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ABSTRACT Motion pattern analysis uses a variety of methods to recognise physical activities recorded
by wearable sensors, video-cameras, and global navigation satellite systems. This paper presents motion
analysis during cycling, using data from a heart rate monitor, accelerometric signals recorded by a navigation
system, and the sensors of a mobile phone. Real cycling experiments were recorded in a hilly area with routes
of about 12 km long. Signals were analyzed with appropriate computational tools to find the relationships
between geographical and physiological data, including the detection of heart rate recovery delay as an
indicator of physical and nervous condition. The proposed algorithms utilized methods of signal analysis
and extraction of body motion features, which were used to study the correspondence of heart rate, route
profile, cycling speed, and cycling cadence, both in the time and frequency domains. Data processing
included the use of Kohonen networks and supervised two-layer softmax computational models for the
classification of motion patterns. The results obtained point to a mean time of 22.7 s for a 50 % decrease of
the heart rate after a heavy load detected by a cadence sensor. Further results point to a close correspondence
between the signals recorded by the body worn accelerometers and the speed evaluated from the GNSSs
data. The classification of downhill and uphill cycling based upon accelerometric data achieved an accuracy
of 93.9 % and 95.0 % for the training and testing data sets, respectively. The proposed methodology suggests
that wearable sensors and artificial intelligence methods form efficient tools for motion monitoring in
the assessment of the physiological condition during different sports activities including cycling, running,
or skiing. These techniques may also be applied to wide ranging applications in rehabilitation and in the
diagnostics of neurological disorders.

INDEX TERMS Multimodal signal analysis, computational intelligence, machine learning, motion
monitoring, accelerometer-derived cycling data, classification.

I. INTRODUCTION
The discipline of motion recognition, using a range of mea-
surement techniques to characterise the motion associated
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with different of physical activities, is an increasingly
important topic. Applications include the assessment of reha-
bilitation exercises, gait analysis [1]–[4], breathing [5], detec-
tion of neurological disorders [6], the effect of cycling on
cognitive functions [7], and the evaluation of fitness level
in sports disciplines. Measurement techniques include the
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FIGURE 1. The area of cycling experiments presenting (a) the cycling route
in the geographical environment, (b) the altitude GPS signal recorded by
the Garmin system, (c) the accelerometric (ACC) signal recorded by the
mobile sensor, and (d) spectrogram of a selected experiment.

use of wearable sensors, smartphones, smartwatch-based bio-
metrics [8], and computational intelligent methods for data
processing.

Many motion tracking systems [9], [10] make use of
global navigation satellite systems (GNSSs). They benefit
from the increasing accuracy of GNSSs that are based on
the use of new satellite systems, including Galileo [11] and
the global positioning system (GPS). These systems may
also be used for monitoring cycling routes [12]. Further
commonly used sensors include accelerometers [13], [14]
inside mobile phones [15], gyrometers, and sensors to mon-
itor the heart rate [16] and further physiological functions.
Mobile applications for smartphones can use these sensors,
making them a viable alternative to bike computers [17].
Camera systems [18], [19] that use red-green-blue, depth and
thermal sensors [20]–[22], and ultrasound systems [23] are
very important as well. Associated studies include the assess-
ment of road surface roughness [24] and three-dimensional
modelling.

Separate accelerometers or their synchronized systems are
used in many different applications, which employ standard
or deep learning methods for classification of motion pat-
terns. For example, these methods are used in the diagnosis
of motion disorders in neurology and ataxic gait monitor-
ing [25], [26]. Analysis of the sensor placement for the best
separation ability is one of the fundamental problems of these
studies. In addition, accelerometers have been used to evalu-
ate motion symmetry [14] and to monitor rehabilitation exer-
cises. These sensors are now included in most mobile phones
and the possibility to use such wearable sensors enables the
monitoring of different sport activities [27].

Appropriate methods of signal and image processing
are then applied for information extraction. These methods

include signal analysis in both spectral and scale domains,
and modern methods that are based on wavelet trans-
forms [28], artificial intelligence using machine learning,
dimensionality reduction [29]–[31], classification methods,
and deep convolutional neural networks.

The present paper is devoted to the analysis of data
recorded during cycling [27], [32]–[35] in real conditions
on the route presented in Fig. 1, which is located in a hilly
area and is about 12 km long, and visualized in the Mat-
lab environment using its mapping toolbox. Positioning data
recorded by the GNSSs are synchronized with the heart rate
and accelerometric data. The goal of this study is to show how
wearable sensors can be used for post-exercise analysis of
cycling-related information to detect the relationship between
physiological data, accelerometric signals acquired at the
specific body position, and the route profile recorded by the
GNSSs. Our mathematical analysis is based on spectrograms
using the Kohonen network learning system for data clus-
tering and the two layer neural network for classification of
accelerometric signals. Selected results are compared with
those evaluated on a home exercise bike [36].

The techniques currently in use for monitoring motion
activities are limited by the accuracy of GNSSs and the
various motion sensors used, as well as the approach to
synchronizing these signals. Extensive research in these areas
is leading to significant improvements through the devel-
opment of new techniques in multimodal data evaluation
[37]–[39]. This points both to the rapid evolution of new engi-
neering systems for data acquisition and to modern methods
for signal processing, which will enable the application of
deep learning, modelling of sophisticated structures, and the
application of smart devices and assisted technologies in the
future.

II. METHODS
A. DATA ACQUISITION
Fig. 1 presents the geographical data that were acquired by
the GNSS and the associated accelerometric signals that were
recorded by the mobile phone. The cycling route was located
in a hilly area of Moravia close to Vsetin, and included seg-
ments with different surface qualities and occasional traffic
that contributed to random errors in the recorded signals. The
associated route profile with further Garmin and heart rate
data are presented in Fig. 2 for a selected cycling experiment.
The cycling cadence-derived data [40] were used for seg-

mentation of accelerometric and heart rate signals in different
route areas.

The GNSS and motion data (time stamps, longitude, lat-
itude, altitude, cycling distance, the speed, and the cycling
cadence) were simultaneously recorded by a Garmin fitness
watch (Fenix 5S). The heart rate data were acquired by a
Garmin chest strap that was connected to a Garmin watch by
ANT+ technology. All of the datasets were acquired during
26 cycling experiments in a hilly area on a route that is 12 km
long, with an altitude difference of 300 m. Records were
subsequently stored to the Garmin Connect website, exported

VOLUME 9, 2021 129257



H. Charvátová et al.: Evaluation of Accelerometric and Cycling Cadence Data for Motion Monitoring

FIGURE 2. Signals recorded on the cycling route presenting (a) the cycling
profile, (b) speed, (c) heart rate, and (d) the cadence recorded during a
selected experiment.

as TCXfiles, converted to CSVfiles, and then imported to the
MATLAB software for further processing.

Accelerometric data were recorded by the mobile phone
in the spine position, which was selected following previous
studies [25], [26], which described the higher discriminative
abilities of sensors located in the upper half of the body
[41], [42] in comparison to other positions. The sampling
frequency of the Android mobile phone sensor was 100 Hz
during all cycling routes.

All procedures involving human participants were in accor-
dance with the ethical standards of the Institutional research
committee and with the 1964 Helsinki Declaration and its
later amendments.

B. SIGNAL PROCESSING
The proposed data evaluation method included a preprocess-
ing stage. All sensors recorded both time stamps and observed
values, but the sampling rate varied. This is the reason why
resampling was necessary. The new sampling period Ts was
selected as the average sampling period of the observed
values and linear interpolation was then applied for their
evaluation. In the case of accelerometric signals, the median
filtering was applied to remove gross errors from observed
sequences.

In the next step, the linear acceleration data without addi-
tional gravity components were processed. Their modulus
Aq(n) was evaluated from the components Axq(n), Ayq(n), and
Azq(n) recorded in three directions by relation

Aq(n) =
√
Axq(n)2 + Ayq(n)2 + Azq(n)2 (1)

for all values n = 0, 1, 2, · · · ,N − 1 in each experiment
q = 1, 2, · · · ,Q of N values. In this way, the accelerometric
values invariant to the rotation of the sensor during observa-
tions were evaluated.

FIGURE 3. Feature extraction for (a) the cycling route recorded by the
GNSS signal and divided into segments with a selected length of 60 s,
(b) spectrogram of the accelerometric signal, (c,d) features specified into
two selected spectral regions, and clustering results from the
unsupervised Kohonen learning process.

The processing of multimodal records {d(n)}N−1n=0 of the
accelerometric and heart rate signals was performed by sim-
ilar numerical methods. After high-pass filtering removed
the slowly varying signal components, short-time discrete
Fourier transform was applied to detect the time-varying
frequency parts.

Each accelerometric signal {d(n)}N−1n=0 of N samples that
was observed during each experiment was processed in time
windows TW = 30 s long to evaluate the associated signal
spectrum, covering the full frequency range of 〈0, fs/2〉 Hz
for fs = 1/Ts. This method was used to evaluate the spec-
trogram for each experiment. The accelerometric signal and
its spectrogram are presented in Figs. 1(c,d) for a selected
cycling experiment.

The following two frequency bands were then selected for
evaluation of accelerometric features:

• Range r1 = 〈fc1, fc2〉,
• Range r2 = 〈fc3, fc4〉.

for cutoff frequencies fc1, fc2, fc3, fc4 less than fs/2. The rela-
tive power p(i, j) in each frequency range r1 and r2 was then
estimated by the relation

p(i, j)=

∑
k∈8i

∣∣Dj(k)∣∣2∑N/2
k=0

∣∣Dj(k)∣∣2 , Dj(k)=
N−1∑
n=0

dj(n) e−j kn
2π
N (2)

where 8i is the set of indices for the range of frequencies
fk ∈ ri, i = 1, 2, and j = 1, 2, · · · ,Q for the total number
of experimentsQ. This method was used to define the pattern
matrix P2,Q. The locations of these features in the 2D domain
for a selected experiment are presented in Fig. 3(d).
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FIGURE 4. Time synchronisation of observed signals presenting (a) the
cadence signal, (b) the Garmin altitude signal, (c) heart rate signal, and
(d) spectrogram evaluated from the accelerometric signal recorded during
the cycling route.

The Kohonen learning rule was then applied during the
unsupervised learning process for data clustering to evaluate
the network model later used to classify these features. The
results of this clustering process with a one-layer neural
network for a selected cycling experiment are presented in
Figs. 3(c,d). The outputs from two neurons suggest separate
signal classes.

The cadence cycling signal was then used to synchronise
the separate signals. This approach was based on the assump-
tion that this signal drops to zero on the top of each hill;
as presented in Fig. 4(a), which corresponds with the route
altitude profile in Fig. 4(b). This simple segmentation process
enabled the evaluation of the signal features in each downhill
route segment. A polynomial approximation of the signals in
these cycling segments was then applied.

The spectrograms of accelerometric signals were then
examined to classify the motion patterns using the selected
neural network model. The supervised learning process was
applied to classify the frequency components in time win-
dows of the selected length. Time synchronisation of the
signals and GNSS data enabled to the expected target values
for the model’s construction to be specified.

Results obtained after the chosen number of training
epochs were then evaluated by the receiver operating charac-
teristic (ROC). The machine learning process finds the num-
ber of true-negative (TN), false-positive (FP), true-positive
(TP) and false-negative (FN) values in the negative set
(class 1: downhill cycling) and positive set (class 2: uphill
cycling). The associated performance metrics can then be
used to evaluate:
• The true positive rate (TPR, sensitivity), the true neg-
ative rate (TNR, specificity), the false negative rate

(FNR), and the false positive rate (FPR)

TPR =
TP

TP+ FN
, TNR =

TN
TN + FP

(3)

FNR =
FN

TP+ FN
, FPR =

FP
TN + FP

(4)

• The negative predictive value (NPV), the positive pre-
dictive value (PPV, precision), and the accuracy (ACC)

NPV =
TN

TN + FN
, PPV =

TP
TP+ FP

(5)

ACC =
TP+ TN

TP+ TN + FP+ FN
(6)

The confusionmatrices of the training and testing sets were
then used as measures of the generalisation abilities of the
classification model.

III. RESULTS
Analysis of the cycling experiments includes 26 cycling
routes and 933 segments in the same hilly area which are all
about 12 km long, as presented in Fig. 1. All of the evaluations
were done in the MATLAB 2021a computational system. All
of the longitude and latitude positioning data recorded dur-
ing each cycling experiment by the satellite navigation net-
work were projected into the geographical environment with
the associated visualisation using the following MATLAB
commands:

>> geoplot([Latitude],[Longitude],’.r’)
>> geolimits([49.34 49.38],\ldots
>>~[17.98 18.05])
>> geobasemap satellite

The red dots point to the route and the selection of the
satellite geographical base map.

FIGURE 5. The polynomial approximation of the heart rate and the speed
during a selected cycling experiment in (a) segment 1 and (b) segment 2
with the dash line separating downcycling and upcycling specified by the
cadence sensor.

Fig. 5 presents the polynomial approximation of the fifth
order applied to the heart rate and the speed during a selected
cycling experiment in two route segments, with their initial
points specified by the first and the second peak of the cycling
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route. Complete results for all experiments are presented
in Fig. 6. Starting times are defined by the cadence signal
and the length of the downhill cycling is projected from
the altitude GPS signal. For a selected experiment, the heart
rate, the speed, and the relative accelerometric power in the
frequency band of 〈30, 40〉 Hz are emphasised in individual
subplots.

FIGURE 6. Comparison of the heart rate vs. speed, the relative mean
power of the accelerometric signal in the frequency range 〈30, 40〉 Hz vs.
speed, and the heart rate vs. the relative mean power in the frequency
range 〈30, 40〉 Hz for 26 cycling experiments and the dash line separating
downcycling and upcycling specified by the cadence sensor.

IV. DISCUSSION
The signals presented in Fig. 6 were used to evaluate the
correspondence between selected signals and to eliminate any
experiments with gross errors. The processing of each exper-
iment included the polynomial approximation to each record
and the evaluation of the delay between separate signals for
a 50 % decrease of the heart rate after the cadence change.
The difference between these peak values outside the given
range excluded 9.9 % of experiments. A summary of all of
the results is presented in Table 1, with similar results in
both segments. The mean delay of the heart rate change and

TABLE 1. Comparison of delays and standard deviations (STD) of selected
variables recorded during cycling for two selected cycling segments and
the set of cycling routes for heart rate vs speed (HRS), power vs speed
(PWS), heart rate vs power (HRPW), and heart rate vs cadence change
(HRC).

acceleration change was 20.6 s in the given conditions. The
relative accelerometric power was evaluated in the frequency
band of 〈30, 40〉 Hz and 933 time windows 30 s long were
used for the following classification.

Results indicate an average value of 22.7 s for the heart
rate to decrease by 50 % between its highest and lowest value
resulting from the cadence change. This result corresponds
with experiments on the exercise bike [25] for a healthy
person. The heart rate recovery delay is considered to be an
indicator of physical and nervous condition [43].

FIGURE 7. Classification of spectrogram features related to
accelerometric data of all experiments using the relative mean power in
selected frequency ranges (F 1 : 〈10, 15〉 Hz and F 2 : 〈30, 40〉 Hz)
presenting segments belonging to class 1 (downhill cycling) and class 2
(uphill cycling) using the two layer neural network with centers of gravity
of individual classes and c-multiples of standard deviations for
c = 0.2, 0.5, 1.

Figure 7 presents the results of the classification of the
spectral features of the accelerometric data into two classes
(class 1: downhill cycling, class 2: uphill cycling) using the
two layer neural network with 10 elements in the first layer
for the whole set of cycling experiments. The features were
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defined as the relative mean power in selected frequency
ranges (F1 : 〈10, 15〉 Hz and F2 : 〈30, 40〉 Hz). The opti-
misation process was applied for a standard neural network
with 10 neurons in the first layer that included the sig-
moidal transfer function and 2 elements in the second softmax
layer. Figure 7 also presents the centers of gravity of the
individual classes and c-multiples of standard deviations for
c = 0.2, 0.5, 1.

The confusion matrix for the training and testing sets is
presented in Table 2. The accuracy achieved was 93.9 % and
95.0 % for the training and testing sets, respectively.

The supplementary material includes the animation of sig-
nals recorded during a selected cycling segment and their
processing.

TABLE 2. Confusion matrix of the classification by the two layer neural
network model for the training and testing sets with true positive values
on the matrix diagonal (in the bold), true positive/negative rates TR(k),
and positive/negative prediction values PV (k).

V. CONCLUSION
This paper has presented the use of selected wearable sensors
and appropriate computational method for the assessment
of physical activities and motion monitoring during cycling
in real conditions. Positioning data recorded by the GNSS
system, heart rate data, cycling cadence-derived data, and
accelerometric data recorded by a sensor in the mobile phone
were used to detect a number of motion patterns. Using the
event data records, the paper helps cyclists to analyse cycling-
related information.

A new methodology is presented in which cycling cadence
and time stamps are used, allowing accurate segmentation
and synchronization of signals recorded by different wearable
sensors. The paper moreover presents results which indicate
the heart rate recovery delay after a cadence change, with
motion patterns successfully derived from accelerometric
signals in real conditions. The results suggest that cycling
cadence, accelerometric, and heart rate data can be used to
evaluate and recognise motion patterns during cycling in
different route conditions. The observed mean delay of the

change of the heart rate that was related to the change of
the mean power of the accelerometric signal in the high-
frequency band was 20.6 s for the given set of experiments
in real conditions and hilly route areas.

The proposed methodology was based on the Kohonen
learning rule and a softmax neural network structure. One
of the main practical benefits arising from this research is
the improved accuracy which can be achieved through the
combined use of communication systems, wearable sensors,
and new computational techniques. Improved accuracy in
the measurement methodology contributes to a better under-
standing of rehabilitation processes and improves the early
diagnostics of motion disorders in neurology. Results on
motion monitoring will contribute to the better understanding
of rehabilitation processes and early diagnostics on motion
disorders in neurology. Our future work will be devoted to the
use of more sophisticated models and a deep learning strat-
egy. Applications will be developed using a similar method-
ology to characterise motion in different sports activities
including running and skiing with a modified approach to the
synchronization of signals from different sensors. Particular
attention also will be paid to medical applications where
advances may be expected in the detection of neurological
disorders, ataxic gate monitoring, and rehabilitation, through
motion pattern analysis.
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