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Abstract: Chemical processes as well as many non-industrial processes exhibit 
autocorrelation, for which the above-mentioned control procedures are not 
suitable. This paper considers the problem of monitoring a process in which the 
observations can be represented as a first-order autoregressive model following 
a heavy tailed distribution. It also presents practical usage of time series control 
charts on the chemical process of monitoring concentrations. The second part 
discusses the effect of autocorrelation on the process capability analysis when 
the observations are made by an autoregressive model of the first order. The 
process capability indices provide a measure of how a process fits within the 
specification limits. When calculating indices, it is usual to assume that the 
process data are independent. The simulation study in this part discusses the 
effect of a higher autocorrelation order on process capability indices. 
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1 Introduction 

An important role for the effective design of the control chart is whether the production 
system does not cause the effects of interdependence between the data obtained (i.e., 
whether the output data from the process is not autocorrelated). The phenomenon of data 
autocorrelation is mainly concerned with the production where measurements are carried 
out in processes automatically, there is frequent sampling, respectively, process 
selections and further under the conditions of certain specific processes. Typical 
representatives of processes with the autocorrelated output data are large-scale and mass 
production processes using automated control and continuous production processes in the 
chemical, metallurgical and food industries. In these sectors, so-called internal factors of 
production, such as reactors, recycling streams, or pumping of material from tanks, which 
can cause dependency in the output data, are often found. Another real-world examples 
of autocorrelated processes are for example weather prediction, economic time series 
modelling, e.g., index/stock prediction, signal processing or medical ultrasound imaging 
where autocorrelation is used to visualise blood flow. 

A certain degree of autocorrelation is generally congenital for data, and some control 
charts such as cumulative sums (CUSUM) and exponentially weighted moving average 
(EWMA) chart use this property. However, there are high autocorrelation results in data 
distortion against the control limits of the diagram, leading to erroneous decisions about 
the process interference. The effect of strong autocorrelation is usually high incidence of 
points outside the control limits. 

Conventional statistical process control (SPC) methods such as Shewhart’s control 
charts and CUSUM control charts assume that the process data obtained is independent. 
However, this assumption has been challenged once it has been found that in many 
practical situations, data is serially correlated. The main effect of m autocorrelation in 
process data in SPCs, the control limits are calculated that are much narrower than 
required. This causes a significant increase in the average false signals and a reduction in 
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the process change detection. As a result, the calculation of the average number of 
selections is wrong when the deviation in the process of the normalised size δ and the 
moment is revealed in the control diagram, which is referred to as ARL(δ). The 
performance of classical control diagrams in case of autocorrelation in data will 
deteriorate significantly. 

This motivated the pioneering work of Alwan and Roberts (1988), who proposed 
monitoring the expected errors after estimating the appropriate time series model for the 
process. This method is intuitive, resp. once the autocorrelation is explained by the basic 
time series model, while the residues satisfy the conditions of independent random 
process errors. Traditional SPC methods can therefore be used to monitor residues. 
Subsequent work on the subject can be divided into roughly two topics; time series based 
models (Alwan and Roberts, 1988; Lu and Reynolds, 1999a, 1999b; Apley and Shi, 
1999; Apley and Tsung, 2002; Testik, 2005) and model free approaches (Apley and 
Tsung, 2002; Krieger et al., 1992; Atienza et al., 2002; Dyer et al., 2003; Runger and 
Willemain, 1996; Sun and Xu, 2004; Balkin and Lin, 2001; Zhang, 2000; Alwan and 
Alwan, 1994; Young and Winistorfer, 2001; Runger, 1996). In the first case, three 
general approaches have been proposed: those that monitor residues (Alwan and Roberts, 
1998; Wardell et al., 1994; Lu and Reynolds, 1999a, 1999b, 2001; Apley and Shi, 1999; 
Apley and Tsung, 2002; Testik, 2005; Montgomery and Mastrangelo, 1991; Mastrangelo 
and Brown, 2000; Alwan, 1992; Timmer et al., 1998; Atienza et al., 2002, 1998; English 
et al., 2000; Loredo et al., 2002; Alwan and Radson, 1992), those based on direct 
observations (Montgomery and Mastrangelo, 1991; Mastrangelo and Brown, 2000; 
Alwan, 1992; Timmer et al., 1998; Lu and Reynolds, 2001; Atienza et al., 2002; Bai, 
1994) and those based on new statistical characteristics (Atienza et al., 1998). A brief 
overview of these approaches is provided below. Wardell et al. (1994) and Lu and 
Reynolds (1999a, 1999b) proposed the use of an exponential weighted moving average 
(EWMA) control chart for residue monitoring. Aunali et al. (2019) introduced a control 
chart using M/M/1 queueing discipline to study and maintain a process control in a 
regular interval. Gohel et al. (2018) introduced new improvements of CUSUM and 
EWMA control charts for ready-mixed concrete (RMC). Apley and Shi (1999) suggested 
a general likelihood ratio test (GLRT) approach to determine mean shift in the 
autocorrelated processes. Apley and Tsung (2002) have proposed an activation 
cumulative score (cuscore) diagram that is similar to GLRT but easier to implement. 
Castagliola and Tsung (2005) examined the effect of abnormality on residual control 
charts. They designed a modified Shewhart control chart for residues – the so-called 
special cause chart (SCC), which is in conditions of abnormality more robust. Testik 
(2005) considered the uncertainty in the time series model to estimate parameters and to 
monitor residues of the first order authoritative process AR(1) and suggested a solution in 
the form of wider EWMA control limits. 

Johnson and Bagshaw (1974) and Bagshaw and Johnson (1975) have derived an 
approximate distribution of the number of selections leading to the signal under the 
condition that the process is governed by the AR(1) or MA(1) model for the CUSUM 
control chart. They also argue that incorrect conclusions can be drawn using the 
conventional CUSUM diagram if there is a correlation in the data. Harris and Ross 
(1991) discussed the effect of autocorrelation on CUSUM and EWMA charts and showed 
that the median and average number of selections leading to the signal in these diagrams 
are sensitive to the presence of autocorrelation in the data. Alwan (1991) discussed the 
effect of masking special causes using autocorrelated data and demonstrated that, even in 
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the presence of a low degree of autocorrelation, points outside the control boundaries of 
the diagram do not necessarily imply a process change. Padgett et al. (1992) examined 
the Shewhart diagrams, with such a correlation process that can be described by the 
AR(1) model plus random errors, and found that this type of autocorrelation causes false 
signals. Alwan (1992) discussed the capability of Shewhart diagrams under the condition 
that observations reflect a general diagram of autoregressive moving averages, 
ARIMA(p, q). Alwan and Alwan (1994) discussed the influence of autocorrelation on 
frequently advocated complementary tests of non-random groupings. Schmid and Schone 
(1997) theoretically showed that the number of withdrawals leading to signal the 
autocorrelated processes is greater than in the case of independent variables provided that 
all autocovariance numbers are greater or equal to zero. Prybutok et al. (1997) found that 
undiagnosed, but estimated correlations in the data, will reduce the average time the 
signal increases as the degree of correlation. Boyles (2000) provided an estimation 
method for the first order autoregressive common cause model, which distinguished the 
variability of models of autocorrelated common causes from actual baseline observations. 

Early detection of attributable causes ensures that the necessary corrective measures 
can be taken before a large number of non-compliant products are produced. If there is 
autocorrelation in the data, measures must be taken to prevent its impact on the correct 
implementation of SPC techniques. A simple idea that can ‘dissolve’ autocorrelation is 
less frequent sampling of process data. However, the inefficient use of the data available 
may lead to a reduction in the performance of control charts, as with the limited data, it 
may take much longer to reveal a real shift in the process mean value than when all 
observations are available. In addition to a simple approach using less frequent sampling, 
two general approaches have been developed for the design of control charts in the case 
of correlated processes. 

The first approach uses the standard control charts and explanation of autocorrelation 
and a method of estimating the variance of the process to estimate the actual process 
variance adjusting both control limits (see, e.g., Vasilopoulos and Stamboulis, 1978;  
Van Brackle and Reynolds, 1997; Schmid, 1995). The second approach approximates the 
process data with the time series model so that the prediction of each additional 
observation can be made using previous observations, and then the classical control 
charts are used for the residues, or some of their slightly modified versions (see, e.g., 
Alwan and Roberts, 1988; Harris and Ross, 1991; Montgomery and Mastrangelo, 1991; 
Mastrangelo and Montgomery, 1995; Lu and Reynolds (1999a, 199b). The reasonable 
use of residual diagrams is such that assuming the correct time series model is determined 
for the data, the residues will be independent random variables originating from the same 
distribution. Thus, all statistical assumptions will be met, and some of the traditional SPC 
methods can be used. Once a change in mean or variance of residues in the process is 
found, it is concluded that the mean or variance of the process itself has changed. Thus, 
the representation of residues in the control chart provides a mechanism for detecting the 
process change. 

However, many people seem to agree that residual diagrams do not have the same 
characteristics as traditional ones, i.e., the original observation diagrams, and that the 
ability of a diagram to detect a mean shift depends on a suitable model to suitably 
approximate data. This was first demonstrated by Longnecker and Ryan (1991) and Ryan 
(1991), where the AR(1) model was used. In Longnecker and Ryan (1992), additional 
models were considered where residual diagram performance was assessed for individual 
values from AR(1), AR(2) and ARIMA(1, 1). They pointed out that a residual diagram 



   

 

   

   
 

   

   

 

   

    The effect of autocorrelation on control charts performance 5    
 

    
 
 

   

   
 

   

   

 

   

       
 

for individual values may have poor ability to detect a mean shift in the process, and 
showed that the diagram has a high probability of detecting a mean shift when it occurs, 
but if this shift is not immediately recognisable, there is a low probability that the shift 
will be detected later, especially for the AR(1) positive autocorrelation process. Wardel  
et al. (1994) studied deriving the distribution of the number of selections leading to the 
signal in residual diagrams and a little later Zhang (1997), Lu and Reynolds (1999a, 
1999b) and others. Harris and Ross (1991) studied the response of ARIMA(0, 1, 1) and 
AR(1) process residues to a process mean shift and concluded that the residual analysis is 
insensitive to median value in the case of positively autocorrelated processes and 
traditional control methods are recommended for residue monitoring. 

Until now, it seems that small attention has been paid to the development of control 
charts for correlated attribute data. Deligonul and Mergen (1987), as well as Bhat and Lal 
(1990), suggested the existence of a two-state model of Markov chains for 
autocorrelation of attributive data. Harvey and Fernandes (1989) argue that correlated 
computing data can be modelled and EWMA accessed. Wisnowski and Keats (1999) also 
came to the same conclusion. Stimson and Mastrangelo (1996) studied the tracking of 
serially correlated processes with attribute data obtained from multi-stage production. Lai 
et al. (1998) tested control procedures based on the number of selections leading to the 
signal of matching (matching) units of applications to almost no defective processes in 
the presence of serial correlation. Lai et al. (2000) studied the problem of process 
monitoring where the process is of high quality and the measured values have some serial 
dependence. Tang and Cheong (2006) have designed a control apparatus that is effective 
in detecting a change in proportion, unsatisfactory for high yield correlation processes 
within each control group. Finally, Shepherd et al. (2006) suggested two apparatuses of 
control charts. These control charts are based on a sequence of random variables that are 
used to classify a unit as satisfactory or unsatisfactory according to a stationary Markov 
chain model and 100% sequential sampling. 

The influential works of the current review of the discussed issues were the ones of 
Papaleonida (2002) and Papaleonida and Psarakis (2002). There is an extensive overview 
of procedures and approaches in monitoring autocorrelated processes. Later, it was Knoth 
and Schmid (2004) who provided a detailed overview of their work in this issue, 
including a comparative study of some adjusted and residual EWMA and CUSUM 
apparatuses. Development SPC techniques for monitoring autocorrelated processes 
reached considerable attention in the literature concerning the quality of engineering. The 
focus is mainly on the detection of process mean shift as well as on changes in the 
variability (volatility) and autocorrelation structure of the time series, which are also 
important indicators of the presence of process changes (it must then influence the system 
due to a definable cause). It is often overlooked. 

Dooley and Kapoor (1990) discussed monitoring changes in the mean value and 
variability autocorrelation structure (MVAS) of process observations using simultaneous 
engineering CUSUM charts, χ2 and autocorrelation diagram of residues estimated model 
of the process data mentioned. Yourstone and Montgomery (1989) pointed out that the 
autocorrelation function (ACF) “Will detect changes in the structure of the 
autocorrelation as well as shifts in the mean and variability of data quality process in real 
time”. They designed a real-time monitoring of residual autocorrelation of the first m n 
calculated for the most recent measurement process. Such selective is called a graph 
diagram of autocorrelation sample autocorrelation chart (SACC). On the basis of the 
mean time of the occurrence of an unsatisfactory d value (ARL), Atienza et al. (1997) 
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examined properties in the diagram SACC. They pointed out that while SACC may 
detect changes in the mean and variability of the range, it is far from as good as the 
Shewhart control chart (SCC) used on residues. The only advantage of SACC is that it 
can detect changes in the autocorrelation structure of the series better than SCC. So, for a 
simultaneous monitoring of changes in MVAS series, relying on the SACC diagram only. 

2 The application of control charts for the autocorrelated data from 
chemical industry 

The following practical examples will be examined by the autocorrelated typical set of 
measurements where the model constructed such time series, which will then be used to 
construct the ARIMA control chart to monitor these autocorrelated data. The following 
analysis relates to 197 measurements of NH3 (g/m3) concentrations in chemical process. 
Measurements were taken every two hours. The concentration process should be 
maintained at 17.1 ± 1.2. The first step in analysing any process is its graphical 
diagnostics. For example, a flow chart may be very informative for sequentially ordered 
data. 

Figure 1 Flow chart for data from chemical concentration processes (see online version  
for colours) 

 

Source: Custom processing in Statgraphics 

The previous graph shows strong fluctuations around the mean. The following numerical 
output shows the results of several test runs that are used to determine whether the 
observed values constitute a sequence of independent observations. 

The previous figure shows a probabilistic chart that, even by the p-value of the 
Anderson-Darling test, does not reject the assumption of data normality. 

The low p-value in the last column corresponds to the grouping test (too few 
waveforms above and below the median). This test compares the number of waveforms 
above and below the median (44) with the expected assumption that the observations 
given were randomly selected from any population (88.08). To reject the hypothesis of 
independence between consecutive observations at the 5% level of significance, p must 
be lower than 0.05. If we did not pay enough attention to both independence and data, 
creating a control chart for individual values would cause the following. 
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Figure 2 Verification of normality of measured concentrations (see online version for colours) 

 

Source: Custom processing in Statgraphics 

Table 1 Numerical diagnostics of the flow diagram 

Test Observed Awaited Longest P(>=) P(<=) 
Runs above and below the median 44 88.0795 23 1.0 1.388E-11 
Runs up and down 110 115.0 5 0.8406 0.207331 

Note: Variable: concentration; 197 values ranging from 16.1 to 18.2; Median = 17.0). 
Source: Custom processing in Statgraphics 

Figure 3 Control chart for individual chemical process concentration measurement values  
(see online version for colours) 

  
Source: Custom processing in Statgraphics 

 



   

 

   

   
 

   

   

 

   

   8 M. Kovářík and P. Briš    
 

    
 
 

   

   
 

   

   

 

   

       
 

The resulting control chart shows many points outside the 3σ control limits and many 
violated tests of non-random groupings. Alarms are signalled at the top and bottom of 
each cycle. In addition, there are also long point patterns either above or below the mean. 
The flow chart is of no use for monitoring this process in case of such fluctuations of the 
mean value. Since fluctuations are an integral part of the process dynamics, it does not 
mean that the process is ‘out of control’, in a statistically uncontrolled state. Now, we 
move on to constructing a parametric model of time series. In order to monitor the 
process, we must first understand the nature of its dynamics. For stationary process (a 
process with constant long-term mean value and Scattering), there is a very useful class 
of ARIMA models (autoregressive, integrated, moving average). The general model that 
we observed is the concentration of Yt at time period t, such as linear combination 
concentrations measured in the last p periods, the random effect on the system in the 
current time period and the t and the random effects that occurred in the previous q time 
periods. 

0 1 1 2 2

1 1 2 2

t t t p t p t

t t p t q

Y θ Y Y Y a
θ a θ a θ a

− − −

− − −

= + + + + +
− − − −





φ φ φ
 (1) 

The parameters that define this model are: 

θ0 constant 

ϕ1, ϕ2, …, ϕp autoregressive parameters 

θ1, θ2, …, θq moving average parameters. 

Such a model is capable of representing different modes of dynamic behaviour and has 
been widely applied to many different types of systems. In fact, it can show the fact that 
if the data is selected and from a system that follows the pth order of the difference 
equation, it should reflect a model with p autoregressive parameters and q = p – 1 
parameters of moving averages. From a statistical point of view, the general problem is to 
determine an order of the model (to set the p and q values) and to estimate the model 
parameters. In the following section, we will consider solving this problem by limiting 
the models in which the q = p – 1. If we want to find out what type of ARIMA model to 
use for a particular dataset, we will rely on two major graphical tools: the ACF and the 
partial ACF. 

The ACF displays estimates of the correlation coefficient between observations 
separated by k time points where k is called the delay order. This chart shows very well 
how the effect of the random effect entering the system interferes with the future. 
Imagine the situation when the pendulum is deflected from our j equilibrium. This will 
return to its original position over time. Either it returns to its original position over time, 
possibly as an exponential (first-order system) or possibly as an override showing 
damped oscillations until it returns to its equilibrium (second-order system). 

The shape of the ACF is like a fingerprint, identifying the types of dynamics that are 
present in the process. For autoregressive models, another function called the partial ACF 
will be useful. It draws partial autocorrelation coefficients as a function of k delay. 
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Figure 4 Chart of the selective ACF (see online version for colours) 

 

Source: Custom processing in Statgraphics 

Figure 5 Graph of the partial ACF (see online version for colours) 

  
Source: Custom processing in Statgraphics 

All coefficients that exceed the 95% probability limits would require the autoregressive 
parameter of this order. Thus, the above graph shows significant partial autocorrelations 
at lags 1 and 2, suggesting that the ARIMA model with the parameter p = 2 is likely for 
this data. 

Subsequently, the most appropriate ARIMA model will be identified for this data. 
The best approximating model is p = 2 and q = 1. In the previous graph, the measured 

values, including the most optimal interleaving model with the 95% prediction intervals 
for 100 predictions, are shown. 

Process mean estimates μ̂  = 17.07 and standard deviations of random influences  
ˆYσ  = 0.3142 are very important characteristics here. Note that this is not equal to the 

process standard deviation ˆ ,Yσ  that is a function ˆaσ  and parameters of the estimated 
model. 
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Figure 6 Predictive functions for the selected model (see online version for colours) 

 

Source: Custom processing in Statgraphics 

Figure 7 Numerical diagnostics of best fitted ARIMA model 

  
Source: Custom processing in Statgraphics 

Then, the ARIMA control chart is configured. We selected the 2nd order of the AR 
parameter and the 1st order of the MA parameter. We calculated the standard deviation of 
the model based on the MSE characteristic. It follows the graphical output in the form of 
the ARIMA control chart. 

In this control diagram, the central line is estimated by the process mean value  
μ̂  = 17.07 with control limits plus minus process standard deviation ˆ .Yσ  The process 
standard deviation estimate is ˆYσ  = 0.4130. This results in wider control limits (following 
Figure 8), which allows for autocorrelation in data. It is important to note that the above 
chart monitors the long-term behaviour of the process. Individual points in the graph are 
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not independent, so the standard runtime rules cannot be used. The graph also does not 
monitor the effects of entering the system, CI occurs in each time period. 

Figure 8 ARIMA control chart with extended control limits (see online version for colours) 

  
Source: Custom processing in Statgraphics 

In particular, its purpose is to find out when the process deviates from the long-term 
average more than expected, given the process dynamics. To monitor the separated 
random effects, we will use the residual control diagram of the estimated ARIMA model. 

Figure 9 Control chart for residuals estimated ARIMA model (see online version for colours) 

  
Source: Custom processing in Statgraphics 

The ARIMA control chart illustrates observation estimates and t, which are influences 
affecting the system at each time point and time. In the previous graph, two random 
influences above 3σ of control limits are shown, which means that there was a sample 
during sampling with unusually big mistakes. There are also two positions in the graph 
where random influences showed a significant course of negative values. For a more 
detailed graphical analysis, a control chart moving range can also be used. 
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Figure 10 Moving range control chart for residuals of the estimated model (see online version 
for colours) 

  
Source: Custom processing in Statgraphics 

In practice, however, a dynamic control diagram is used much more often as shown in the 
following figure. 

Figure 11 Dynamic ARIMA control chart (see online version for colours) 

  
Source: Custom processing in Statgraphics 

Diagrams represent the original data with gliding control limits. At each point in time t, 
the control limits are centred around the predicted value for Yt created at time t – 1, 

ˆ3 .aσ±  The graph gives the same signals with respect to the control limits being 
exceeded, as well as the control diagram for the residual model residues. 

If you use the ARIMA control diagram, it is necessary to confirm the correctness of 
this model using the residual auto-tracking function. This consists in verifying the  
non-autocorrelation of residues. 

From the previous graph, we see that all columns are within (or very close to) 95% of 
the probability limits, showing non-correlated residuals of the estimated ARIMA model. 
To determine capability, we need to add an average concentration value of 17.0722 to the 
white noise values. 
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Figure 12 Residual ACF (see online version for colours) 

 

Source: Custom processing in Statgraphics 

The non-random cause signalled in the control chart was identified and performed the 
measures that the situation has not been repeated. The control of concentration in the 
chemical process is capable with a coefficient of Cp = 1.35 and Cpk = 1.33. 

Figure 13 Process capability calculated for residuals of the estimated model (see online version 
for colours) 

 

Source: Custom processing in Minitab 16 

In the case of data dependency, standard control charts should not be used. The control 
charts should be used when taking into account the dynamics of the process, for example, 
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the ARIMA control charts. In the case of data independence, the classical control 
diagram would have a lot of false signals and its practical implementation would be risky. 

The ARIMA control chart requires a time series model identification before using it. 
If possible, models can be limited to ARIMA models with q = p – 1, reducing the 
problem only to determining the correct autoregressive model of the order p. 

3 The effect of autocorrelation on calculation of process capability indices 

In the following, we use simulation study, where we assume that a certain inherent 
quality attribute has a normal distribution with mean of 40 and standard deviation of 7. 
Specification limits USL = 61 and LSL = 19. Further contemplated are the various target 
values: 40, 41, 42, 45 and 50. Next, two processes will be compared. The process with 
independent observations and the process with observations controlled by AR(1) Xt = Xt–1 
+ et, where {et} is a series of uncorrelated errors 2~ (0, )t ee N σ  and σe = 7. 

The process capability indices Cp, Cpk, Cpm and Cpmk, mean value are calculated for 
each process as well as standard deviation. Cpk and Cpmk will not be given because  
Cp = Cpk and Cpm = Cpmk, see Table 2. 

Table 2 shows that the higher the autocorrelation value, the lower the process 
capability index. 
Table 2 Mean value (µ), standard deviation (σ), Cp and Cpm of the non-correlated process 

controlled by the AR(1) model 

Cpm 
|ɸ| µ σ Cp 

d = 0 d = 1 d = 3 d = 5 
Does not exist 40 7.00 1.00 1.00 0.99 0.919 0.814 
0.25 40 7.23 0.968 0.968 0.959 0.894 0.796 
0.5 40 8.05 0.866 0.866 0.859 0.812 0.737 
0.75 40 10.6 0.661 0.661 0.659 0.636 0.598 

Note: Note: d = μ – T. 
Source: Custom processing 

To compare differences in estimates ˆ pmC  and ˆ ,pmkC  a simulation study was conducted 
for the first order stationary autoregressive process with parameter ϕ. For Cp = 1.33, and  
ξ = 0, 5, 10, where ξ = (μ – T) / σ, ϕ = 0.25, 0.5, 0.75 and n = 10, 20, …, 200, Figure 14 
shows a large estimate variability for n < 100 great variability in estimation ˆ( ).pmVar C  

Leaving Cp and n constant and increasing ξ as |ϕ|, then ˆ( )pmVar C  will grow. Similar 

results are obtained for estimation ˆ( )pmkVar C  by substituting Cpm for Cpmk and Cp for Cpk 
(see Figure 15). Now, if we keep constant values ϕ and ξ and n will grow, the estimates 

ˆ( )pmVar C  and ˆ( )pmkVar C  will decrease. If we leave ϕ and n constant values, assuming ξ 
will grow, there will be a situation where the target value will be far from the process 
mean and estimates ˆ( )pmVar C  and ˆ( )pmkVar C  will fall. 
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Figure 14 Capability index estimation variability ˆ
pmC  is a function of the selection range with 

Cp = 1.33, ξ = 0, 5, 10 and ϕ = 0.25, 0.5, 0.75 

  
Source: Custom processing in R language 

Figure 15 Capability index estimation variability ˆ
pmkC  is a function of the selection range with 

Cpk = 1.33, ξ = 0, 5, 10 and ϕ = 0.25, 0.5, 0.75 

  
Source: Custom processing in R language 

Using a simulation study, we will analyse the effect of autocorrelation on expected 
sample mean values and expected standard error values. We generate 1,000 selections 
from the non-automated model and 1,000 selections from the AR(1) model for the 
following cases: n = 15, 50, 100, 200; T = 40, 41, 42, 43, 44, 45 and ϕ = –0.75, –0.5,  
–0.25, 0.25, 0.5, 0.75. Figure 16 shows that the autocorrelation does not affect the 
expected value of the sample mean, but another situation occurs with the standard error. 

Recall, that 
2

2
( ) ,

1
e

t
σVar X =
−φ

 where 2
eσ  is white noise. For example, in Figure 17, for  
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n = 15 and ϕ = –0.25, in the case of an autocorrelated process, an estimate of the expected 
standard error is 6.9, for ϕ = –0.5 it is 7.3 and for ϕ = –0.75 it is 10.5. For independent 
observations, the values are 6.8, 6.2, and 6.7. As n increases, the estimated standard error 
value of autocorrelated data slightly increases. For example, for ϕ = 0.25 estimates of 
expected values for n = 15, 50, 100 are 7.21, 7.25, and 7.31. 

Figure 16 Expected values/standard errors of sample mean for non-correlated process and 
AR(1) process (see online version for colours) 

 

Source: Custom processing in R language 

The simulation study in Tables 3 and 4 captures the performance of capability index 
estimates. Again, a comparison of the estimated expected values of capability indices is 
shown in Tables 3 and 4 with the theoretical values that are shown in table 2 that 
estimates are slightly deflected for autocorrelated processes. The deviation with 
increasing n decreases. For example, for ϕ = –0.75 and n = 15, 50, 100, the expected 
values are ˆ pC  0.703, 0.673 a 0.668, while the actual value is 0.661. For ϕ = 0.25 and  

n = 15, 50, 100, the expected values are ˆ pkC  0.937, 0.935 and 0.938, while the actual 
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value is 0.968. For n = 15 and ϕ = 0.5, the expected values are ˆ pmC  0.84, 0.84, 0.83 a 
0.81, when μ – T = 0, 1, 2 and 3, while the actual values are 0.866, 0.859, 0.841 and 
0.812. 

Figure 17 Expected values/standard errors of sample standard deviation for non-correlated 
process and AR(1) process (see online version for colours) 

 

Source: Custom processing in R language 

Previously, a simulation study has shown that a higher autocorrelation results in lower 
capability index values. Furthermore, it has been shown that estimates are slightly 
deflected for the autocorrelated processes and this deflection decreases with an increasing 
n. The autocorrelation does not affect the expected average of the sample average 
estimates of capability indices, but it affects the estimated expected standard error value, 
which increases slightly for the autocorrelated data with an increasing n. 
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Table 3 The effect of autocorrelation on expected standard error values of capability indices 
for processes generated by AR(1) – situation without autocorrelation 

Cpm 
n ϕ x ̅ / s Cp Cpk 

d = 0 d = 1 d = 3 d = 5 
15 –0.75 x̅ 1.057 0.987 1.02 1.01 0.94 0.83 
  s 0.2 0.206 0.19 0.19 0.17 0.14 
 –0.5 x̅ 1.059 0.986 1.02 1.01 0.95 0.84 
  s 0.2 0.206 0.19 0.19 0.17 0.14 
 –0.25 x̅ 1.06 0.985 1.02 1.01 0.95 0.84 
  s 0.2 0.206 0.19 0.19 0.17 0.15 
 0.25 x̅ 1.074 1.00 1.03 1.02 0.95 0.84 
  s 0.203 0.208 0.19 0.19 0.17 0.14 
 0.5 x̅ 1.048 0.976 1.01 1.00 0.93 0.83 
  s 0.198 0.204 0.19 0.19 0.17 0.14 
 0.75 x̅ 1.07 0.995 1.03 1.02 0.95 0.84 
  s 0.202 0.207 0.19 0.19 0.17 0.14 
50 –0.75 x̅ 1.016 0.978 1.01 1.00 0.92 0.82 
  s 0.103 0.11 0.1 0.1 0.09 0.08 
 –0.5 x̅ 1.009 0.972 1.00 0.99 0.92 0.82 
  s 0.102 0.109 0.1 0.1 0.09 0.08 
 –0.25 x̅ 1.015 0.978 1.00 1.00 0.93 0.82 
  s 0.102 0.11 0.1 0.1 0.09 0.08 
 0.25 x̅ 1.013 0.975 1.00 0.99 0.92 0.82 
  s 0.102 0.109 0.1 0.1 0.09 0.08 
 0.5 x̅ 1.012 0.973 1.00 0.99 0.92 0.82 
  s 0.102 0.109 0.1 0.1 0.09 0.08 
 0.75 x̅ 1.018 0.979 1.01 1.00 0.93 0.82 
  s 0.103 0.11 0.1 0.1 0.09 0.08 
100 –0.75 x̅ 1.004 0.978 1.00 0.99 0.92 0.81 
  s 0.071 0.077 0.07 0.07 0.06 0.05 
 –0.5 x̅ 1.009 0.982 1.00 0.99 0.92 0.82 
  s 0.072 0.077 0.07 0.07 0.06 0.05 
 –0.25 x̅ 1.009 0.982 1.00 0.99 0.92 0.82 
  s 0.072 0.077 0.07 0.07 0.06 0.05 
 0.25 x̅ 1.007 0.98 1.00 0.99 0.92 0.82 
  s 0.072 0.077 0.07 0.07 0.06 0.05 
 0.5 x̅ 1.009 0.982 1.00 0.99 0.92 0.82 
  s 0.072 0.077 0.07 0.07 0.06 0.05 
 0.75 x̅ 1.009 0.983 1.00 0.99 0.92 0.82 
  s 0.072 0.077 0.07 0.07 0.06 0.05 

Notes: Mean value (x̅); Standard error (s). d = μ – T. 
Source: Custom processing 
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Table 4 The effect of autocorrelation on expected standard error values of capability indices 
for processes generated by AR(1) – situation with autocorrelation 

Cpm 
n ϕ x ̅ / s Cp Cpk 

d = 0 d = 1 d = 3 d = 5 
15 –0.8 x̅ 0.703 0.673 0.7 0.69 0.67 0.62 
  s 0.213 0.206 0.21 0.21 0.18 0.15 
 –0.5 x̅ 0.916 0.873 0.9 0.9 0.84 0.76 
  S 0.236 0.228 0.23 0.22 0.19 0.15 
 –0.3 x̅ 1.019 0.963 1.00 0.99 0.92 0.81 
  S 0.241 0.232 0.23 0.22 0.19 0.14 
 0.25 x̅ 1.031 0.937 0.98 0.97 0.91 0.82 
  S 0.245 0.23 0.22 0.21 0.19 0.15 
 0.5 x̅ 0.915 0.794 0.84 0.84 0.81 0.75 
  S 0.237 0.218 0.2 0.2 0.18 0.16 
 0.75 x̅ 0.69 0.526 0.61 0.6 0.6 0.58 
  S 0.204 0.18 0.16 0.16 0.15 0.14 
50 –0.8 x̅ 0.673 0.658 0.67 0.67 0.65 0.6 
  S 0.138 0.135 0.14 0.14 0.12 0.1 
 –0.5 x̅ 0.885 0.863 0.88 0.88 0.83 0.75 
  S 0.137 0.135 0.14 0.13 0.11 0.09 
 –0.3 x̅ 0.985 0.955 0.98 0.97 0.9 0.8 
  S 0.132 0.13 0.13 0.13 0.1 0.08 
 0.25 x̅ 0.985 0.935 0.97 0.96 0.9 0.8 
  S 0.131 0.129 0.13 0.12 0.11 0.08 
 0.5 x̅ 0.876 0.812 0.85 0.85 0.8 0.74 
  S 0.137 0.134 0.13 0.13 0.11 0.09 
 0.75 x̅ 0.674 0.578 0.64 0.64 0.62 0.59 
  s 0.137 0.132 0.12 0.12 0.12 0.11 
100 –0.8 x̅ 0.668 0.658 0.67 0.66 0.64 0.6 
  s 0.104 0.103 0.1 0.1 0.09 0.08 
 –0.5 x̅ 0.877 0.86 0.88 0.87 0.82 0.74 
  s 0.1 0.098 0.1 0.1 0.08 0.06 
 –0.3 x̅ 0.973 0.952 0.97 0.96 0.9 0.8 
  s 0.094 0.093 0.09 0.09 0.08 0.05 
 0.25 x̅ 0.973 0.938 0.97 0.96 0.89 0.8 
  s 0.093 0.093 0.09 0.09 0.08 0.06 
 0.5 x̅ 0.873 0.829 0.86 0.86 0.81 0.74 
  s 0.098 0.099 0.1 0.09 0.08 0.07 
 0.75 x̅ 0.666 0.597 0.65 0.64 0.62 0.59 
  s 0.103 0.103 0.1 0.1 0.09 0.08 

Notes: Mean value (x̅); standard error (s). d = μ – T. 
Source: Custom processing 
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4 Conclusions 

Most of the traditional control chart procedures are based on the assumptions that process 
measurements that are monitored are independent and come from the same distribution. 
With the trend of high-speed data collection systems, the assumption of independence is 
usually violated. This means that the autocorrelation between measurements becomes an 
inherent characteristic of a stable process. The autocorrelation causes a significant 
deterioration in the performance of control charts in the process control. Several 
procedures have been proposed to address the problem of autocorrelated processes. The 
most popular procedure utilises either the Shewhart, CUSUM or EWMA control chart for 
residues of an appropriately estimated ARIMA model. However, procedures of this type 
are of a low sensitivity, especially if the processes are positively autocorrelated. As an 
alternative, we have examined the use of statistics used in time series procedures to 
monitor outliers and process mean shifts. 

In the paper, we focused on practical applications of the use of control charts on real 
data that come from the autocorrelated processes. In all these cases, a suitable model was 
found describing the real process dynamics and a subsequent construction of the control 
chart on the residuals of this model. Furthermore, we dealt with the effect of 
autocorrelation on process capability indices, where we concluded that the higher the 
value of autocorrelation, the lower the process capability index. Furthermore, it has been 
shown that estimates are slightly deflected for the autocorrelated processes and this 
deflection decreases with an increasing n. The autocorrelation does not affect the 
expected mean of the sample mean estimates of capability indices, but it affects the 
estimated expected standard error value, which increases slightly for the autocorrelated 
data with an increasing n. 

The observation of the autocorrelated process results primarily from the automatic 
data collection system. These data collection systems are usually controlled by software 
that can be upgraded with SPC functions for data processing. Under such an integrated 
system, the usefulness of the proposed procedure will be optimised. 
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