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Abstract. In this paper, a new method called Correlation-based Feature Selection 
in Correction Factors is proposed. The method is based on the feature selection 
method used in software development effort estimation to reduce redundant 
correction factors. In this paper, the impact of correlation-based feature selection 
on the method's estimation accuracy is investigated. Multiple linear regression 
was used as the basic technique for the correction factors preprocessed by the 
feature selection method. The results were evaluated using six unbiased accuracy 
measures through the 5-fold cross-validation over the historical dataset. The 
proposed method leads to a significant improvement in estimation accuracy by 
simplifying the evaluation of correction factor values in the use case points 
method, thus increasing the usefulness of the proposed method in practice. 

Keywords: Software Development Effort Estimation, Use Case Points, Correlation-
based Feature Selection, Multiple Linear Regression. 

1 Introduction 

Software Development Effort Estimation (further only SDEE) is a critical factor in the 
early stages of the software development life cycle. SDEE can help project managers 
make early software development decisions, i.e., to prepare the necessary project plan 
and budget within the expected completion time  [1], [2]. The application of appropriate 
SDEE methods determines the success or failure of a software project. In this context, 
various approaches have been proposed and evaluated to address this problem. SDEE 
approaches can be categorized as expert judgment, parametric techniques, and machine 
learning techniques [3]. 

The Use Case Points (further only UCP) method can be used as a functional size 
metric in the early stages of the software lifecycle [4]. The UCP method is based on a 
Use Case Model (further only UCM) structured scenario and actor analysis. The 
method estimates effort based on software size and fixed productivity factors (20 
person-hours). However, the original UCP method was analyzed for its low precision 
[5]-[8]. Combining ML techniques to produce SDEE models based on the original UCP 
formula could be a method to improve accuracy. Some estimation approaches [9]-[18] 
have also explored variant models, especially the use of statistical regression or ML 
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models to obtain better effort estimation based on historical data. The benefits of using 
UCP-based effort estimation methods are numerous. These methods have made many 
advances in reducing the influence of human error during UCM analysis and 
simplifying the original principles of UCP. We recently conducted a literature review 
on UCP-based SDEE methods in the context of system development [19]. This review 
highlighted that there are some challenges in estimating the components of UCP, 
especially the correction factors - which are thirteen technical complexity factors (TCF) 
and eight environmental complexity factors (ECF). According to Luis et al. [20], a 
small variation in the weighting value of the correction factors can dramatically affect 
the software size. Nassif et al. [21] also pointed out the need to refine correction factors 
that are directly related to estimates computed by the UCP method.  

In the UCP method, not all correction factors are crucial for finding the hidden 
knowledge among the important data. In many cases, some of the factors under 
consideration are irrelevant and unnecessary. By selecting appropriate subsets of 
correction factors, we can reduce the complexity of the UCP method and UCP-based 
SDEE methods. The motivation for us to evaluate whether or not the influence of the 
feature selection method on correction factors improves the accuracy of the UCP 
method. To address these issues, this paper proposes the Correlation-based Feature 
Selection in Correction Factors (named CFSiCF) method for SDEE. We evaluate the 
construction of correction factors based on the machine learning technique 
preprocessed with a feature selection method. The method used is the Correlation-based 
Feature Selection (further only CFS) [22], [23]. The Multiple Linear Regression 
(further only MLR) technique is chosen as the base method for the selected correction 
factors to minimize human error's influence during the analysis of these factors. The 
research questions are answered as follows: 

● RQ1: What is the correlation and benefit of the number of technical 
complexity and environmental complexity factors for size estimation? 

● RQ2: Is the proposed method more estimation accurate than the UCP method 
and other tested methods? 

The main contributions of this study are: 
● Evaluating the construction of the best correction factors based on MLR 

models preprocessed with the CFS algorithm. 
● The results achieved by the proposed method are compared with three tested 

estimation methods to verify their accuracy. The methods are run on the 
dataset of projects from three data donators. The project by each data donator 
differs in size (measured in UCP). Unbiased evaluation measures (8-13) were 
used to evaluate the accuracy of the methods. 

The rest of the article is organized as follows: Section 2 introduces the background of 
the methods used. Section 3 describes the research methodology. Section 4 
demonstrates the experimental evaluation. Finally, Section 5 concludes the paper and 
suggests future work. 
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2 Background 

2.1 Use Case Points 

The UCP method was introduced by Karner [4] to estimate the size of object-oriented 
software projects. The UCP method is calculated by computing four basic size metrics 
- Unadjusted Actor Weight (UAW), Unadjusted Use Cases Weight (UUCW), Technical 
Complexity Factors (TCF), and Environmental Complexity Factors (ECF), as shown in 
Eq. (1). 

 𝑈𝐶𝑃 = (𝑈𝐴𝑊 +𝑈𝑈𝐶𝑊) × 	𝑇𝐶𝐹	 × 	𝐸𝐶𝐹 (1) 

The UAW is calculated by taking the weighted sum of the number of actors in each 
type, as shown in Eq. (2). The actors are classified based on their complexity (see Table 
1). 

 𝑈𝐴𝑊 =	∑ 𝑎! ×𝑤!"
!#$  (2) 

where, 𝑎! is the number of actors in the 𝑖%& actor type and 𝑤! is the associate complexity 
weight for each type.  

The UUCW is calculated by taking the weighted sum of number of use cases as 
shown in Eq. (3). The use cases are classified based on the number of transactions in 
the use case (see Table 2). 

 𝑈𝑈𝐶𝑊 =	∑ 𝑢𝑐' ×𝑤'"
'#$  (3) 

where, 𝑢𝑐' is the number of use case in the 𝑗%& use case type and 𝑤' is the associate 
complexity weight for each type.  

The TCF is calculated from thirteen factors representing the complexity of software 
projects, as shown in Eq. (4). Table 3 presents the technical factors as defined in the 
UCP. 

 𝑇𝐶𝐹 = 	0.6 +	(0.01	 × ∑ 𝑡! × 𝑓𝑤!$"
!#$ ) (4) 

where, 𝑡! is the value of complexity factor 𝑖, and 𝑓𝑤! is the weight of factor 𝑖.  
The ECF is calculated from a set of eight factors that describe the non-functional 

requirements, as shown in Eq. (5). The environmental factors are listed in Table 4. 

 𝐸𝐶𝐹 = 	1.4 − (0.03	 × ∑ 𝑒! × 𝑒𝑤!(
!#$ ) (5) 

where, 𝑒! is the value of complexity factor 𝑖, and 𝑒𝑤! is the weight of factor 𝑖.  

Table 1. Actor Classification and Their Weights. 

Actor Classification  Complexity Weight 
Simple  1 
Average  2 
Complex  3 
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Table 2. Use Case Classification and Their Weights. 

Use Case Classification Number of Transactions Complexity Weight 
Simple (0 - 4) 5 
Average <4 -7> 10 
Complex (7 -	∞) 15 

Table 3. Technical Complexity Factors 

Factor ID Description Weight 
T1 Distributed System 2 
T2 Response Adjectives 2 
T3 End-User Efficiency 1 
T4 Complex Processing 1 
T5 Reusable Code 1 
T6 Easy to Install 0.5 
T7 Ease of Use 0.5 
T8 Portable 2 
T9 Easy to Change 1 
T10 Concurrent 1 
T11 Security Feature 1 
T12 Access for Third Parties 1 
T13 Special Training Required 1 

Table 4. Environmental Complexity Factors 

Factor ID Description Weight 
E1 Familiar with RUP 1.5 
E2 Application Experience 0.5 
E3 Object-oriented Experience 1 
E4 Lead Analyst Capability 0.5 
E5 Motivation 1 
E6 Stable Requirements 2 
E7 Part-time Workers -1 
E8 Difficult Programming Language 2 

 
2.2 Correlation-based Feature Selection  

Performing feature selection is considered a step of data preprocessing to determine the 
best subset of features to improve estimation accuracy [24], [25]. Feature selection 
techniques can be classified: Filter, Wrapper, and Hybrid algorithms. Filter methods 
select the most relevant features based on the properties of a dataset. In contrast, 
wrapper methods select the best feature subset based on assessing the effects of various 
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subsets of features on the performance of an estimation system. Embedded or hybrid 
methods determine the best feature subset by performing the selection step and model 
building concurrently or combining filtering and wrapper techniques. 

In this study, we use the CFS algorithm, which uses correlation to evaluate a feature 
subset derived from the Pearson correlation coefficient. The CFS evaluates different 
subsets of features according to the heuristic evaluation function and selects the best 
one. 

 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐)* =
+,!""

-+.+(+0$),!!#
		 (6) 

where, 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐)* is the heuristic value of a feature subset 𝑓𝑠 containing 𝑛 features, 
𝑟)22 is the average feature-class correlation, and 𝑟))! is the average feature-feature 
intercorrelation [26]. To apply 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐)*, a correlation matrix and heuristic search 
are computed to find a best subset of features. In this research, the CFS algorithm is 
used with Greedy stepwise forward search by the space of attribute subsets. 
 
2.3 Multiple Linear Regression  

MLR is one of the types of effort estimation methods used to determine how the 
dependent variable is related to a change in the independent variables and which 
independent variable is relevant to the dependent variable [27]. The regression models 
are built based on historical data. The regression models are then evaluated and 
compared with alternative models [9]-[18]. The MLR model is shown in Eq. (7): 

 𝑌 = 𝛼3 + 𝛼$𝑋$ + 𝛼4𝑋4 +⋯+ 𝛼+𝑋+ + 𝜀			 (7) 

where 𝑌 is the dependent variable is related to the independent variables 𝑋$, … , 𝑋+; 𝛼3 
is the intercept parameter; 𝛼$, … , 𝛼+ are the regression coefficients;  and 𝜀! are the error 
residuals.  

3 Research Methodology 

3.1 Data Description 

The methods are evaluated on a dataset of 70 observations (each observation represents 
a description of a realized software system) from three data donators [27]. All data 
donators work in different government, health, and business sectors. The projects were 
installed in Java and C# programming languages. For comparison and estimation 
accuracy of the methods, a standard of 20 man-hours per UCP [4] is used, without 
considering the productivity factor (PF - man-hours per 1 UCP). The statistical 
properties of the dataset are described in Table 5. Fig. 1 shows the boxplot of Real_P20 
in the dataset. Real_P20 is the real effort in man-hours divided by productivity. 

Table 5. Statistical characteristics of the dataset 

 Median  
man-hours 

Median 
Real_P20 

Standard  
deviation 

Minimum  
Real_P20 

Maximum  
Real_P20 n 
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Dataset 6406 320.3 33.21 288.75 398.5 70 
 

 
Fig. 1. Boxplot of Real_P20 in the dataset 

3.2 Evaluation Criteria 

To evaluate the accuracy of the methods, we used evaluation criteria commonly used 
in the field of the software system size estimation [28]. The accuracy measure that used 
in this paper are Mean Absolute Residual (MAR), Mean of Magnitude of Relative Error 
(MMRE), Percentage of prediction within x% (PRED(x)), Mean Absolute Percentage 
Error (MAPE), Sum of Squared Errors (SEE), and the Mean Squared Error (MSE). 
These measures were chosen because they behave very differently. The best method is 
the one where MAR, MMRE, MAPE, SSE and MSE are minimized and PRED (x) is 
maximized. 

Mean absolute residual (MAR) 

 𝑀𝐴𝑅 = $
+
∑ |𝑦! − 𝑦O!|+
!#$ 		 (8) 

Mean magnitude of relative error (MMRE) 

 𝑀𝑀𝑅𝐸 = $
+
∑ |7#078#|

7#
+
!#$  (9) 

Percentage of prediction within x% (PRED(x)) 

 𝑃𝑅𝐸𝐷(𝑥) = $
+
∑ {1	𝑖𝑓	 |7#078#|

7#
≤ 𝑥; 	0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒+

!#$ 			 (10) 

Mean absolute percentage error (MAPE) 
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 𝑀𝐴𝑃𝐸 = $
+
∑ |7#078#|

7#
× 100+

!#$ 		 (11) 

Sum of square error (SSE) 

 𝑆𝑆𝐸 =	∑ (𝑦! − 𝑦O!)!4+
!#$  (12) 

Mean squared error (MSE) 

 𝑀𝑆𝐸 =	 $
+
∑ (𝑦! − 𝑦O!)!4+
!  (13) 

where, n is the number of observations, 𝑦! 	is the known real value, 𝑦O! 	is the estimated 
value. 
 
3.3 Methodology used 

This section describes the procedure for investigating the accuracy of the proposed 
method. As described in Section 2, the CFS algorithm selects the most appropriate 
factors for the correction factors to be used as input to the MLR models. The 
methodology for the historical dataset is as follows: 
Step 1: Using the CFS algorithm to determine the correlation and benefit of the number 
of technical complexity and environmental complexity factors for size estimation. 
Step 2: Building the two MLR models based on the best correction factors preprocessed 
by the algorithm CFS. The regression model on CFS-based selected technical factors is 
called 𝑇𝐶𝐹9:;. The regression model on CFS-based selected environmental factors is 
called 𝐸𝐶𝐹9:;. 
Step 3: The effort estimation result of the proposed CFSiCF method is calculated as the 
aggregate of four metrics - UAW (Eq. (2), UUCW (Eq. (3), 𝑇𝐶𝐹9:;, and 𝐸𝐶𝐹9:; 

 𝑈𝐶𝑃9:;!9: = (𝑈𝐴𝑊 +𝑈𝑈𝐶𝑊) × 𝑇𝐶𝐹9:; × 𝐸𝐶𝐹9:; (14) 

Step 4: Evaluate the methods using six performance measures (MAR, MMRE, PRED 
(0.25), MAPE, SEE, and MSE). 

4 Results 

This section evaluates and discusses the experimental results according to the 
methodology detailed in Section 3. 

 
4.1 RQ1 

The accuracies of experimental validation for the proposed CFSiCF method and other 
tested methods are listed at Fig. 2-7. As the results, we can confirm that the proposed 
CFSiCF method gives the best MAR, MMRE, MAPE, SSE, MSE, PRED (x) values in 
four selected different subsets of factors.  

Specifically, the correlation and benefit of the number of technical complexity and 
environmental complexity factors in descending order of effectiveness (see Table 6): 
Case 1 - eight selected technical factors (T1, T2, T3, T4, T5, T7, T9, T10) and four 
selected environmental factors (ENV5, ENV6, ENV7, ENV8); Case 2 - eight selected 
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technical factors (T1, T2, T3, T4, T5, T7, T9, T10) and five selected environmental 
factors (ENV4, ENV5, ENV6, ENV7, ENV8); Case 3 - eight selected technical factors 
(T1, T2, T3, T4, T5, T7, T9, T10) and seven selected environmental factors (ENV1, 
ENV3, ENV4, ENV5, ENV6, ENV7, ENV8); and Case 4 - eight selected technical 
factors (T1, T2, T3, T4, T5, T7, T9, T10) and eight selected environmental factors 
(ENV1, ENV2, ENV3, ENV4, ENV5, ENV6, ENV7, ENV8).  

Based on the above results, RQ1 can be answered using the CFS method to lead 
different subsets of factors that build diverse CFSiCF methods. 

Table 6. Selected factors on TCF and ECF 

Case Selected technical factors Selected environmental factors 

1 T1, T2, T3, T4, T5, T7, T9, T10 ENV5, ENV6, ENV7, ENV8 
2 T1, T2, T3, T4, T5, T7, T9, T10 ENV4, ENV5, ENV6, ENV7, ENV8 
3 T1, T2, T3, T4, T5, T7, T9, T10 ENV1, ENV3, ENV4, ENV5, ENV6, ENV7, 

ENV8 
4 T1, T2, T3, T4, T5, T7, T9, T10 ENV1, ENV2, ENV3, ENV4, ENV5, ENV6, 

ENV7, ENV8 
 

 
Fig. 2. The MAR results of the UCP, AOM and CFSiCF methods 

4.2 RQ2 

We measured the accuracy improvements achieved by the proposed CFSiCF method 
over the baseline method - UCP and other tested methods - AOM[14] and OCF[29]. As 
the results in Table 7, the proposed method outperforms all other methods with superior 
accuracy in MAR, MMRE, MAPE, SSE, MSE, PRED (x).  

Specifically, the proposed CFSiCF method outperforms the UCP, OCF and AOM 
methods by 33.45 - 43.50%, 8.42 - 16.58% and 18.48 - 27.41% respectively for MAR, 
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by 33.57 - 43.85%, 8.57 - 16.92% and 16.78 - 25.77% respectively for MMRE, by 
37.47 - 44.48%, 12.43 - 22.24% and 24.87 - 33.28% respectively for PRED (0.25), by 
33.43 - 43.72%, 8.43 - 16.79% and 16.66 - 25.66% respectively for MAPE, by 1.69-
2.24 times, 1.19-1.57 times and 1.39-1.85 times respectively for SSE and MSE. 

 
Fig. 3. The MMRE results of the UCP, AOM and CFSiCF methods 
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Fig. 4. The PRED(0.25) results of the UCP, AOM and CFSiCF methods 

 
Fig. 5. The MAPE results of the UCP, AOM and CFSiCF methods 
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Fig. 6. The SSE results of the UCP, AOM and CFSiCF methods 

 

 
Fig. 7. The MSE results of the UCP, AOM and CFSiCF methods 
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Table 7. Comparison of the proposed method to other method variants 

Method MAR MMRE PRED(0.25) MAPE SSE MSE 
UCP 123.753 0.374 0.35 37.371 307472.9 21962.3 
AOM 109.872 0.327 0.42 32.676 253954.5 18139.6 
OCF 100.535 0.304 0.5 30.37 216512.7 15465.1 
CFSiCF (Case 1) 86.234 0.26 0.64 26.002 130774.5 9791.04 
CFSiCF (Case 2) 88.474 0.269 0.64 26.87 157356.1 11239.7 
CFSiCF (Case 3) 92.454 0.28 0.57 27.954 178883.7 12777.4 
CFSiCF (Case 4) 92.73 0.28 0.57 28.008 181691.4 12977.9 

5 Conclusions 

In this experimental study, we investigated the influence of the feature selection method 
on the correction factors to improve the estimation accuracy of the UCP method. For 
this purpose, the MLR method was chosen for correction factors preprocessed by the 
CFS algorithm. The proposed CFSiCF method was compared with the other tested 
methods on six accuracy measures using the 5-fold cross-validation method.  

In the evaluation of RQ1, it can be concluded that the effect of the CFS algorithm 
on the correction factors was demonstrated. The most accurate estimation results were 
achieved with eight technical factors (T1, T2, T3, T4, T5, T7, T9, T10) and four 
environmental factors (ENV5, ENV6, ENV7, ENV8). It also follows from the analysis 
that in answer to RQ2, it can be said that the proposed CFSiCF method leads to a 
significant increase in estimation accuracy compared to the UCP, AOM, and OCF 
methods. It is also worth highlighting the simplification of the evaluation of the 
correction factor values, which increases the usefulness of the proposed CFSiCF 
method in practice. 

Future research will further investigate other feature selection methods that can 
increase diversity and produce more estimation accuracy of the CFSiCF method. In 
addition, further research direction using clustering approaches will be considered a 
solution in our future work. 
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