1

Human beings usually perform arithmetic operations using the decimal number system,
- but, by comparison, a digital machine, (for example a computer), is inherently binary
in nature and its numerical calculations are executed using a binary number system. [1]

In a computer, the input is given with the help of switches. This is then converted
into electronic signals, which always have two distinct discrete levels or values — a high
level and low level. As long as the signal is within a pre-specified range of high and
low, the actual value of the signal is not that important. Such signals are called digital
signals and the circuit within the device is called a digital circuit. These concepts are
examples of a digital system and they can be applied in computers, telephony, radar

An Application for Solving Truth Functions

Pavel Pokorny! and Daniel Sev¢ik?

! Department of Computer and Communication Systems
Tomas Bata University in Zlin, Faculty of Applied Informatics
Nad Stranémi 4511, 760 05 Zlin, Czech Republic
pokorny@utb.cz
2 Department of Automation and Control Engineering
Tomas Bata University in Zlin, Faculty of Applied Informatics
Nad Stranémi 4511, 760 05 Zlin, Czech Republic
d_sevcik@utb.cz

Abstract. Nowadays, many technical devices are controlled by logic circuits.
These circuits evaluate the situation based on the proposed truth functions, which
they then use to perform one of the defined actions. In line with the increasing
complexity of individual technical devices, the logic circuits and truth functions
are also increasingly complex. For this reason, it makes sense to minimise these
functions since they can thereby achieve a simpler technological process and the
higher reliability of whole logic systems. This paper describes the Karnaugh Stu-
dio application, which resolves the minimisation of these truth functions - and
was developed at our faculty (FAI, TBU in Zlin). The minimisation is performed
using the Karnaugh Map Method - with support for up to eight variables on input.
The application is based on the C ++ programming language and the Dear ImGui
and Magick ++ libraries. Its functionality has been verified on a number of ex-
amples. This proved its applicability and ability to be used in the solution of logic
circuits in industrial practice.

Keywords: Minimisation, Truth Function, Boolean Function

Introduction

navigation, data-processing, and many other applications. [2] [3]

A digital logic system may well have a numerical computation capability as well as
its inherent logical capability and consequently, it must be able to implement the four
basic arithmetic processes of addition, subtraction, multiplication and division. [1]

These digital systems are usually made up of large assemblies of logic gates, which
are often printed on integrated circuits, and controlled by truth (logic) functions. Truth
functions are functions that accept truth values as input and produce one truth value as
output.

Boolean Algebra is a mathematical system that forms the base for these operations.
Boolean Algebra uses three basic logic operations — NOT, AND, OR. The NOT oper-
ator takes a single output and generates one output — it inverts the input value. The AND
operator of two variables as input generates 1 as output if both of the variables are 1.
The OR of two variables as input generates 1 as output if either - or both, of the variables
are 1. In addition, one other function is required for arithmetic-related operations —
XOR (the exclusive OR). The XOR of two variables as input generates 1 as output if
either of them - but not both, is 1. [1]

A Boolean function consists of a number of Boolean variables joined by the Boolean
connectives AND and OR. These functions can be represented by a Truth Table. The
true table contains a row for every combination of the input logic values and prescribes
the output value of the function for each of these combinations.

One of the main objectives of engineers when designing discrete gates is to keep the
number of gates to a minimum when the Boolean function is implemented. A Karnaugh
Map represents an easy method of simplification — with the help of a number of simple
rules, it allows one to reduce the Boolean function to its minimal form. Karnaugh maps
correspond to the Truth Table - as Figure 1 illustrates. The values inside the squares are
copied from the output column of the Truth Table — there is one square in the map for
every row in the Truth Table.

A B C Di

0 0 0 01

00 0 1]1

001 O0f(0 CD

0 0 1 1(1 AB 00 01 11 10
01 0 0f{O0

010 11 00 1 1 1 0
011 0/(0

011 110 01 0 1 0 0
10 0 0f1

10 0 1|0 11 0 1 0 0
101 01

101 11 10 1 0 1 1
11 0 010

11 0 11

11 1 0|0

11 1 1]0

Fig. 1. The Truth Table (left) and their Karnaugh Map (right) for four input variables

This paper describes the application that resolves the minimisation of the described
truth functions, using the Karnaugh Map method. Chapter 2 describes minimisation
methods of truth functions. Chapters 3 contains the developer application information
— selected the appropriate programming language and the libraries used. More details
like application possibilities, the implementation of the minimisation algorithm and the
application user interface are mentioned in Chapter 4.

2 Truth Function Minimisation Using Karnaugh Maps

Before we describe basic rules for truth function minimisation using Karnaugh maps,
it would be good to mention the advantages and disadvantages of these maps. The ad-
vantages include simplification for a small amount of input variables and always results
in minimum expression if performed properly, prevention of the need to remember each
and every Boolean algebraic theorem, and the involvement of fewer steps than the al-
gebraic minimisation technique to arrive at a simplified expression. Among its disad-
vantages however, are the complicated solution process as the number of input varia-
bles increases and the minimum logical expression may - or may not, be unique de-
pending on the choices made while forming the groups. [4]

The number of cells in the Karnaugh Map is expressed as two raised to the power of
the number of input variables, i.e. with two inputs, we have four cells, with four input-
value sixteen cells are necessary, and so on. [5]

The main key to using Karnaugh Maps to find truth function minimisation identify
“groups” of 1's (and no 0's) or groups of O's (and no 1's) on these maps. A valid group
must be a “power of 2” size - (meaning that only groups of 1, 2, 4, 8, or 16 are allowed),
and it must be a square or rectangle - but not a dogleg, diagonal or other irregular shape.
According to the specified group, each '1' or each '0' must participate in at least one
group, and each '1' or each '0' must be in the largest possible group. The requirement
that all 1's (or 0's) are grouped in the largest possible group may mean that some 1's (or
0's) are part of several groups. [6]

In practice, loops are drawn on a K-map to encircle the 1's (or 0's) in a given group.
Onceall 1's (or 0's) in a map have been grouped in the largest possible loops, the group-
ing process is complete and a logic equation can be read directly from the Karnaugh
Map. If the procedure is performed correctly, a minimal logic equation is guaranteed.

As mentioned above, the minimisation algorithm can have two forms. The Sum-of -
Products form if we select group 1's (and no 0's), and the Product-of-Sum form if we
select group 0's (and no 1's). [7]

Using the Sum-of-Products form, the variables are operated by AND (product) to
form a product term and all these product terms are ORed (summed or added together)
to get the final function. The Sum-of-Products form is also called the Disjunctive Nor-
mal Form and is most suitable one to use in FGPA (Field Programmable Gate Arrays).

The Product-of-Sum means that all the variables are ORed, i.e. written as sums to
form sum terms. All these sum terms are ANDed (multiplied) together to get the prod-
uct-of-sum form. This form is exactly the opposite to the Sum-of-Products form and is
also called the Conjunctive Normal Form.

3 Developer Tools Used

The C++ programming language was used to develop an application that resolves truth
function minimisation. This language was chosen based on personal experience and a
number of benefits that it offers. C++ is an open 1SO-standardised compiled language.
It compiles directly into a machine's native code, allowing it to be one of the fastest
languages in the world, if optimised. C++ is a language that is directly built on C lan-
guage and is compatible with almost all C code. C++ can use C libraries with few to no
modifications of the libraries' code. C++ has a wide range of compilers that run on
many different platforms that support it. [8]

C++ is a language that expects the programmer to know what they are doing, but
also allows the programmer to have incredible amounts of control as a result. As for the
latest C++ standard, C++ supports both manifest and inferred typing, allowing flexibil-
ity and a means of avoiding verbosity where desired. C++ allows one-type conversions
to be checked either at run-time or at compile-time — again, offering another degree of
flexibility. Most C++ type checking is however, static. C++ offers remarkable support
for procedural, generic, and object-oriented programming paradigms, with many other
paradigms being possible as well. [9]

Applications developed in the C++ language can use thousands of additional librar-
ies that will run on many platforms with few to no changes. One of the most used is the
Standard Template Library (STL) - which we used in our application. STL is a set of
C++ template classes that provide common programming data structures and functions
like lists, stacks, arrays, etc. It is a library of container classes, algorithms, and iterators.
It is a generalised library and so, its components are parameterised. STL has four com-
ponents: [10]

e Algorithms — a collection of functions especially designed to be used on
ranges of elements (sorting, searching, useful array algorithms ...).

e Containers — these store objects and data (sequence containers, associative
containers, container adaptors and unordered associative containers).

e Functions — classes that overload the function call operator. They allow the
working of the associated function to be customised with the help of pa-
rameters to be passed.

e lterators — are used to point at the memory addresses of STL containers.
Iterators are primarily used in number or character sequences and reduce
the complexity and execution time of the programme.

Another library we used was Dear ImGui [11]. Dear ImGui is a bloat-free graphical
user interface library for the C++ language. It is fast, portable, renderer agnostic and
self-contained - (no external dependencies). ImGui is designed to enable fast iteration
and empower programmers to create content creation tools and visualisation/ debug-
ging tools (as opposed to Ul for the average end-user). It favours simplicity and produc-
tivity toward this end, and thus lacks certain features normally found in more high-level
libraries. [12] We used this library in order to make the user interface in our application.

Magick ++ was the last library we used. It represents a free object-oriented C++ API
and provides integrated support for the Standard Template Library. It’s primarily use is
for creating, editing, composing and converting bitmap images. It supports a variety of

graphic formats (over 200), including the most commonly used - for reading and writ-
ing. [13] This library was used to work with bitmap images in our application.

® ¥ Table View

Fig. 2. A manually set truth table in the Karnaugh Studio

4 An Application

The truth function minimisation application is called the Karnaugh Studio. Its purpose
is to perform both manual and fully automatic minimisation on up to 32 functions in a
single project, with a maximum of eight input variables. The user interface is designed
as fully graphical, simple, intuitive, and fully customisable. One can set layout, colour
scheme, captions, and other properties for the truth table and generated Karnaugh maps.
In order to process project and configuration files, Karnaugh Studio uses the JSON file
format. The application is free for use and can be download from the internet [14].

The user can set input with three methods. They can fill the truth table by hand (Fig.
2); import it from the CSV file; or define the functions using the Sum-of-Products sums
form or the Product-of-Sum form. When the table is set, one or more Karnaugh maps
are automatically displayed in dependency of the input parameters. After that, the user
can make groups of 1's or 0's manually using an automatic algorithm - described in
Chapter 4.1. The same algorithm minimisation displays the results.

In addition, the counted results can also be exported, validated and saved in a wide
variety of formats - including many programming and mark-up languages
(CIC++/C#lJava, Python, LaTeX, etc.). The truth table and Karnaugh maps can also be
exported as either rasters (PNG, JPEG, TIFF, BMP) or vectors (SVG) image.

4.1 The Minimisation Algorithm

The Minimisation algorithm is composed of four steps: minimisation group creation,
additional minimisation, generating expressions, and expression validation.

During the minimisation group creation process, it is very important to select the
correct Karnaugh map creation method for functions with more than four input varia-
bles.

Complications can be expected since the application supports up to eight input vari-
ables. Due to this - the most practical option was implemented. This divides data into

several completely independent maps. The number of maps depends on the number of
input variables. A single Karnaugh map is used for up to four input variables. The ap-
plication generates two maps for five input variables; four maps for six variables (Fig.
3); eight maps for seven variables; and sixteen maps for eight input variables. This
division makes possible the application of the same algorithm to each map separately -
regardless of the total number of input variables and other maps.

¥ Map View

x5
x1 x1
— >
1 0 D 0 1 D 1 1
1 0 D 0 0 0 0 D
x2 —_— x2
1 0 1 0 0 0 D
x4 x4
1 0 1 1 0 0 0 1
\ v o -
x3 x3
x1 x1
1 0 D 1 1 D 0 o]
1 1 0 0 0 0 0 D
%% | x2 x2 —
0 0 0 0 0 1 0 0
x4 x4
0] 0] D 1 1 1 0 0
e/
x3 x3

¥ Minimization Results

Fig. 3. An example of Karnaugh maps for 6 input variables and minimisation results

The algorithm starts by creating all valid minimisation group combinations for each
Karnaugh map separately. A basic group is created for each element in which the logi-
cal one is located - from which, all possible combinations are gradually obtained by
recursively extending them in all directions. When the groups are created, only an ap-
propriate number of them are selected, based on several criteria. First of all, is necessary
to remove duplicated groups in order to avoid unnecessary processing. After obtaining

all unique groups, it is necessary to combine identical groups across multiple maps into
one element and mark them on the maps on which they are located.

The selection of minimisation groups from all those on offer is the most important
step of the whole process. Deciding which group to use - or not to use, is based on two
criteria. The main criterion represents the addition of elements on all maps where the
group can be located. This addition means that the number of all fields not yet included
containing a truth value of one, would be newly included if used. The second criterion
is activated only when two or more groups with the same addition are found. Here, it is
necessary to select one of them on the basis of its size, multiplied by the number of
maps on which it is located. Then, all connected and pre-sorted loops are separated for
each map on which they are located. This step is implemented for ease of manipulation
in the case of manual minimisation.

When all the necessary minimisation loops have been created, it is then necessary to
create a functional form - in order to later be able to apply the basic rules of Boolean
Algebra. The first step is to apply the basic rules of Boolean Algebra. It is not necessary
to include more complicated rules in the form of De Morgan's Laws since the aim is to
improve the previously obtained results of the minimised Karnaugh map method. It is
still necessary to take into account that one can carry out the minimisation manually -
and thus, create certain backlogs. Primarily, all duplicate elements need to be removed.
This is followed by the removal of all of the variables in the list of sub-expressions; in
both normal and negated forms — thus applying the Third Exclusion Law. The most
important feature of the whole algorithm in this phase is the ability to set variables for
further recursive minimisation - thereby further minimising the functional form.

The penultimate step of the whole minimisation process is to generate a textual de-
piction of its resulting expression. This is based on the user-selected output format,
given by a set of text strings which define the shape of the elementary constructions in
the forms of conjunction, disjunction, equality - and others.

The expression validation represents the final part of the minimisation algorithm.
This phase checks if the generated expression is complete and corresponds to a speci-
fied function by its truth values, which should be reliably replaced. Validation’s great-
est importance lies in the ability to notify the user of an incomplete manual minimisa-
tion result. However, this phase is also important for the development and subsequent
testing of the minimisation algorithm.

Validation occurs every time the output expression is built -, even when minimisa-
tion results are exported to a file; but, it is possible to deactivate this validation in order
to save time. It is a relatively time-consuming process whose activity consists in the
gradual reconstruction of truth values from the created expression and their comparison
with the original function values.

4.2 The Application Interface

When a user starts Karnaugh Studio, the welcome screen is rendered. Its purpose is to
speed up access to the most common operations that a user normally performs after
start-up. The most useful feature is to be able to quickly load one’s recently edited
projects. Their list is located on the right-hand side of the window, and consists of up
to five items. Each of them in the form of a button bearing the name and complete path

to the project file. Clicking on this will immediately load the selected project. Other
window elements include buttons to load an existing project from a file, or to create a
new project, or to restore a previous session that puts the programme in the state that
the user left it in at the last exit.

3% Untitled* - Karnaugh Studio

File Edit View Minimize Prefi
E=08 © Sum of Products (ONF) ¥ A Minimize Al v

¥ Project Explorer X | ¥ Table View X | ¥ MapView X | ¥ Propert

MSB first 2 3 Algebraic ¥

Algebraic

¥ Functions

Count:
Conjunction: %(Left) - %(Rig

» 1

Disjunction: Fe{Left) + %R

2 True

False:

Left Bracket:

Right Bracket:

Bracket Products:

Add New Format

Remove Format

Remove All Groups Copy to Clipboard Export. Restore Defaults

Fig. 4. The Karnaugh Studio user interface

The main application window is displayed when the user creates a new project or
opens an existing project. This is shown in Fig. 4.

Above the placed main text menu is an integral part of almost every desktop appli-
cation. Using it, the user can perform a variety of activities, whether working with the
project or user interface windows, performing auto minimisation - or anything else.
Most of these actions are assigned to hotkeys that can be used to invoke the action
without requiring the user to enter the main menu. The menu is divided into six clearly
defined submenus: File, Edit, View, Minimise, Preferences and Help.

The toolbar is located directly below the main menu. It consists of a set of icons and
other elements that provide quick access to selected Main Menu actions. First of all,
there are three project management icons. These are used to create a new project, load
one from afile - or save an existing one. Undo and Redo edit command icons are located
on the right. The following command represents a choice between the Sum-of-Products
and Product-of-Sum forms minimisation solution. The last element is a button that per-
forms automatic minimisation. This can be done - either for all functions at the same

time, or only for an active one. It is possible to switch between these modes by the last
arrow-shaped button.

The Project Explorer window - (Fig. 2, left), is located on the left, and is one of the
most important elements of the user interface. The only alternative for setting these
parameters is to import the contents of the truth table from any CSV file. Here, it is
possible to set up the most basic project properties — variables - (input values settings),
and functions - (number of outputs, their names and limits).

¥ Groups

Groups: 3
a @ |1 -[%2 -x3
a @ |1 -x2 - |x3

& @ [#2 - |%3 - |xd

Remove All Groups

Fig. 5. The Groups window

The Groups window can be found under Project Explorer - which offers two differ-
ent display modes. When a none group is created it describes basic instructions about
how to create the first group. But this window primarily provides an overview of all
existing minimisation groups in Karnaugh maps (Fig. 5). The current number of groups
is visible at the top of the window. At the bottom, users can find a button to delete all
groups at once. The central part of the window contains the list of created groups. Each
group has its own name, based on input values, and has three properties. These are
deleted, locked or invisible.

The Table View window (Fig. 2, right) is located to the right of Project Explorer. It
provides a visual design of the project truth table. It represents an intuitive way for
manually setting truth functions. This can be done by clicking the left-mouse button;
this changes the output value in the cycle zero-one-indeterminate state — or, by right
clicking the mouse button and selecting the required value from the displayed list.

The Map View window, (Fig. 3 above), is in the centre of the application window.
The Karnaugh map is displayed here - and automatically updated based on output val-
ues, set in the Table View window. Additionally, the manual design and modifications
of minimisation groups is only possible in this window. Manual design is performed in
a simple way. A group can be created by double-clicking on any field, or by selecting
multiple elements at the same time. However, it must always be true that at least one of
the cells be - (the Sum-of-Products form), or if false, at least one of the (the Product-
of-Sum form) cells. If it is not possible to create a group exactly matching the selection,
a group is created with the most ideal coverage of the map elements inside the selection.

10

When the selection is complete, it is saved to the top of the active group list and is
automatically assigned one of the predefined colour sets.

Using the Minimisation Results window, (Fig. 3, below) - Under Map View, the user
can find the results of the minimisation algorithm in the selected output format. The
result is displayed using a multiline text field, set to read-only. In the upper part of this
window, users can observe the validation status of the generated expression. If incom-
plete or incorrect for any other reason, the user is notified by a red warning text. Oth-
erwise, the text confirms the correct result.

¥ Properties

Map View

» Colors

¥ Grid

Visible:

Inside:

Color:

¥ Variables

¥ Minor
Top:
Left:

Fig. 5. The Properties window with settings for the Map View window

The last window is called Properties, and is positioned on the right-hand side of the
application’s interface. Using this, the user can set various settings for other windows
— for example, visibilities, colours, headers, labels, grids, etc. Its content changes de-
pend on the last active window of the three supported - Table View, Map View and
Minimisation Results. Changes are immediately reflected in the active windows. The
Properties window appearance for the Map View window is shown in Fig.5.

5 Conclusion

This paper describes the design and implementation of the Karnaugh Studio desktop
application, which performs the minimisation of truth functions. The practical use of
this application is in the field of design of truth functions and circuits, the optimisation
of control systems - and last but not least, the academic sphere in support of teaching
minimisation logic functions.

The Karnaugh map method is used as the algorithm for minimisation and to create
application supports up to eight variables on input. The application also offers the pos-
sibility to perform the entire minimisation process automatically, or manually. In addi-
tion, Karnaugh Studio can export a number of graphic and text file formats, including
programming languages commonly used in the developer company industry.

The aim is to further expand Karnaugh Studio with new features in the future. To
add the ability to process an input function in any text format or to perform automatic

11

minimisation in real-time, while making changes inside the truth table. Another im-
provement may be to increase the visual quality of the graphical representation of the
result of the minimisation process and to increase the possibilities of its graphic export.
These visions would allow us a wider implementation of the application in practice.

References

1. Holdsworth, B., Woods, C.: Digital logic design. 4th edn. Newnes (2002). ISBN 978-0-
750645-82-9.

2. Saha, A., Manna, N.: Digital principles and logic design. Laxmi Publications (2007). ISBN
978-1-934015-03-2.

3. Rafiquzzaman, M.: Fundamentals of Digital Logic and Microcomputer Design. 5th edn.
Wiley-Interscience (2005). ISBN 978-0-471727-84-2.

4. The Karnaugh Map Boolean Algebraic Simplification Technique, https://www.
allaboutcircuits.com/technical-articles/karnaugh-map-boolean-algebraic-simplification-
technique/, last accessed 2020/01/18.

5. Prasad, V.C.: Generalized Karnaugh Map method for Boolean functions of many variables.
IETE Journal of Education, 58(1), 11-19 (2017).

6. Learn Digilentinc — Logic Minimization, https:/learn.digilentinc.com/Documents/319, last
accessed 2020/01/18.

7. Boolean Functions (SOP, POS forms), https://www.electronicshub.org/boolean-logic-sop-
form-pos-form/, last accessed 2020/01/18.

8. Cplusplus.com — The C++ Resources Network, http://www.cplusplus.com/, last accessed
2020/01/18.

9. Lippman, S. B., Lajoie, J., Moo B.E.: C++ Primer. 5th edn. Addison-Wesley Professional
(2012). ISBN 978-0-321714-11-4.

10. The C++ Standard Template library, https://www.geeksforgeeks.org/the-c-standard-
template-library-stl/, last accessed 2020/01/18.

11. GitHub - ocornut/imgui: Dear ImGui: Bloat-free Immediate Mode Graphical User interface
for C++ with minimal dependencies, https://github.com/ocornut/imgui, last accessed
2020/01/18.

12. Dear imgui, https://skia.googlesource.com/external/github.com/ocornut/imgui/+/v1.51/
README.md, last accessed 2020/01/18.

13. Magick++ API, https://imagemagick.org/Magick++/, last accessed 2020/01/18.

14. Karnaugh Studio, https://sevcikdaniel.github.io/karnaugh-studio/, last accessed 2020/01/18.

https://www.allaboutcircuits.com/technical-articles/karnaugh-map-boolean-algebraic-simplification-technique/
https://www.allaboutcircuits.com/technical-articles/karnaugh-map-boolean-algebraic-simplification-technique/
https://www.allaboutcircuits.com/technical-articles/karnaugh-map-boolean-algebraic-simplification-technique/
https://learn.digilentinc.com/Documents/319
https://www.electronicshub.org/boolean-logic-sop-form-pos-form/
https://www.electronicshub.org/boolean-logic-sop-form-pos-form/
http://www.cplusplus.com/
https://www.geeksforgeeks.org/the-c-standard-template-library-stl/
https://www.geeksforgeeks.org/the-c-standard-template-library-stl/
https://github.com/ocornut/imgui
https://skia.googlesource.com/external/github.com/ocornut/imgui/+/v1.51/README.md
https://skia.googlesource.com/external/github.com/ocornut/imgui/+/v1.51/README.md
https://imagemagick.org/Magick++/
https://sevcikdaniel.github.io/karnaugh-studio/

	1 Introduction
	2 Truth Function Minimisation Using Karnaugh Maps
	3 Developer Tools Used
	4 An Application
	4.1 The Minimisation Algorithm
	4.2 The Application Interface

	References

