the colony counting method.

Figure 5

Content of histamine, tyramine, cadaverine and putrescine measured by HPLC/UV. Reaction was carried out in MRS/2 broth and milk inoculated by *L. casei* CCDM 198, pH 6.5±0.1 for 48 hours.

Figure 1 (Pištěková et al.)

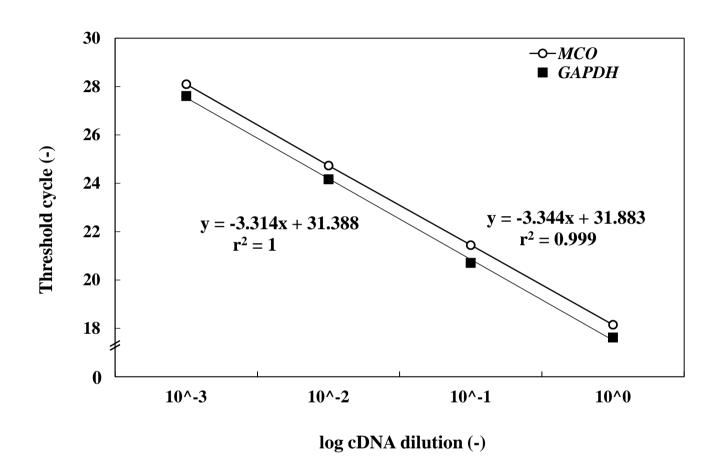



Figure 2 (Pištěková et al.)

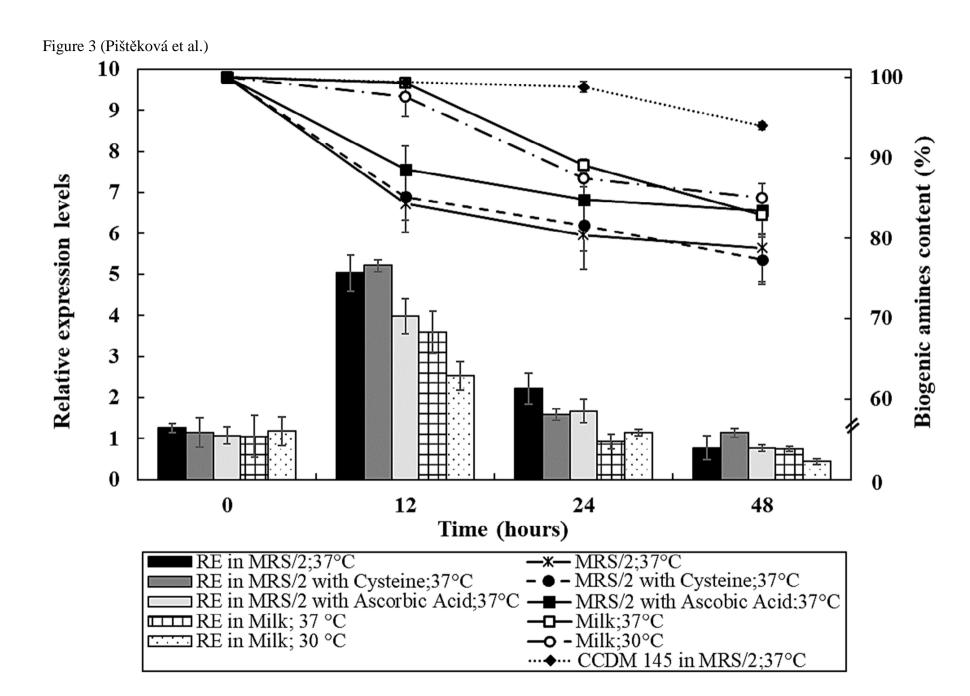


Figure 4 (Pištěková et al.)

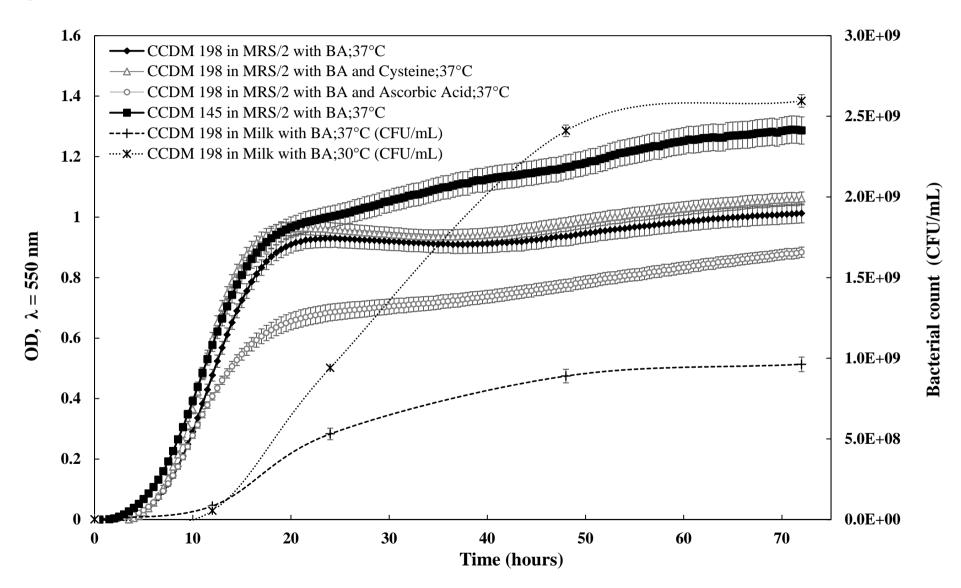
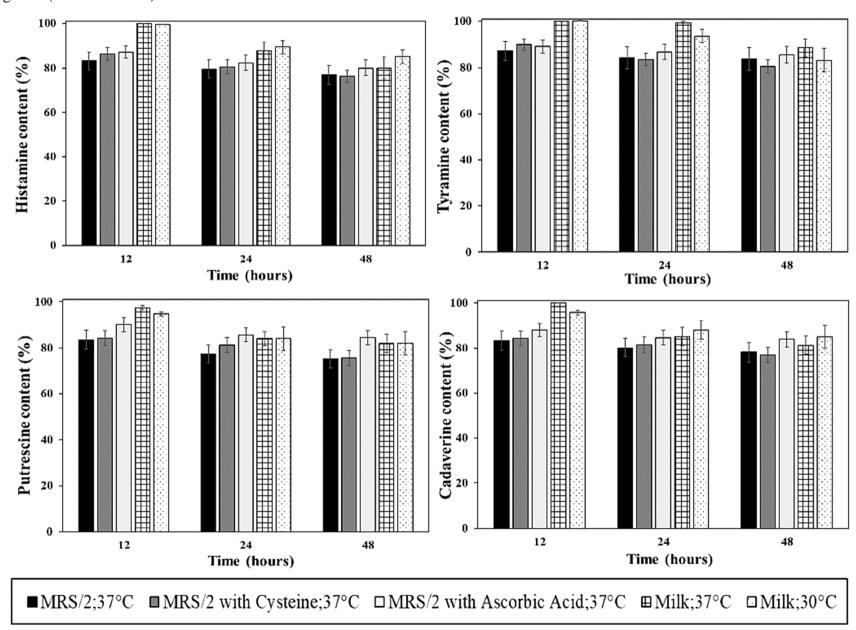



Figure 5 (Pištěková et al.)

Highlights

- High levels of BAs in fermented foodstuffs constitute a health risk for consumers.
- qPCR is a key method for searching for suitable strains for starter or adjunct cultures.
- We designed primers for the multicopper oxidase gene expression analysis of L. casei.
- We monitored the degradation abilities of *L. casei* CCDM 198 used in the food industry.

Conflict of interest

Declaration of interest: NONE.