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ABSTRACT

In this work, the recently proposed frame-invariant Generalized Newtonian Fluid (GNF) constitutive
equation [M. Zatloukal, Physics of Fluids 32(9), 091705 (2020)] has been modified to provide uniaxial
extensional viscosity at high strain rate limit corresponding to molecular expression for a fully extended
Fraenkel chain reported in [G. lanniruberto, G. Marrucci, and Y. Masubuchi, Macromolecules 53(13),
5023-5033 (2020)]. It uses basic rheological and molecular parameters together with the ratio of
monomeric friction coefficients for equilibrium and fully aligned chains. The modified GNF model was
successfully tested by using steady-state uniaxial extensional viscosity data for well-characterized
entangled polymer melts and solutions (namely linear isotactic polypropylenes, poly(n-butyl acrylate),
polyisoprenes and polystyrenes) covering a wide range of strain rates, including those, at which the chain
stretch occur. Only two fitting parameters were sufficient to describe all uniaxial extensional viscosity
data, one related to the Rouse stretch time and the other controlling the extensional thinning and
thickening behavior at medium and high strain rates. The model was compared to five different advanced
viscoelastic constitutive equations, which are based on Doi-Edwards theory and include chain stretch
along with a number of important additions. The ability of the proposed GNF model to represent steady
uniaxial extensional viscosities under fast flow conditions for entangled polymer fluids has been shown
to be superior to the predictions of selected advanced viscoelastic constitutive equations. It is believed
that the modified GNF model can be used in the stable modeling of non-Newtonian polymer liquids,

especially in very fast steady-state flows where chain stretch begins to occur.
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INTRODUCTION

Knowledge of polymer melt dynamics and stability at very fast flows (i.e. at high speeds and/or in the
small channels where orientational and/or stretch Weissenber number is higher than 1 [1, 2]) is essential
for the optimization and development of new polymeric materials used to produce micro/nano-products
via advanced technologies such as additive manufacturing (alias 3D printing) [3-8] micromolding [9-
13], nano-imprint lithography [14-18], film casting [19-25], meltblown [26-29] and electrospinning [30-
32]. It was found that the flow behavior of polymer melts in highly confined geometries is significantly
different from those of the bulk [33-35] (i.e. classic Navier-Stokes equations with dimension-
independent viscosity are not applicable for modeling purposes), strain rates are very high [36-40] and
both, flow facilitation [38, 41-45] (caused by slip, reduced degree of coil-coil interpenetration, viscous
dissipation, flow-induced chain scission) as well as flow stiffening [39, 46-49] (due to flow-induced
crystallization, melt compressibility, collective molecular motion or molecular immobility at the solid
surfaces) can be observed. In recent years, specific attention has been paid to flow-induced chain stretch
and monomeric friction coefficients, which control extensional rheology [50-53] and flow-induced
crystallization [54-60] in fast flows. Because both of these factors are not currently included in the
modeling of industrially important complex flows, the understanding of the dynamics of polymer liquids
and their stability is very limited in such cases. This significantly limits the optimization and
development of the above-mentioned advanced technologies. There are also a number of constitutive
equations with a high ability to describe the extensional rheology of polymeric fluids (such as the
molecular stress function (MSF) model [61-64] for entangled polymer melts or the recently proposed
constitutive equation Narimissa and Wagner (NW) [65] for disentangled melts), but because they do not
consider flow-induced reduction of the monomeric friction coefficient, their molecular basis is unclear,

as described, for example, in [51, 66].
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The aim of this work is to combine recent knowledge about the dynamics of polymer liquids in
very fast uniaxial extensional flows resulting from molecular arguments [52, 67] with the recently
proposed frame-invariant formulation of Generalized Newtonian Fluid (GNF) constitutive equation [68],
which could be useful for steady-state flow modeling under flow conditions typical for the production
of micro/nano-products or products with nanofeatures, where the monomeric friction coefficient can be

significantly reduced.

CONSTITUTIVE EQUATION

Frame-invariant Generalized Newtonian Fluid Model with 70 = 0

In this work, we used GNF constitutive equation, which belongs to a new family of models [68-73],
where the strain rate dependent viscosity 77(D), is modified as 7 = A"/ n(D)f , where the constant A is

related to the high-strain rate plateau values of the shear and extensional viscosities and f is function
evaluating the intensity of stretching during flow. The models handle the differences between high-
extensional-rate uniaxial, planar and biaxial extensional viscosities compared to others, more advanced
constitutive equations (including the molecular-based Pom—Pom model), which unrealistically predict
steady-state uniaxial and planar extensional viscosities virtually identical at high extensional strain rates
[19, 68, 74]. These types of GNF models have been successfully tested for polymer melts with linear
(mLLDPE [68, 71], HDPE [68, 69]) and differently branched structures (mLLDPE [68, 69,71], nHDPE
[68], LDPE [68-70, 72]) including polymers with star type of the branching (LCB-PP [73]) using steady-
state extensional viscosities measured at extensional strain rates typically up to about 10 s™!, (i.e. at low
Wi, where entanglements dominate the dynamics). In this work, a very recently proposed frame-invariant

formulation of the GNF model [68] was used:
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Here o is the total stress tensor, p is the pressure, ¢ is the unit tensor, D represents the strain rate tensor

and U(IIZ,II o 11 D) means the viscosity, which can vary with the second invariant of the objective
. . =2 - . . .
velocity gradient Il = 2tr(L ), where L and the velocity gradient L are the same in steady-state flows,

as well as on the second I, = 2tr(D2), and third, /I, =det(D), invariants of D. The A, 70, 7= A1 @,
n, A2, y, B, & are adjustable parameters. In the pure shear flow, 17, = 11, =0 and thus f (IIZ,IID,IIID)

becomes equal to 1, i.e. the shear viscosity becomes dependent on the second invariant of the strain rate

tensor only with 17, = y* as follows:

Mo =1 (5)

n(y)=n.+ =)
[1 +(4,7) J ‘
Eq. 5 is called the Carreau-Yasuda model, which has the ability to fit a wide range of experimental 77( 7/)

data for many polymer solutions and melts [75].

For the uniaxial extensional flow, in which ;=1 =1I,= 38, Ml,=&"/4, the function

f (IIZ, IID,IIID) given by Eq. 4 simplifies to the following form:
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Combination of Egs. 1-3 and 6 leads to the following expression for uniaxial extensional viscosity

[mnh(zzﬁmﬁ)/mnh(ﬁ)]
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Considering that lim7,, (é):iyﬂ,w, the parameter A can be expressed by the infinite uniaxial
E>0 v T

extensional viscosity, Mgy 88 follows
Y
A= [’7;7} : ®)
where
o =[tanh(p)]". )

Here, the parameters 70, 77 A1, a, n are determined from the shear viscosity data fitting by the Carreau-
Yasuda model (Eq.3), while the parameters S 12, £and A are obtained by fitting the uniaxial extensional

viscosity data using the Eq. 7. In this case, the parameter  disappears.

Molecularization of GNF Model with 7. > 0 for entangled polymer melts and solutions

The parameters of the GNF model can be related to the molecular parameters of a given polymer fluid
utilizing the Rouse stretch time according to Doi and Edwards (Eq. 10 [76,77]), the Osaki’s definition
of the Rouse stretch time (Eq. 11 [78]) and the analytical expression for uniaxial extensional viscosity

saturating in very fast flows at the constant value, 7, , ., which was derived for the fully extended

Fraenkel chain just recently (Eq. 12 [52, 67]).
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Here, b the Kuhn segment length, ks the Boltzmann constant, 7 is the thermodynamic temperature, Geq
the equilibrium monomeric friction coefficient, M the molar mass, 70 the zero-shear rate viscosity, Mc( @)
the critical molar mass at which entanglements starts to occur, p the density, ¢ the volume fraction of
polymer in solution (@=1 for the melt) [79], R the universal gas constant, Suiigned the friction coefficient
for the fully stretched chain, N and v are the number of Kuhn segments and the Kuhn segment number

density, respectively, defined as

M

N=—o1, 13
M, =
PN,

==—a 14

v M 19

Here, Mk the Kuhn segment molar mass and N, is the Avogadro number relating R and ks as No=R/ks.

Combination of Egs. 10-12 leads to the following expression for the 7, , . normalized by the three

times zero-shear viscosity considering here that the zero-shear rate viscosity scales with M* with x of

3.5+0.2 for all linear and flexible molecules [76] rather than with the fixed value x =3.4[52]

77[5'U.DQ _ M(‘ (¢)X_l 1\427)L é’al[gned . (15)

3770 M K (D é/('q

The M( p) the critical molar mass at which entanglements starts to occur, which can be calculated based

on the Fetters et al. [80] formula using the molar mass between entanglements for the melt, M., (defined
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RT
according to Ferry as M, = pGo with Gy being the plateau modulus [76]), which is generalized here
N

considering that the molar mass between entanglements for polymer solutions, M‘,(go) is given as
M,/ [79,81]:

9.2%107"°

0.65
M, (o (16)
0 (o

Mc(¢)=[

where p is the packing length. The Mk can be determined from the ratio of the number of backbone
bonds, n, and N, which is related to the Flory’s characteristic ratio C» and the backbone bond angle 6 as
[82]

n__ G 17
N cos’(6/2)’
where n can be calculated from Eq. 18 using the average molar mass per backbone bond, m», as [82]

n=". (18)

Combination of Egs. 13, 17-18 leads to the following expression for the Mx:

e (19
cos’(60/2)
Note that the Kuhn segment length, b, appearing in Eqgs. 10 and 12, is defined as [82]
__ Gl (20)
cos(0/2)

where [ is the average backbone bond length (1.54*107'° m for the carbon-carbon bond [83, 84]). For
very fast extensional flows (£ — o), the GNF model yields the following expression for the normalized

asymptotic uniaxial extensional viscosity (by rearranging of Eq. 8):

31, Ty

v Al—a a
Nevw 7700. Q1)
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Considering that the 7, = K,M * [56] and 77, = K,M [40, 85], Eq. 21 can be rewritten as

I-a pra
77E,U.oc — A Kz Mo:fa . (22)
31, K,

Here, if o =2, the power in M becomes equal to 2— x, i.e the same as in the Eq.12. In this specific case,
it makes it possible to relate the parameter A to the ratio of the coefficients of friction derived for a fully

extended Fraenkel chain combining Eq.15 and Eq.22 as follows:

2
A=TMo g (o) b fe (23)

¢

770 é’aligned
This allows the determination of parameter A in the GNF model from sound molecular parameters with
a reduced number of adjustable parameters, because & parameter must satisfy the following equation to

keep the « value equal to 2

B 10g(2)
log [tanh (ﬂ’)]

_L
or alternatively = artanh(Z ¢ J 24

Thus Eqs. 1-4, where A and & are defined via Eq.23 and Eq.24, respectively, can be considered as the
“molecular based GNF model” (mGNF). It can be useful to express the parameter A as a function of the
maximum stretch ratio characterizing stretching ability of polymer chains (ratio of fully extended chain
length to equilibrium polymer chain length), Amax, which is defined for entangled polymer melts and

solutions as [86, 87]

A =

‘max

N (25)
7

where N is the number of Kuhn segments and Z is the number of entanglements per chain, that is defined

as

(26)

Combination of Egs. 13, 23, 25-26 leads to the following expression for parameter A:
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It is interesting to note that the use of 7, = K,M* [56] and 1, = K,M [40, 85] in the Eq. 27 leads to the

following molar mass independent expression for A:

KZ M ((,0) I-x g
A=—Z—3—M.(p) o——"—.
Kl ﬂ’rf\ax ( ) gal[gned

(28)

To summarize, the proposed mGNF model is simply the original GNF model given by Eqs.1-4, where

2 2
37700 _ﬁMf (go) Mc ((p)]*‘Mx—z(p é/eq and &= IOg(z)

A= =2 A P A
Meve Mo A ¢ aligned log [ta.nh ( £ ):|

As can be seen, the parameter A is directly related to three times the ratio of the square of the infinite-

shear-rate viscosity and the infinite-uniaxial extensional-rate viscosity.

RESULTS AND DISCUSSION

In order to understand the proposed model behavior in the uniaxial extensional flow, the parameters

Amax, S , A2 and f were systematically varied, while the other parameters were kept constant. The
aligned

maximum stretch ratio, Amar, and iare usually in the order of units/tenths (polymer melts and
aligned

entangled solutions), and hundreds (dilute unentangled solutions) [50, 53, 86]. Figures 1-2 show that as

Amax increases (or —“— decreases), the minimum extensional viscosity value increases, shifts to lower
aligned

orientational Weissenberg numbers Wi (= 4,¢ ), and the slope in the extensional thinning and thickening

region decreases and increases, respectively. The observed trends with respect to Amax correspond well
10
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with predictions of well-established models, such as the Finitely Extensible Nonlinear Elastic model
using the Peterlin approximation (FENE-P) for dilute solutions of flexible polymers (or unentangled
melts) and the Doi-Edwards-Marrucci-Grizzuti tube-model (DEMG) for concentrated solutions and
melts where entanglements dominate the dynamics [86]. The FENE-P model includes Brownian forces,
frictional forces, elastic/spring and the finite extensibility, while the DEMG model also captures the
reptation with stretch relaxation [86]. The observed trends relating friction in between chains undergoing
uniaxial extensional deformation to macroscopic properties (i.e. viscosity thickening and thinning) are
in good agreement with recent experimental and theoretical finding on dynamics of polymer liquids in

fast flows [50, 52]. The effect of parameters A2 and £ on the extensional viscosity is shown in Figures 3-

¢q

4 for two different values. As can be seen, these parameters control the extensional thinning and

aligned

thickening behavior at low and high Wi without changing the 7., and their effect on the extensional

viscosity curve is more dominant at lower —

ratios. In more detail, the extensional thickening at

aligned
low Wi increases as Az increases or as S decreases. In order to test the proposed mGNF model, strain rate
dependent uniaxial viscosity data taken from the open literature for linear isotactic polypropylene (iPP)
melts [28, 29, 53], poly(n-butyl acrylate) (PnBA) melt [87], polyisoprene (PI) melt and entangled
solutions [87], and polystyrene (PS) entangled solutions [88] were used. For iPP melts, all Carreau-
Yasuda model parameters (70, 77« A1, a, n) were taken from [40] and are summarized in Table I. In the
case of PnBA, PI, PS entangled liquids, only 70 and A are known from the open literature (considering
that A; is equal to the reptation relaxation time, 7), and thus, it is assumed that firstly, n=0 and

n, =0.02n,, as for iPPs, and secondly, the shear viscosity can be sufficiently described by a simpler

Carreau model [89], i.e. that a =2 ). The extensional viscosity parameter A was calculated using the Eq.

27 for all samples using basic rheological and molecular parameters (namely 77e, 70, Me( @), Amax, Mc( @),

11
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x, M, and Ceq/Caligned), which are summarized in Tables I-III. Only 2 parameters (A2 and f) were used to
fit the measured uniaxial extensional viscosity data and their values are summarized in Table IV (where
& was calculated from Susing Eq. 24). It can be seen from Figures 5-7 that the mGNF model has a very
high ability to fit the measured data for all tested entangled polymer liquids (including high strain rate
data where chain stretch occurs), although the eq/Caiigned values vary considerably. Interestingly, if the
obtained fitting parameter A2 is plotted against the Rouse stretch time, &, for each tested sample, it was

found that the following simple equation can be used to fit this data (see Figure 8):

2, =exp[ 0.0697 In’ (z,,)+2.0868 In(z, ) . (29)

This suggests that the mGNF model parameter A2 can be considered as a molecular parameter related to
the Rouse stretch time. On the other hand, the second f parameter, which is dimensionless, could be
associated with the ratio of the rate of destruction and the creation of the entanglements because it
controls the extensional thinning and thickening behavior at Wi numbers where entanglements dominate

the dynamics.

In Figure 9, the proposed mGNF model is compared with the best predictions of the following advanced
viscoelastic constitutive equations, which are available in the open literature for entangled PS solutions.

The first, the Basic DEMG model [88], which includes the chain stretch mechanism according to

Marrucci and Grizzutti [90, 91] and the finite extensibility of the form introduced by Mead and Leal [92]

and Mead et al. [93]. The second, DEMG/Milner-McLeish CLF model [88], which is the Basic DEMG

model with incorporated contour length fluctuations (CLF) according to Milner and McLeish [94]. The

third, MLD/Doi-Kuzuu CLF model [88], which is the Mead-Larson-Doi (MLD) model [95] including

the Doi-Kuzuu version of the CLF [96, 97]. The fourth, double constraint release model with chain
12
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stretch (DCR-CS) proposed by Ianniruberto and Marrucci [98], which includes double reptation,
convective removal of constraints in fast flows and chain stretching. The fifth, DEMG-F(SS) model [99],
which is a modified DEMG model involving a decrease in segmental friction, based on the work of
Yaoita et al. [100]. As can be seen, the ability of the proposed mGNF model to represent uniaxial
extensional viscosity under fast flow conditions for given polymeric liquids is better compared to the

predictions of chosen advanced viscoelastic constitutive equations.

In mixed shear and extensional flows, D and L have the following form

é % 0
5 _ éll 7/ 0
D= % & 0|, L=L=|0 &, 0], (30)
0 0 &, 0 0 &
which yields
I = 2zr(Z2) =282 4265 4280, G1)
1, =2tr(D*) =7 + 28], + 263, + 263, (32)
RS B
I, =det(D) = &,6péy —— 7y (33)

4
Thus, even in this complex case, the mGNF model (combining Eqs. 31-33, 1-4) provides analytical
expressions for all components of the total stress tensor. Analytical equations defining equibiaxial and

planar extensional viscosities are given in our previous work (Egs. 10-11 in [68]).

The key advantages of the mGNF model over fully viscoelastic models can be summarized as follows:
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Provides analytical solutions for stress tensor components even in mixed shear and extensional
flows. This greatly simplifies steady-state flow modeling, especially for fast flows where other
constitutive equations may fail.

Provides analytical solutions for shear and especially for uniaxial, planar and biaxial extensional
viscosities. This makes the identification of model parameters simple.

The mGNF model handles differences between high-extensional-rate uniaxial, planar and biaxial
extensional viscosities using the parameter y compared to other more advanced constitutive
equations, which unrealistically predict steady-state uniaxial and planar extensional viscosities
virtually identical at high extensional strain rates.

mGNF model can provide a much better ability to describe steady-state uniaxial extensional

viscosities in fast flows than advanced viscoelastic constitutive equations.

On the other hand, the mGNF is not viscoelastic. Thus, it cannot handle the basic features of
viscoelastic liquids, such as time-dependent stress (i.e. transient responses), fluid memory, and non-

zero values of the first and second normal stress differences.

CONCLUSION

In this work, the recently proposed frame-invariant GNF model [68] was modified to match the
expression for normalized uniaxial extensional viscosity at high strain rate limit by the zero-shear
viscosity using recent results for a fully extended Fraenkel chain [52, 67] and the Rouse stretch time
defined by Doi and Edwards [76, 77] and Osaki [78]. In general, the mGNF model uses a total of 9
parameters that needs to be identified using shear (7o, 7«, A1, a and n), uniaxial (A, A2 and f) and
planar/biaxial () extensional viscosity data. It has been shown that the parameter A can be calculated

directly from the basic rheological (70, 77.) and molecular (Me, Amax, Mc, M, x and Ceq/Caligned)

14
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characteristics, if available, and the number of fitting parameters can be therefore further reduced. The
performed parametric study showed that mGNF predictions for strain-rate dependent uniaxial
extensional viscosity data show comparable trends as prediction of well-established models such as
FENE-P and tube-model (DEMG). The proposed model was tested using strain rate dependent uniaxial
viscosity data taken from the open literature for well-characterized entangled polymer melts and
solutions (iPP, PnBA, PI and PS) whose molecular characteristics were available in the open literature
(or were calculated from these data). Only 2 fitting parameters (12 and /) were used to fit the
experimental data keeping all other parameters fixed. It was found that the proposed mGNF model is
able to fit uniaxial extensional viscosities, including a very high deformation rate range. It was shown
that the parameter A2 is related to the Rouse stretch time and the non-linear parameter £ controls the
extensional thinning and thickening behavior at medium and high strain rates without changing the

M. - Lhe proposed mGNF model was compared with five different advanced viscoelastic constitutive

equations, which are based on Doi-Edwards theory and include chain stretch along with a number of
important additions (namely Basic DEMG, DEMG/Milner-McLeish CLF, MLD/Doi-Kuzuu CLF, DCR-
CS, DEMG-F(SS)). It was shown that the ability of the mGNF model to represent steady-state uniaxial
extensional viscosities under fast flow conditions for given polymeric liquids is much better compared
to the predictions of chosen advanced viscoelastic constitutive equations. It is believed that the proposed
mGNF model can be used for stable modeling of non-Newtonian polymer liquids, especially in strong
extensional flows, where chain stretch begins to occur. The mGNF model can also be considered a good
candidate for modeling advanced polymer processing where high strain rates are achieved (such as the
production of energy storage membranes [101, 102] or nanofibers using the melt blown technology [26,
27)), as it provides simple analytical expressions for all components of the stress tensor even in complex

flows.
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TABLE I. Carracu-Yasuda model parameters (Eq. 3) for all samples tested. Values were taken from
[28-29, 40, 85] (iPPs), [87] (PnBA and PI) and [88] (PS). Since 7, a, A1 and n are not available for
PnBA, PI and PS liquids, it is considered here that @ =2 (in this case the Carreau-Yasuda model

becomes a simpler Carreau model), 77, =0.0277,and n=0, i.e. similarly to the iPPs.

no Neo Al a n

Samplename (o) (Pas) ©) EENG)
iPP 76K 22.80 0.229 0.000222 0.71466 0
iPP 64K 11.27 0.199 0.000101 0.64410 0
iPP 56K 7.79 0.165 0.000070 0.66642 0
PnBA 210K 32800 0.0210 0.79% 2 0
PI 145K 60000 0.02n0 0.43?2 2 0
PI 349K 40 wt% 15000 0.02n0 0.72% 2 0
PI 1M 14 wt% 1000 0.02n0 0.432 2 0
PS 10.2M 6.0 wt% 9560 0.02no 39.6% 2 0
PS 3.9M 10.0 wt% 4570 0.02n0 4.1 2 0

241 is considered to be the same as the reptation relaxation time, 7.
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TABLE I1. Molecular characteristics for all samples taken from [82].

Me Mc(p)¢ Mk b cq/Caligned

Sample name (kg’/)m% () (% (kg/fﬁ) (kg/f;"gl) (kg/mo)  (m) - %—) ]
iPP 76K 766 3.12*10°1° 1 6.850 13.935F 0.1878 11.4%1071° 5.0%
iPP 64K 766 3.12*%10°10 1 6.850 13.935F 0.1878 11.4%10710 3.0k
iPP 56K 766 3.12*%10°1° 1 6.850 13.935F 0.1878 11.4%1071° 2.9%
PnBA 210K 1080* 3.48*10°'% 1 16.000 30.099 0.948¢ 18.9%10°0 1.0!
PI 145K 9002 3.13*10°1° 1 6.350 12.798 0.1365 8.98*%10710 7.3!
PI 349K 40 wt% 900 3.13*10'° 04 15.875°¢ 31.995 0.1365 8.98*%10°10 3.4!
PI 1M 14 wt% 900 3.13*10'° 0.14 45.357¢ 91.414 0.1365 8.98*%10°10 1!
PS 10.2M 6.0 wt% 1070 3.92*10°'° 0.06 276.667¢ 481.700 0.725"  17.8*10'% m
PS3.9M 10.0 wt%  1070° 3.92*10"° 0.1  166.000°  289.020  0.725" 17.8*10'% m

2 Data taken from [87].
b Average over PMA, PEA and POA [82].
¢ The value is given as Me/@ [81, 79] with Me = 6.350 kg/mol.

4 The value is given as Me/@ [81, 79] with Me = 16.600 kg/mol.
¢ The values are calculated according to Eq. 16.

" The value is taken from [53] considering M¢=6.9 kg/mol.

£ The value is calculated according to Eq. 19 using mp=0.064 kg/mol, C»=10.2 [87] and cos(6/2)=0.83

[82].

" The value is calculated according to Eq. 19 using my=0.052 kg/mol, C=9.6 [87] and cos(6/2)=0.83

[82].

i The value is calculated according to Eq. 20 using C,=10.2 [87] and cos(6/2)=0.83 [82].
i The value is calculated according to Eq. 20 using C=9.6 [87] and cos(8/2)=0.83 [82].

kX Data taken from [53] for M=Mu.
! Data taken from [103] (note that Ceq/Catigned for PI were taken from Figure 6 in [103] as maximum

values).

™ No change in eq/Catigned is considered here.
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TABLE III. Molecular weight distribution related parameters taken from [28, 29, 40, 85] (iPP), [87]
(PnBA and PI) and [88] (PS).

Sample name M=Mw PDI X Ramax”
(kg/mol) () Q) )
iPP 76K 75.85 441  3.62 6.0
iPP 64K 63.75 435  3.62 6.0
iPP 56K 56.25 395  3.62 6.0
PnBA 210K 209.60 ~1 3.4 4.1
PI 145K 145.00 ~1 3.4 6.8
PI 349K 40 wt% 349.00 ~1 3.4 10.8
PI 1M 14 wt% 1050.00 =1 3.4 18.2
PS 10.2M 6.0 wt%  10200.00 ~1 3.4 19.5
PS3.9M 10.0 wt%  3900.00 ~1 3.4° 15.1

# Typical values [76].
® The values are calculated according to the Eq. 25.

TABLE IV. Summary of fitting parameters A2 and 5 of the mGNF model, which were identified on
steady uniaxial extensional viscosity data for all tested samples. The corresponding parameters A and &
calculated using Eq.27 and Eq.24, respectively, are also provided here.

A2 B A &

Sample name ) ) (Pa.s) o)
iPP 76K 2.884*107 2.02%1073 2.44*1073 1.12*10!
iPP 64K 2.843%107 4.12%1073 1.80*1073 1.26*10!
iPP 56K 2.826%107 5.78%107 1.33*1073 1.35%10°!
PnBA 210K 3.39%107 1.03%1072 6.28%10° 1.51*10!
PI 145K 5.72%10* 2.24%1073 5.62%10! 1.14*10"!
PI 349K 40 wt% 6.37*%10* 4.36*%107 9.85%10"! 1.28*10!
PI IM 14 wt% 5.68*%10* 2.11*102 2.56%107 1.80*10!
PS 10.2M 6.0 wt% 1.11*10"! 7.32%10 2.49%1072 2.65*%10!
PS 3.9M 10.0 wt% 9.55%107 4.35%1072 1.76%10 2.21%10°!
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TABLE V. The Rouse reorientation (or stretch) time, &, calculated according to the Eq. 11 for all
tested samples.

Sample name T ®

69 (s)
iPP 76K 230 7.74%10°%
iPP 64K 230 5.08%102
iPP 56K 230 4.30%10%
PnBA 210K 21.5 3.00%10
PI 145K 21.5 1.42%1072
PI 349K 40 wt% 21.5 2.33*10
PI IM 14 wt% 21.5 1.18%1072

PS 10.2M 6.0 wt% 21.5 4.96*107!
PS 3.9M 10.0 wt% 21.5 1.60*%107!

2 Values are taken from [53].
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FIG. 1. The uniaxial extensional viscosity, 77, , , normalized by the zero-shear rate viscosity, 77, , plotted
as a function of the orientational Weissenberg number W; (=4,¢) for different values of Amar. The
rheological and molecular constants are considered to be for iPP 76K (see Tables I-III) with f=10"",

A,=10"sand ¢, /¢,

ligned

=1 in this case.
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FIG. 2. The uniaxial extensional viscosity, 77, , , normalized by the zero-shear rate viscosity, 77, , plotted
as a function of the orientational Weissenberg number W; (=4,¢) for different values of the Ceo/Cuignea
ratio. The rheological and molecular constants are considered to be for iPP 76K (see Tables I-III) with
B=107°, 2, =10"s and 4,, =6 in this case.
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FIG. 3. The uniaxial extensional viscosity, 77, , , normalized by the zero-shear rate viscosity, 7,,
plotted as a function of the orientational Weissenberg number W: (= 4,¢ ) for different values of the A2
with ¢, /& s =1 (top) and &, /& s = 10° (bottom). The rheological and molecular constants are
considered to be for iPP 76K (see Tables I-III) with #=10"" and 4, =6 in this case.
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FIG. 4. The uniaxial extensional viscosity, 7, , , normalized by the zero-shear rate viscosity, 77, , plotted
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Gy ! Cutignea =1 (top) and & /& pona =10’ (bottom). The rheological and molecular constants are
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FIG. 5. Comparison between the measured deformation rate dependent shear (open symbols) and
uniaxial extensional viscosities (full symbols) and mGNF model fits (curves) for given {eq/Catigned ratios
at 230°C for three linear isotactic polypropylenes (iPP 56K — top, iPP 64K — middle, iPP 76K —
bottom). Experimental data are taken from [28] and [40]. Here, 7s the shear viscosity, 7E, u, the
uniaxial extensional viscosity, 7 the shear rate, £ the extensional strain rate.
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FIG. 6. Comparison between the measured deformation rate dependent uniaxial extensional viscosities
(full symbols) and mGNF model fits (upper curves) and shear viscosity predictions (lower curves) for
given Ceq/Caligned ratios at 21.5°C for three PI entangled liquids (14 wt% solution — top, 40 wt% solution
— middle, melt — bottom). Experimental data are taken from [87]. Here, 7s the shear viscosity, 7k, u, the
uniaxial extensional viscosity, 7 the shear rate, £ the extensional strain rate.
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FIG. 7. Comparison between the measured deformation rate dependent uniaxial extensional viscosities
(full symbols) and mGNF model fits (upper curves) and shear viscosity predictions (lower curves) at
21.5°C for three entangled liquids with the same (eq/Cuiignea ratio (PnBA melt — top, 6 wt% PS solution
—middle, 10 wt% PS solution — bottom). Experimental data for PnBA and PS are taken from [87] and
[88], respectively. Here, 7s the shear viscosity, 7k u, the uniaxial extensional viscosity, 7 the shear

rate, & the extensional strain rate.
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FIG. 9. Comparison between the measured deformation rate dependent uniaxial extensional viscosities
(full symbols), mGNF model fits and predictions of different viscoelastic models taken from the open
literature (Basic DEMG [88], DEMG/Milner-McLeish CLF [88], MLD/Doi-Kuzuu CLF [88], DCR-
CS [104], DEMG-F(SS) [99]) at 21.5°C for two entangled liquids (10 wt% PS solution — top, 6 wt%
PS solution). Experimental data for PS are taken from [88].
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