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Abstract—This paper proposes a competitor to the CEC2020
single objective bound constrained numerical optimization com-
petition – DISH–XX. The DISH–XX algorithm is based on
its 2019 predecessor DISH. The main difference lies in the
secondary crossover with the archive of historically best–found
solutions. The results of the DISH–XX algorithm are presented
in the competition specified format and the statistical comparison
between DISH–XX and the original DISH is also presented as
part of this paper.

Index Terms—Differential Evolution, DISH, DISH–XX,
crossover, CEC2020, competition, benchmark

I. INTRODUCTION

The Differential Evolution (DE) algorithm [1], and espe-
cially its recent variants (mentioned in the next paragraph)
have, over the past decade, proven its superior performance
in numerous numerical single objective competitions. DE is,
therefore, taken as a robust algorithm for numerical opti-
mization. As can be seen in a recent survey [2], the go–to
methods that successfully improve the overall performance
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are based on adaptivity or self–adaptivity [3] of the control
parameters – scaling factor F and crossover rate CR. Also,
management of the population size during the optimization
phase is usually beneficial for the algorithm’s performance
[4]–[11]. DE–based algorithms using control parameter and
population size adaptation are listed with their corresponding
rankings below.

In 2013, algorithm with adaptive control parame-
ters Success–History based Adaptive Differential Evolution
(SHADE) [12] was introduced and evaluated on the CEC2013
benchmark [13]. It placed 4th as the best–performing DE–
based algorithm. A year after that, updated version with linear
population size decrease L–SHADE [9] won the CEC2014
competition [14]. The CEC2015 learning based scenario [15]
was won by the L–SHADE Incorporated with Eigenvector–
Based Crossover and Successful–Parent–Selecting Framework
(SPS–L–SHADE–EIG) [16]. The CEC2016 single parameter
and operator set scenario [14] had two winners – one of them
was Ensemble Sinusoidal Parameter Adaptation incorporated
with L–SHADE (LSHADE EpSin) [17]. In 2017, L–SHADE–
based algorithms placed on 2nd [18], 3rd [19] and 4th [20]
place of the CEC2017 bound constrained competition [21],
similarly, 2nd [22] and 3rd (ELSHADE SPACMA) place on
the CEC2018 competition [21] was held by L–SHADE–
based algorithms. The CEC2019 single objective competition
[23] brought a new format titled 100–digit and once again,
algorithms based on DE ranked well – 1st place jDE100 [24],
2nd place DISHchain1e+12 [25] and 3rd place HyDE–DF [26].



Since authors of this paper have, also, co–authored DISH
algorithm [27] (2nd and 9th place on the CEC2019 competi-
tion), the basis for the proposed algorithm in this paper is also
DISH. The novelty of the proposed DISH–XX algorithm lies
in the use of secondary crossover with a randomly selected
individual from the historically best–found solutions in the
optimization run. The initial population size of the DISH–XX
have also been altered, after numerous experiments, to twice
the original size.

The complete description of the DISH–XX algorithm can
be found in the next section; section III describes the ex-
perimental setting, section IV shows results on the CEC2020
benchmark according to the benchmark rules and also provides
the comparison with the original DISH algorithm. The paper
is concluded in section V with suggestions for future work.

II. DISH–XX

The DISH–XX algorithm is an evolutionary step of the
DISH algorithm presented in 2019 [27], and both share the
ancestry line from the original 1995 DE [1]. The simplified
concept of the DE algorithm can be described in a few steps
– start with a random population of solutions. Iteratively
produce candidate solutions via mutation and crossover. If the
quality of the candidate solution is better than the quality of
the original solution, place it into the next generation. Do
this over and over, until the stopping criterion is met and
return the best–found solution as the solution to the optimized
problem. In the original version of the DE, there were three
user-defined control parameters – population size NP, scaling
factor F and crossover rate CR. The values of these parameters
are usually adapted during the optimization in the modern
versions of the DE, and DISH–XX is no exception. But,
the mutation operator and adaptation mechanisms evolved via
several successful algorithms. The evolution line from DE to
DISH–XX is described in the following steps:

1) DE from 1995 by Storn and Price [1].
2) JADE from 2009 [28] – algorithm created by Zhang and

Sanderson proposed a novel mutation strategy – current–
to–pbest/1 with an optional archive of inferior solutions.

3) SHADE from 2013 by Tanabe and Fukunaga [12] – built
on the JADE algorithm with added memories for histor-
ically successful F and CR values and new adaptation
mechanism for these parameters. This algorithm placed
3rd in the CEC 2013 competition.

4) The linear decrease of population size was introduced
into SHADE and created L–SHADE algorithm [9], the
winner of the CEC 2014 competition.

5) Improved L-SHADE algorithm titled iL–SHADE [29]
was proposed for a CEC 2016 competition by Brest et
al. This algorithm introduced changes to the historical
memory update system and the initialization of the
historical memories. It also proposed a new mechanism
for treating F and CR parameters based on the ratio
between current and maximum generation (phase of the
optimization). This algorithm placed 4th in the CEC
2016 competition.

6) Distance based parameter adaptation was proposed for
SHADE based algorithms by Viktorin et al. in 2017 [30].
This novel adaptation mechanism based on the distance
between solutions instead of on the difference between
objective function value was presented on SHADE and
L–SHADE algorithms and shown its superiority over the
original.

7) jSO algorithm was proposed by Brest et al. in 2017 [18].
The algorithm uses a novel current–to–pbest–w/1 muta-
tion strategy and slightly changes fixed values for F and
CR parameters. The jSO algorithm was 2nd in the CEC
2017 bound constrained competition.

8) DISH algorithm was introduced in 2018 by Viktorin
et al. and published in 2019 [27], and it incorporates
the distance based parameter adaptation into the jSO
algorithm to improve its performance.

9) DISH–XX algorithm proposed in this study incorporates
secondary crossover into the DISH algorithm and uses
two times larger initial population.

The following subsections provide the details of DISH–XX
algorithm mechanisms followed by a pseudo–code.

A. Initialization

First of all, the initial population P, of solutions to the
optimized problem, is generated randomly. The size of the
population is determined by the user via NPinit parameter
(initial population size). Each individual solution x is a vector
of length D, which is a dimension of the problem and each
vector component is generated within its lower lo and upper
up bounds by a uniform pseudo–random number generator (1).

xj,i = U
[
loj , upj

]
for j = 1, . . . , D; i = 1, . . . , NP init

(1)
Other parameters and variables that have to be set in the

initialization phase are:
1) Final population size – NPf .
2) Stopping criterion – a maximum number of objective

function evaluations MAXFES in the most common case
(also in this study).

3) pmax and pmin parameters for mutation operator. pmax

= 0.25 and pmin = pmax/2 = 0.125
4) External archive A is initialized empty. A = Ø
5) Historical best archive Abest is initialized empty. Abest

= Ø
6) Historical memory size H. H = 5
7) Historical memories for scaling factor MF (2) and

crossover rate MCR (3).
8) Update historical memory index k. k = 1.

MF,i = 0.5 for i = 1, . . . ,H − 1, MF,H = 0.9 (2)

MCR,i = 0.8 for i = 1, . . . ,H−1, MCR,H = 0.9 (3)

The following steps – mutation, crossover, and selection are
repeated for each individual solution in the generation G, and
these generations are repeated until the stopping criterion is
met.



B. Mutation

The mutation operator used in DISH–XX is a jSO’s current–
to–pbest–w/1, which combines a greedy approach in the first
difference and the explorative factor in the second difference
(4).

vi = xi + Fw,i (xpBest − xi) + Fi (xr1 − xr2) (4)

The vi is the i–th mutated vector created from current
solution vector xi, one of the 100p% best solutions in the
population xpBest where p is determined by (5), a random
solution from the population xr1 and random solution from
the union of the population and external archive xr2. It is also
important to note that all vectors are mutually different – xi 6=
xpBest 6= xr1 6= xr2. The differences are scaled by two scaling
factor parameters, scaling factor Fi (6) and weighted scaling
factor Fw,i (8).

p = FESratio ∗ (pmax − pmin) + pmin (5)

where FESratio stands for the ratio between the current
number of objective function evaluations FES and the max-
imum number of objective function evaluations MAXFES
(FESratio = FES/MAXFES). Therefore, parameter p increases
linearly with objective function evaluations.

Fi = C [MF,r, 0.1] (6)

The scaling factor value Fi is generated from Cauchy distri-
bution with the location parameter MF,r and scale parameter
value of 0. The index r is randomly generated from the range
[1, H]. If the generated value Fi is smaller or equal to 0, it is
generated again and if it is higher than 1, it is set to 1. Also,
the scaling factor Fi is influenced by the FESratio in order
to truncate its value in the exploration phase of the algorithm
run (7).

Fi = 0.7, FESratio < 0.6 and Fi > 0.7 (7)

Fw,i =

 0.7 ∗ Fi, FESratio < 0.2
0.8 ∗ Fi, FESratio < 0.4
1.2 ∗ Fi, otherwise

(8)

The weighted scaling factor Fw,i is based on the optimiza-
tion phase given by the FESratio.

The next step after the mutation is the crossover.

C. Double Crossover

The DISH–XX algorithm uses two crossovers. First classi-
cal and second newly proposed in order to use historically
successful parameter values that might be forgotten during
the optimization. Secondary crossover is also helpful for
maintaining population diversity.

The first crossover operator in DISH–XX algorithm is bi-
nomial and is based on the crossover rate value CRi generated
from the normal distribution (9) with a mean parameter value
MCR,r selected from the crossover rate historical memory and
standard deviation value of 0.1.

CRi = N [MCR,r, 0.1] (9)

The CRi value is also bounded between 0 and 1 and
whenever it is generated outside these bounds, it is truncated
to the nearest bound. The crossover rate value is also a subject
to the optimization phase given by FESratio (10).

CRi =

 max(CRi, 0.7), FESratio < 0.25
max(CRi, 0.6), FESratio < 0.5

CRi, otherwise
(10)

And finally, the binomial crossover is depicted in (11).

u∗j,i =

{
vj,i if U [0, 1] ≤ CRi or j = jrand
xj,i otherwise

(11)

where u∗i is called a temporary trial vector and jrand is
an index of one component that has to be taken from the
mutated vector vi. The jrand index ensures that at least one
vector component of the original vector xi will be replaced.
Thus in the following selection step, the tested trial vector will
provide new information.

The second crossover is also binomial and uses the same
crossover rate CRi value. The difference is that it combines
temporary trial vector u∗i with one of the historically best
found solution vectors xrAbest randomly selected from his-
torical best archive Abest to obtain trial vector ui (12).

uj,i =

{
u∗j,i if U [0, 1] ≤ CRi or j = jrand

xj,rAbest otherwise
(12)

D. Selection

In the selection step, a quality of the trial solution vector
ui is compared to the quality of the original solution vector
xi. The quality is given by the objective function value of
these solutions. And since the selection operator is elitist,
the trial solution has to have at least equal objective function
value as the original solution in order to proceed into the next
generation G+1 (13).

xi,G+1 =

{
ui,G if f (ui,G) ≤ f (xi,G)
xi,G otherwise

(13)

where f () depicts the objective function value, and in this
case, the objective is the minimization of it.

The mutation, crossover and selection operators are repeated
for each individual solution in the population, and after the
population is exhausted, the algorithm proceeds to the next
generation. But before processing each individual solution of
the next generation, two essential mechanisms are incorporated
into the algorithm – a linear decrease of the population size
and the update of historical memories. These two mechanisms
are described in the following subsections.

E. Linear Decrease of the Population Size

The population size is decreased during the algorithm run in
order to provide more time for exploration in the later phase
of optimization. Thus, the smaller population of individual
solutions will have more time to exploit promising areas of
the objective function landscape.



The mechanism used in the DISH–XX algorithm is a
simple linear decrease of population size, which uses the
information of current objective function evaluations to shrink
the population of solutions. A new population size NPnew is
calculated as follows (14).

NPnew = round (NP init − FESratio ∗ (NP init −NP f ))
(14)

The size of an external archive A is connected to the size of
the population, and therefore, after decreasing the population
size, the archive size is reduced as well. Whereas when
decreasing the population size, the worst individual solutions
are discarded from the population, in the archive, solutions to
discard are selected randomly.

F. Update of Historical Memory

Historical memories MF and MCR store historically suc-
cessful values of scaling factors F and crossover rates CR
that were helpful in the production of better trial individual
solutions. Therefore, these memories have to be updated
during the optimization in order to store recently used values.
After each generation, one cell of both memories is updated,
and for that, the algorithm uses index k to remember, which
cell will be updated. The index is initialized to 1, and therefore,
after the first generation, the first memory cell will be updated.
The index is increased by one after each update, and when it
overflows the memory size H, it starts from 1 again. There is
one exception to the update, the last cell of both memories
is never updated and still contains values 0.9 for both control
parameters.

What will be stored in the k–th cell after the generation G is
computed by a weighted Lehmer mean (15) of corresponding
generation control parameter arrays SF and SCR. These arrays
are filled during the generation by the values of control
parameters when the trial solution succeeds in the selection
step.

meanWL (S) =

∑|S|
n=1 wn • S2

n∑|S|
n=1 wn • Sn

(15)

The meanWL() stands for weighted Lehmer mean and the
computation is equal for both SF and SCR, therefore, there is
no subscript for S in the equation. The k–th memory cells of
MF and MCR are then updated according to (16) and (17).

MF,k =

{
meanWL (SF ) if SF 6= ∅ and k 6= H

MF,k otherwise
(16)

MCR,k =

{
meanWL (SCR) if SCR 6= ∅ and k 6= H

MCR,k otherwise
(17)

The weights for the weighted Lehmer means (15) are in
the case of DISH–XX algorithm computed as depicted in
(18). This weighting was introduced as the distance based
parameter adaptation [4]. It is titled like that, because in the
original SHADE, L–SHADE, iL–SHADE and jSO algorithms,
the weights were based on the difference between objective

function values of trial individual solution ui and its corre-
sponding original individual solution xi, whereas in DISH–
XX, the weight is computed from the Euclidean distance
between those two - ui and xi.

wn =

√∑D
j=1 (un,j,G − xn,j,G)

2

∑|SCR|
m=1

√∑D
j=1 (um,j,G − xm,j,G)

2
(18)

This approach promotes exploitation and tries to avoid the
premature convergence of the algorithm into local optima.

III. EXPERIMENTAL SETTING

Settings for the experiment are given by the benchmark
itself – 10 single objective functions in four different dimen-
sional settings (5, 10, 15 and 20) with stopping criterion given
by the number of maximum objective function evaluations
(50,000, 1,000,000, 3,000,000 and 10,000,000 respectively).
In order to obtain reasonable statistical results, each function
in each dimension should be run 30 times, and the initialization
of the population should be uniform in the predefined search
range [-100, 100]D.

The suggested values from DISH algorithm were used for
algorithm–specific parameters (with the exception of initial
population size, which was doubled) and were as follows:
• Initial population size NP init = 50 ∗ log(D)

√
D, which

equals to 180, 364, 524 and 670 for dimensions 5, 10,
15 and 20 respectively.

• Final population size NP f = 4.
• Historical memory size H = 5.
• Maximal external archive size |A| = NP .
• Maximal historical best archive size |Abest| = unlimited.
The algorithm was programmed in Java language (Java

11.0.2) and run on a PC with 64-bit Windows 10, AMD A8-
7600 Radeon R7 3.1 GHz CPU and 4 GB RAM.

IV. RESULTS

The competition–mandatory basic statistical results of the
DISH-XX algorithm in a form of best, worst, median, mean
and standard deviation values can be found in Tables I, II, III
and IV for dimensions 5, 10, 15 and 20 respectively. All tables
present error values – difference from the global optima. It is
also important to note that in Table I, there are no results for
f 6 and f 7, since they were removed from the benchmark for
5D.

TABLE I
RESULTS FOR 5D.

Func. Best Worst Median Mean Std
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 1.25E-01 1.43E+02 6.95E+00 1.31E+01 2.82E+01
3 5.15E+00 8.15E+00 5.41E+00 5.65E+00 6.07E-01
4 0.00E+00 4.68E-02 1.23E-02 1.42E-02 9.57E-03
5 0.00E+00 6.24E-01 0.00E+00 2.08E-01 2.99E-01
6 – – – – –
7 – – – – –
8 0.00E+00 1.00E+02 0.00E+00 3.35E+00 1.83E+01
9 1.00E+02 3.00E+02 1.00E+02 1.10E+02 4.03E+01

10 3.00E+02 3.47E+02 3.47E+02 3.44E+02 1.20E+01



TABLE II
RESULTS FOR 10D.

Func. Best Worst Median Mean Std
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 3.75E-01 1.45E+02 1.54E+01 1.97E+01 2.59E+01
3 1.07E+01 1.35E+01 1.13E+01 1.14E+01 5.85E-01
4 0.00E+00 7.40E-03 0.00E+00 2.47E-04 1.35E-03
5 0.00E+00 1.16E+01 4.16E-01 1.24E+00 2.80E+00
6 2.12E-04 1.12E+01 2.29E-01 6.96E-01 1.99E+00
7 3.51E-05 6.27E-01 3.12E-01 2.40E-01 2.50E-01
8 1.00E+02 1.00E+02 1.00E+02 1.00E+02 0.00E+00
9 1.00E+02 3.33E+02 3.30E+02 3.07E+02 7.01E+01
10 3.98E+02 4.46E+02 3.98E+02 4.07E+02 1.88E+01

TABLE III
RESULTS FOR 15D.

Func. Best Worst Median Mean Std
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 2.50E-01 1.61E+02 2.91E+01 7.13E+01 6.52E+01
3 1.56E+01 1.78E+01 1.66E+01 1.66E+01 5.43E-01
4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5 2.15E+00 1.40E+02 1.32E+01 2.18E+01 3.31E+01
6 4.47E-01 3.04E+01 7.33E+00 9.40E+00 8.66E+00
7 4.04E-02 1.14E+00 6.63E-01 6.33E-01 2.51E-01
8 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.57E-13
9 3.88E+02 3.92E+02 3.90E+02 3.90E+02 8.27E-01
10 4.00E+02 4.00E+02 4.00E+02 4.00E+02 0.00E+00

TABLE IV
RESULTS FOR 20D.

Func. Best Worst Median Mean Std
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 5.31E+00 3.89E+02 2.19E+01 8.67E+01 1.11E+02
3 2.45E+00 2.46E+01 2.17E+01 2.13E+01 3.74E+00
4 0.00E+00 7.40E-03 0.00E+00 2.47E-04 1.35E-03
5 1.10E+00 2.49E+02 1.92E+01 5.63E+01 6.63E+01
6 2.38E-01 1.20E+02 1.04E+00 1.50E+01 3.57E+01
7 7.62E-02 2.94E+01 2.26E+00 5.09E+00 6.42E+00
8 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.39E-13
9 3.99E+02 4.10E+02 4.05E+02 4.05E+02 2.50E+00
10 4.14E+02 4.14E+02 4.14E+02 4.14E+02 2.54E-02

Table V provides computational run–time in the specified
format. It can be seen that the computational run–time of the
algorithm increases with the dimension of the problem, but the
run–time increase from 10D to 15D is only 0.4%, whereas the
increase from 5D to 10D is approximately 11%. This suggests
that the computational run–time will not increase linearly with
the dimension. And thus, the algorithm might also be suitable
for large–scale problems.

TABLE V
COMPUTATIONAL RUN–TIME

T0 T1 T2 T2− T1/T0
D = 5 29 178 8100.80 8094.66
D = 10 28 302 8967.80 8957.01
D = 15 29 406 9012.60 8998.6

Tables VI, VII, VIII and IX present the comparison between
original DISH algorithm and DISH–XX variant. The compar-
ison was done by Wilcoxon rank sum test with significance
level α set to 0.05, in order to provide statistically proven

TABLE VI
DISH VS. DISH-XX ON CEC2020 5D.

DISH DISH-XX
Func. Median Mean Median Mean Diff.

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =
2 1.88E-01 2.29E-01 6.95E+00 1.31E+01 -
3 5.15E+00 4.90E+00 5.41E+00 5.65E+00 -
4 9.86E-03 9.76E-03 1.23E-02 1.42E-02 -
5 0.00E+00 2.08E-01 0.00E+00 2.08E-01 =
6 – – – – *
7 – – – – *
8 0.00E+00 6.69E+00 0.00E+00 3.35E+00 =
9 1.00E+02 1.03E+02 1.00E+02 1.10E+02 =

10 3.47E+02 3.44E+02 3.47E+02 3.44E+02 =

TABLE VII
DISH VS. DISH-XX ON CEC2020 10D.

DISH DISH-XX
Func. Median Mean Median Mean Diff.

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =
2 6.95E+00 1.94E+01 1.54E+01 1.97E+01 -
3 1.21E+01 1.19E+01 1.13E+01 1.14E+01 +
4 0.00E+00 3.29E-04 0.00E+00 2.47E-04 =
5 2.08E-01 4.31E+00 4.16E-01 1.24E+00 =
6 6.19E-02 1.80E-01 2.29E-01 6.96E-01 -
7 1.98E-04 1.48E-02 3.12E-01 2.40E-01 -
8 1.00E+02 9.72E+01 1.00E+02 1.00E+02 =
9 3.28E+02 2.67E+02 3.30E+02 3.07E+02 =

10 3.98E+02 4.04E+02 3.98E+02 4.07E+02 =

difference in performance between the algorithm variants.
As can be seen, the DISH–XX variant’s results are compa-

rable to the DISH, and in some cases (specifically on problems
in 20D) the DISH–XX has shown superior performance. The
result of the Wilcoxon rank sum test is given in the last column
of each table. If there is an = sign, both algorithms perform
similarly, if there is a + sign, DISH–XX outperformed DISH
and if there is a – sign, DISH outperformed DISH–XX. In 5D,
DISH outperformed DISH–X on 3 functions (f 2, f 3 and f 4),
in 10D, the score is 3:1 for DISH outperforming DISH–XX
on f 2, f 6 and f 7, but losing on f 3. In 15D the DISH algorithm
outperformed DISH–XX in one test case - f 6 and in 20D the
score is 2:0 in favor of DISH–XX (better on f 3 and f 5). The
overall combined score is therefore in favor of DISH with 7
wins, 3 loses and 28 ties (f 6 and f 7 in 5D were not evaluated).

What is interesting is the fact that the performance com-
parison is very variable with the dimension of the problem.
This might be caused by different properties of optimized
functions in different dimensions - especially for hybrid and
composition cases. It seems, that DISH–XX algorithm might
be more suitable for solving higher dimensional problems.

V. CONCLUSION

This paper proposes a participant for the CEC2020 single
objective bound constrained numerical optimization compe-
tition, titled DISH–XX. It is an evolution of the previously
successful DISH algorithm [27] with secondary crossover
and two times larger initial population size. The secondary
crossover serves to maintain the diversity of the population
along with the intent to re–use historically beneficial parameter



TABLE VIII
DISH VS. DISH-XX ON CEC2020 15D.

DISH DISH-XX
Func. Median Mean Median Mean Diff.

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =
2 1.23E+02 9.98E+01 2.91E+01 7.13E+01 =
3 1.68E+01 1.70E+01 1.66E+01 1.66E+01 =
4 0.00E+00 6.57E-04 0.00E+00 0.00E+00 =
5 1.06E+01 2.84E+01 1.32E+01 2.18E+01 =
6 1.44E+00 2.34E+00 7.33E+00 9.40E+00 -
7 7.05E-01 9.42E+00 6.63E-01 6.33E-01 =
8 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =
9 3.90E+02 3.90E+02 3.90E+02 3.90E+02 =

10 4.00E+02 4.00E+02 4.00E+02 4.00E+02 =

TABLE IX
DISH VS. DISH-XX ON CEC2020 20D.

DISH DISH-XX
Func. Median Mean Median Mean Diff.

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =
2 7.29E+01 8.93E+01 2.19E+01 8.67E+01 =
3 2.23E+01 2.26E+01 2.17E+01 2.13E+01 +
4 0.00E+00 4.93E-04 0.00E+00 2.47E-04 =
5 5.87E+01 9.32E+01 1.92E+01 5.63E+01 +
6 1.57E+00 1.56E+00 1.04E+00 1.50E+01 =
7 1.61E+00 1.18E+01 2.26E+00 5.09E+00 =
8 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =
9 4.05E+02 4.04E+02 4.05E+02 4.05E+02 =

10 4.14E+02 4.14E+02 4.14E+02 4.14E+02 =

information. In the result section of the paper, it is shown that
the proposed DISH–XX variant performs competitively with
its predecessor on the basis of CEC2020 benchmark. Thus, it
might be a suitable successor for higher dimensional problems,
since its performance in this area is better. Another benefit of
the proposed variant is that it does not introduce any additional
parameters, which values should be determined by the user.
The future research direction in this area will be aimed at a
thorough analysis of the benefits introduced by the secondary
crossover along with its tuning.
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Algorithm 1 DISH–XX, updates to DISH are highlighted by red color.

1: Set NPinit, NP f , D, and MAXFES (stopping crite-
rion);

2: NP = NP init, H = 5, G = 1, xbest = {}, k = 1,
pmax = 0.25, pmin = 0.125, A = Ø, Abest = Ø,
FES = 0;

3: Randomly initialize population P = (x1,G, . . . , xNP,G)
(1);

4: FES+ = NP ;
5: Set all values in MF to 0.5 and MCR to 0.8;
6: Pnew = {}, xbest = best from population P ;
7: xbest → Abest;
8: while stopping criterion not met do
9: SF = Ø, SCR = Ø;

10: for i = 1 to NP do
11: r = U [1, H];
12: if r = H then
13: MF,r = 0.9;
14: MCR,r = 0.9;
15: end if
16: CRi,G = N(MCR,r, 0.1);
17: if CRi,G < 0 then
18: CRi,G = 0;
19: else if CRi,G > 1 then
20: CRi,G = 1;
21: end if
22: Fi,G = C(MF,r, 0.1);
23: while Fi,G ≤ 0 do
24: Fi,G = C(MF,r, 0.1);
25: end while
26: if Fi,G > 1 then
27: Fi,G = 1;
28: end if
29: FESratio = FES/MAXFES;
30: if FESratio < 0.6 and Fi,G > 0.7 then
31: Fi,G = 0.7;
32: end if
33: if FESratio < 0.25 then
34: CRi,G = max(CRi,G, 0.7);
35: else if FESratio < 0.5 then
36: CRi,G = max(CRi,G, 0.6);
37: end if
38: xi,G = P [i];
39: pi = pmin + FESratio ∗ (pmax − pmin) (5);
40: if FESratio < 0.2 then
41: Fw,i,G = 0.7Fi,G;
42: else if FESratio < 0.4 then
43: Fw,i,G = 0.8Fi,G;
44: else

45: Fw,i,G = 1.2Fi,G;
46: end if
47: vi,G = xi,G + Fw,i,G(xpBest − xi,G) + Fi,G(xr1 −

xr2) (4);
48: u∗i,G by binomial crossover (11);
49: Randomly select xrAbest from the Abest;
50: ui,G by binomial crossover between u∗i,G and

xrAbest (12);
51: if f(ui,G) ≤ f(xi,G) then
52: xi,G+1 = ui,G;
53: xi,G → A;
54: Fi → SF , CRi → SCR;
55: if f(ui,G) ≤ f(xbest) then
56: ui,G → Abest;
57: end if
58: else
59: xi,G+1 = xi,G;
60: end if
61: if |A| > NP then
62: Randomly delete |A| −NP individuals from |A|;
63: end if
64: xi,G+1 → Pnew;
65: end for
66: NPnew = round(NPinit−FESratio∗(NPinit−NPf ))

(14);
67: if NPnew < NP then
68: Sort individuals in P according to their objective

function values and remove NP − NPnew worst
ones;

69: NP = NPnew;
70: end if
71: if |A| > NP then
72: Randomly delete |A| −NP individuals from |A|;
73: end if
74: if SF 6= Ø and SCR 6= Ø then
75: Update MF,k (16) and MCR,k (17) with Lehmer

mean computed by (15) with distance based weights
from (18);

76: k ++;
77: if k > H then
78: k = 1;
79: end if
80: end if
81: P = Pnew, Pnew = {}, xbest = best from population

P , G++;
82: end while
83: return xbest as the best–found solution;


