
Calibrating Function Complexity in Enhancement

Project for Improving Function Points Analysis

Estimation

Vo Van Hai1, Ho Le Thi Kim Nhung1 and Huynh Thai Hoc 1

1 Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511, Zlin

76001, Czech Republic
{vo_van, lho, huynh_thai}@utb.cz

Abstract. Producing a good software product on time and within budget, the in-

itial software estimation takes a significant role. Reality has shown that most

software fails because the initial software estimation is not correct. Many re-

searchers have proposed methods for software estimation. It has been developed

since the 70s of the last century, but it is still of great interest until now. We al-

so know that creating a new software product is difficult; it is even more diffi-

cult to innovate. In the framework of this paper, we propose an improved meth-

od based on the FPA method of IFPUG. We named this proposed model is Cal-

ibrating Function Complexity in Enhancement Project (CFCEP). This method is

based on the Linear Regression technique to give coefficients of function com-

plexity. The experimental results based on the ISBSG dataset show that the es-

timation based on this new coefficient gives much better results than using the

coefficients of the standard FPA method.

Keywords: Software Measurement, Function Point Analysis, Effort Estimation,

Multiple Linear Regression.

1 Introduction

Software estimation is an essential issue in the process of developing a software sys-

tem [7]. Many projects have not been completed on time or have ultimately failed,

primarily because the effort was underestimated or overestimated [8]. For this reason,

various software effort estimation models have been developed to manage the budget

and schedule of software projects [5]. Accurate effort estimation is essential for pro-

ject managers and customers [6]. It supports creating an application for bidding, con-

tract negotiation, scheduling, monitoring, and controlling software development.

According to Moløkken [16], only about 30-40% of software projects are complet-

ed. The CHAOS team's report shows a partial or ultimately failure rate of software

projects, which was 70% in 1994 [17], and this number increased to 83.9% in 2019

[10]. Several studies have been conducted to find out the reasons for the failure of

software projects. Galorath et al. [18] indicate that the causes of this failure are inade-

quate engineering, poor project planning, sudden decisions at the early stages of the

2

project, and incredibly inaccurate estimates. Some researchers have also pointed out

that the leading cause of project failure is incorrect cost estimates [19] [17] [20].

Therefore, software effort estimation methods need to be improved to evaluate differ-

ent types of projects. One of the possible research directions could be to study meth-

ods based on Functional Point Analysis (further only FPA) [2]. An important aspect

to be measured in software engineering projects is the functional size of the software

[21]. FPA is a standardized method for determining the size of software based on its

functional requirements. It is designed to be applicable regardless of programming

language and implementation technology. Albrecht [2] recommends FPA to measure

the size of the system that processes data from end-users.

The FPA method has been standardized by ISO/IEC 20926:2010 [22]. However,

the FPA method is controversially discussed by different researchers regarding its

advantages and limitations. Henderson et al. [23] studied the FPA method from a

manager and developer perspective based on 13 attributes with three main findings:

(1) Source Lines Of Code (further only SLOC) count is less complex than Functional

Point (further only FP); (2) developers better understand FP profitability than

managers, and (3) differences between managers and developers in values block the

communication needed to make informed decisions. Kampstra et al. [24] and Kemerer

[25] reported that the FPA method does not produce consistent results when applied

by different metrics. Meli [26] showed a mismatch between the established

complexity for Base Functional Components (further only BFC) and possible yield

estimates.

Many studies have shown that the FPA for BFC scores is incorrect. For example,

the same data function and/or the same transaction function can be classified with

different DET and RET/FTR combinations with the same complexity. This results in

the same function score for data functions and/or transactional functions. It was also

found that in some situations, functions with very similar DET and RET/FTR can be

classified with different complexity and therefore receive different weights according

to the FPA.

Xia et al. [27] suspect that the unadjusted FP weighted value based on research on

data processing systems at IBM (locally) cannot reflect software globally. In [28],

they repeatedly point out that the classification is ambiguous, and that the original

method may not adequately reflect the reality of software complexity in a particular

software application. In [29], they demonstrated no clear boundary between the two

classifications in FP counting. The authors propose combining three techniques (fuzzy

logic, artificial neural network construction, and statistical regression) in a neural

fuzzy function point calibration model to solve these problems.

According to Hajri et al. [30], the classification of function types into simple, aver-

age, and complex does not reflect the full extent of complexity required to develop a

user system. The main innovative idea of this study is to introduce a new weighting

system for measuring FP using the Artificial Neural Network (further only ANN) -

using the backpropagation technique. In the first step, the original weighting system is

used as a baseline to establish new weights. Next, they train one of the most popular

techniques in Neural Networks to predict the value of new weights. Then, the new

3

weights and the original weights are inserted into the FP model. Finally, the size of FP

is calculated as a function of the original weights and the new weights.

Ya-Fang et al. [31] reported the IFPUG FPA barely distinguishing the complexity

of adjacent components. If this situation occurs in a software program, the estimated

results will not correspond to the actual situation. To address this shortcoming, they

believe that fuzzy theory should be used to analyze component complexity. He also

said that the weights of the BFCs, as set by the IFPUG, are supposed to reflect the

functional size of the software, but software today is vastly different from before, so it

no longer exists suitable anymore. Agree with Ya-Fang et al. [31] state that this in-

consistency in a large number of BFCs, located over boundary regions of defined

periods, is even worse. This is because an incorrect classification of the different

functions of the system will skew its functional dimensions. Like Xia et al. [19-21],

the authors also link fuzzy logic with artificial neural networks. The neural network

can learn from the estimated data from the rules and linguistic terms defined by fuzzy

logic.

In recent decades, scientists have done a lot of research on the implementation of

localized learning using soft computational techniques and statistical techniques. Spe-

cifically, Šilhavý et al. [34] proposed a new categorical variable segmentation model

based on dataset segmentation to estimate software development effort using a re-

markable model trained on a particular data segment. In addition, Prokopová et al.

[35] also determined the influence of the VAF factor on the accuracy of the software

cost estimation process. Wena et al. [36] showed that the ANN technique is the most

widely used and provides the most accurate results along with Support Vector Re-

gression (further only SVR). Although soft computational techniques have shown

positive results, there is a significant variation between results reported from different

studies.

Since there are many of the above limitations, this study proposes a function com-

plexity weight calibrated based on multiple linear regression for estimating the devel-

opment effort of enhancement software projects when the IFPUG FPA method is used

for baseline estimation. This study will answer the research question of whether the

proposed method can significantly improve the prediction of the IFPUG FPA method.

The methods are applied to the International Software Benchmarking Standards

Group (ISBSG) dataset, which contains data on completed software projects [4]. Un-

biased evaluation criteria (eq. 9-11) were used to evaluate the estimation accuracy of

the methods.

The remainder of the paper is organized as follows: Section 2 presents the back-

ground of the methods used. Section 3 describes the research methodology. Section 4

introduces the results and the discussion, and Section 5 the conclusions and sugges-

tions for future work.

4

2 Background

2.1 Function Point Analysis

FP was first introduced by A. J. Albrecht [2] and widely accepted with many variants

from both academics and practitioners [32]. The study in this area is also known as

FPA or Function Size Measurement (FSM). The function points measurement could

be classified into FP counting and FP estimation [33].

The FPA assumes that a software program consists of a set of functions. In turn,

each function can be a data transaction or transactional function. The data transaction

has consisted of Internal Logic Files (ILF) and External Interface Files (EIF), and the

transaction function comprises External Input (EI), External Output (EO), or External

Inquiry (EQ). In turn, each of these is judged as simple, average, or complex and as-

signed a weight accordingly (see Table 1).

Table 1. Data and transactional function complexity

Component

EI EO EQ EIF ILF

Functional

Complexity

Low 3 4 3 5 7

Average 4 5 4 7 10

High 6 7 6 10 15

The following equation can obtain the total unadjusted function points (UFP)

𝑈𝐹𝑃 = ∑ ∑(𝑊𝑖𝑗 × 𝑆𝑖𝑗

𝑚

𝑗−1

𝑛

𝑖=1

) (1)

where 𝑊𝑖𝑗’s are the complexity weights and 𝑆𝑖𝑗’s are the counts for each function

component, n is the number of types, and m is the number of complexity groups.

The Value Adjustment Factor (VAF) should be aimed at before calculating the

function points. The VAF is based on the rate of 14 general system characteristics

(GSCs - Data Communications, Distributed Data Processing, Performance, Heavily

Used Configuration, Transaction Rate, Online Data Entry, End-User Efficiency,

Online Update, Complex Processing, Reusability, Installation Ease, Operational Ease,

Multiple Sites, Facilitate Change). The GSCs are rated based on their degree of influ-

ence or complexity on the 0 – 5 scale. The following table represents the significance

of the influence factors rating.

Table 2. The GSCs Factor weights

System Influence Rating

Not present or no influence 0

Incidental influence 1

Moderate influence 2

Average influence 3

Significant influence 4

Strong influence throughout 5

5

The VAF count is adjusted as

𝑉𝐴𝐹 = 0.65 + 0.01 × ∑(𝐹𝑖 × 𝑟𝑎𝑡𝑖𝑛𝑔)

14

𝑖=1

 (2)

After all, the adjusted function points (AFP) can be reached by using the following

Eq. (3)

𝐴𝐹𝑃 = 𝑈𝐹𝑃 × 𝑉𝐴𝐹 (3)

In the previous IFPUG, the function point was used to develop a new project but

not enhance an existing project. However, in the latest version (4.3.1), this problem is

changed. We can use FP for both Adjusted Development Project Function Point

(aDFP) and Adjusted Enhancement Project Functional Size (aEFP).

Use the following formula to calculate aDFP:

𝑎𝐷𝐹𝑃 = 𝐷𝐹𝑃 × 𝑉𝐴𝐹 (4)

where 𝐷𝐹𝑃 = 𝐴𝐹𝑃. In aEFP, the following formula was used to calculate the func-

tion size:

𝑎𝐸𝐹𝑃 = [(𝐴𝐷𝐷 + 𝐶𝐻𝐺𝐴 + 𝐶𝐹𝑃) ∗ 𝑉𝐴𝐹𝐴] + (𝐷𝐸𝐿 ∗ 𝑉𝐴𝐹𝐵) (5)

where:

ADD - the size of the functions being added by the enhancement project.

CHGA - the size of the functions being changed by the enhancement project – as they

are / will be after implementation.

CFP - the size of the conversion function.

VAFA - the value adjustment factor of the application after the enhancement project

is complete.

DEL - the size of the functions being deleted by the enhancement project.

VAFB is the value adjustment factor of the application before the enhancement pro-

ject begins.

2.2 The Multiple Linear Regression

In the data analysis, a common task is to study the dependence of a responding varia-

ble 𝑌 ∈ 𝑅1 on many independent variables 𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝑛] ∈ 𝑅𝑛. The model

given in the form of a mathematical equation 𝑌 = 𝑓 (𝑋) describing each relationship

between Y and X is called the regression model. In the case of only one independent

variable, it is called Simple Linear Regression. There are two or more independent

variables called Multiple Linear Regression (MLR) [14]. The essential model has the

following form [15]:

 Y = β0 + β1X1+. . + βnXn + 𝜀 (6)

where Y is the predicted dependent variable, n is the number of variables, 𝛽0 is an

intercept, 𝑋𝑖 are the independent variables and 𝛽𝑖 𝑖 ∈ 1, 𝑛 are called partial regression

coefficients, 𝜀 is error residual. In this study, the β0 and 𝜀 value was omitted to get the

βi which does not depend on the intercept and the error residual.

6

3 Research Methodology

3.1 Data Description

In this article, we use the ISBSG dataset version August 2020 R1 [4]. This dataset has

been contributed by companies in the field of information technology for many years.

In this experiment, we conduct data preprocessing according to the following criteria:

First, we only select records with the counting approach of IFPUG (including IFPUG

Old and IFPUG 4+). This study is for enhancement, so we choose the development

type as an enhancement. Of course, the Data quality rating is selected as A and B.

Since the records are related to functions, the data transaction and transactional func-

tion must not be empty.

The data to this point is basically complete; however, in some records with enough

data, the value of VAF is missing; we proceed to recalculate this value based on the

formula

 𝑉𝐴𝐹 =
𝐴𝐹𝑃

𝑈𝐹𝑃
 (7)

Finally, due to some errors in data collection, we proceed to remove records whose

sum of added, changed, and deleted functions is different from UFP. At this point, we

have a dataset with 911 records ready for testing.

We notice that there is a possibility that the data may be noisy because some values

of SWE are too far from the mean group, as shown in Fig. 1. In this study, we used

the interquartile range (IQR) method to determine the outlier. According to this meth-

od, suppose that Q1 is the lower quartile, and Q3 is the upper quartile, we have Eq.

(10).

 IQR = Q3 − Q1 (8)

Any value that is greater than Q3 + 1.5 × IRQ or less than Q1 − 1.5 × IRQ was

considered an outlier. The simulation of this process was shown in Fig. 2. After

removing outliers, our dataset can be seen in Table 3.

Table 3. Statistic characteristics of SWE

 count mean std min 25% 50% 75% max

Before

remove

outliers

911
3413.3

67
5055.922 16 812.0 1930.0 3867.5 61891.0

After

remove

outliers

637
3003.2

43
3327.755 26 929 1974 3705 25900

7

Fig. 1. Boxplot of SWE for dataset

Fig. 2. Boxplot of SWE after removing outliers for dataset

3.2 Evaluation criteria

Regarding the accuracy of the measurement, according to Foss et al. [11], there have

been many studies and evaluations on the relevance of the error function that have

been proposed and used so far. However, there is no silver bullet to choose the best

predictive models among several alternatives. That means that every accuracy metric

presents certain advantages over the rest. Kitchenham et al. [12] have shown that the

8

most crucial factor in making meaningful comparisons between predictive models is

determining each error function using actual measures. In this study, to evaluate the

accuracy of the proposed model, we use the most popular and widely used measure to

evaluate the predictive ability of the comparative models [13].

MAE (Mean Absolute Error). MAE is calculated as:

 𝑀𝐴𝐸 =
∑ |𝐸𝑓𝑓𝑜𝑟𝑡𝑎𝑐𝑡𝑢𝑎𝑙−𝐸𝑓𝑓𝑜𝑟𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡|𝑛

𝑖=1

𝑛
 (9)

where n is the number of test projects, the 𝐸𝑓𝑓𝑜𝑟𝑡𝑎𝑐𝑡𝑢𝑎𝑙 is the actual effort and the

𝐸𝑓𝑓𝑜𝑟𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is the predicted effort. MAE is considered a good choice for measuring

symmetric unbiased under or overestimates [9] [10]. A higher (better) predictive per-

formance can be achieved with lower MAE.

MSE (Mean Squared Error) is the mean of the square of the differences between

the actual and the predicted efforts.

 𝑀𝑆𝐸 =
∑ (𝐸𝑓𝑓𝑜𝑟𝑡𝑎𝑐𝑡𝑢𝑎𝑙−𝐸𝑓𝑓𝑜𝑟𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡)

2𝑛
𝑖=1

𝑛
 (10)

RMSE (Root Mean Square Error) is a frequently used measure that is just the

square root of MSE. RMSE can be calculated by using the equation given below

 𝑅𝑀𝑆𝐸 = √∑ (𝐸𝑓𝑓𝑜𝑟𝑡𝑎𝑐𝑡𝑢𝑎𝑙−𝐸𝑓𝑓𝑜𝑟𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡)
2𝑛

𝑖=1

𝑛
 (11)

3.3 Methodology used

The use of function complexity values shown in Table 1 has many limitations, as

mentioned in part 1. In this study, we use MLR to propose changes on these function

complexity values. Our proposed method can be visualized as follows: first, from the

ISBSG dataset, we select the attributes and filter it according to the criteria described

in the experiments. Each data column corresponding to EI, EO, EQ, ILF, and EIF will

be transformed into three values : low, average, and High. Then the data will be re-

moved outliers to reduce noise. The next step is to use the k-fold cross-validation

technique to split the data into five folds and run each of these folds against the MLR.

Finally, the regression results will be computed to obtain Low, Average, and High

values for the function complexity. We named this proposed model is Calibrating

Function Complexity in Enhancement Project (CFCEP). Fig. 3 shows the steps de-

scribed above in a more intuitive way.

9

Fig. 3. CFCEP model

For the purpose of this article to find function complexities, we divided the func-

tion points values of EI, EO, EQ, ILF, and EIF into 15 values corresponding to low,

average, and high for each function point. These 15 values are obtained for each rec-

ord by approximating the solutions to the 3-variable equation and then taking the

mean value. Based on these 15 values, we will calculate the 𝑈𝐹𝑃CFCEP value accord-

ing to the MLR model. Then we calculate the AFP and the Effort values. The MLR

model is described as follows:

𝑈𝐹𝑃𝐶𝐹𝐶𝐸𝑃 = β1𝑥1 − β22𝑥2 − β3𝑥3 − β4𝑥4 + β5𝑥5 + β6𝑥6 + β7𝑥7 + β8𝑥8

− β9𝑥9 + β10𝑥10 + β11𝑥11 − β12𝑥12 + β13𝑥13 + β14𝑥14

− β15𝑥15

(12)

4 Result and Discussion

In this section, we will review the experimental results. This result estimated through

MLR will be compared with using FPA for calculation. Actual results and estimated

results will be evaluated based on error criteria MAE, MSE, RMSE.

Table 5 shows us the results of five experimental. As we can see, the result of ef-

fort estimation using MLR is much better than the FPA method. With each experi-

ment as well as the average value, the estimated results based on our proposed method

are always closer to the actual results than the FPA method. Specifically, the accuracy

of this proposed method is 96.13%.

Table 4. Effort estimation results

 SWE
Effort using

FPA

Effort using

CFCEP

ex-1 3214.661 46599.3 2784.752

ex-2 2991.458 47375.3 2851.248

ex-3 2845.984 48915.68 2942.287

ISBSG

dataset

Select attributes,

filtering & trans-

formation

Detect & re-

move outliers

Data Analytics & Cal-

culation

Empirical result

(function complexity)

10

ex-4 3207.625 53258.45 2995.198

ex-5 3168.885 52608.05 3258.606

mean 3085.723 49751.35 2966.418

A smaller value represents a more accurate estimate for the evaluation criteria

MAE, MSE, and RMSE [12]. With Table 5, it is clear that the proposed method has

much higher accuracy than the FPA method.

Table 5. Evaluation criteria results

 MAE

FPA

MAE

MLR

MSE

FPA

MSE

MLR

RMSE

FPA

RMSE

MLR

exp_1 43442.04 2500.785 4.42E+09 15246804 66496.63 3904.716

exp_2 44446.85 2017.467 5E+09 10126571 70721.76 3182.227

exp_3 46083.04 2198.764 5.38E+09 11095411 73340.03 3330.978

exp_4 50120.9 2459.952 5.25E+09 15106096 72434.24 3886.656

exp_5 49502.85 2429.726 5.51E+09 12530844 74244.84 3539.893

mean 46719.14 2321.339 5.11E+09 12821145 71447.5 3568.894

The regression model obtained from our experiment is as the following

𝑈𝐹𝑃𝐶𝐹𝐶𝐸𝑃 = 𝑥1 − 0.58𝑥2 − 1.41𝑥3 − 0.49𝑥4 + 0.26𝑥5 + 0.31𝑥6 + 1.02𝑥7

+ 0.34𝑥8 − 1.20𝑥9 + 0.08𝑥10 + 0.10𝑥11 − 0.07𝑥12

+ 1.45𝑥13 + 0.05𝑥14 − 1.40𝑥15

(12)

And the function complexity we also obtained by calculating is shown in Table 6

Table 6. Function complexity results

 std exp_1 exp_2 exp_3 exp_4 exp_5 mean

EI

L 3 6.023 7.178 6.628 4.496 7.987 6.463

A 4 -2.445 -1.654 -2.674 -2.859 -1.942 -2.315

H 6 -7.338 -10.939 -8.239 -3.704 -12.093 -8.463

EO

L 4 -1.159 -1.588 -2.779 -2.856 -1.436 -1.964

A 5 -0.775 2.467 2.507 1.615 0.694 1.301

H 7 3.794 -0.305 1.874 3.298 2.062 2.145

EQ

L 3 2.468 3.059 2.298 3.927 3.49 3.048

A 4 1.297 0.883 1.3 2.3 1.006 1.357

H 6 -5.825 -6.703 -5.771 -10.336 -7.493 -7.226

ILF

L 5 0.067 0.433 0.473 0.586 0.474 0.407

A 7 1.078 0.4 0.57 1.625 -0.186 0.697

H 10 -1.049 0.192 -0.363 -2.601 0.208 -0.722

EIF L 7 8.107 11.54 11.288 12.103 7.832 10.174

11

A 10 0.732 0.48 0.374 -0.893 1.628 0.464

H 15 -16.369 -24.64 -22.381 -24.527 -17.3 -21.043

The research objective of this study is to propose a new function complexity value

for the enhancement project. Table 6 is our answer to this problem. With this result,

we can apply function complexity to enhancement projects with better accuracy.

5 Conclusion

This paper has achieved a new function complexity table for the enhancement pro-

ject by applying the MLR model to the ISBSG dataset filtered by the suggested crite-

ria. We can see from the experimental results that the average effort achieved with our

proposed new method is much closer to the actual recording of SWE compared to the

IFPUG FPA method. Specifically, the new method has an accuracy of 96.13%.

Future work will focus on a complete framework for both new development types

and enhancement types. In addition, we will be using other methods like artificial

neural networks and support vector machines in our model.

Acknowledgment. This work was supported by the Faculty of Applied Informatics,

Tomas Bata University in Zlín, under project IGA/CebiaTech/2021/001.

12

References

1. IFPUG: International Function Point Users Group. http://www.ifpug.org/, access July

2021.

2. A. J. Albrecht, "Measuring application development productivity," Proc. IBM Applications

Develop. Symp., pp. 83, 1979.

3. M. Stone, "Cross-validatory choice and assessment of statistical predictions," Journal of

the Royal Statistical Society. Series B (Methodological), pp. 111-147, 1974.

4. ISBSG, ISBSG Release 2020 R1

5. Albrecht, A.J., Gaffney, J. E.: Software function, source lines of code, and development

effort prediction: a software science validation. IEEE Transactions on Software Engineer-

ing, pp. 639–647 (1983).

6. Putnam, L. H: A general empirical solution to the macro software sizing and estimation

problem. IEEE Transactions on Software Engineering, pp. 345–361 (1978)

7. Caper. J: Estimating software cost. Mc-Graw-Hill Edition (2007).

8. Boehm, B.W.: Software Engineering Economics.Prentice-Hall, Englewood Cliffs, NJ,

USA, (1981).

9. C. Lokan and E. Mendes, "Investigating the use of the chronological split for software ef-

fort estimation," IET Softw., vol. 3, no. 5, pp. 422-434, 2009.

10. The Standish Group, https://www.standishgroup.com/ , access July 2021

11. T. Foss, E. Stensrud, B. Kitchenham, I. Myrtveit, "A simulation study of the model evalua-

tion criterion MMRE," IEEE Trans. Softw. Eng., 29 (11) (2003), pp. 985-995

12. B. Kitchenham, S. MacDonell, L. Pickard, M. Shepperd, "What accuracy statistics really

measure," IEE Proc. Softw. Eng., 148 (3) (2001), pp. 81-85

13. L. C. Briand, K. E. Emam, D. Surmann, I. Wieczorek and K. D. Maxwell, "An assessment

and comparison of common software cost estimation modeling techniques," in Internation-

al Conference on Software Engineering, 1999, pp. 313-322.

14. V.K. Bardsiri, D.N.A. Jawawi, S.Z.M. Hashim, E. Khatibi, "A flexible method to estimate

the software development effort based on the classification of projects and localization of

comparisons," Empir. Softw. Eng., 19 (2014), pp. 857-884

15. W. Mendenhall, A second course in statistics: regression analysis. Boston, MA, USA:

Pearson Education, Inc., 2012.

16. Moløkken, K., Jørgensen, M.: A review of surveys on software effort estimation. Interna-

tional Symposium on Empirical Software Engineering, 223-231. Retrieved from ACM

Digital Library database, (2003).

17. Moløkken - Østvold. K et al.: Project Estimation in the Norwegian Software Industry. A

Summary. Simula Research Laboratory (2004).

18. Galorath, D. D., Evans, M. W.: Software sizing, estimation, and risk management: When

performance is measured performance improves. Boca Raton, FL: Auerbach (2006)

19. Caper. J: Estimating software cost. Mc-Graw-Hill Edition (2007).

20. Chris F Kemerer : An empirical validation of software cost estimation models, Communi-

cations of the ACM, 30(5), 416-429 (1987).

21. Ravichandran, T.: Organizational assimilation of complex technologies: An empirical

study of component-based software development. IEEE Trans. Eng. Manag., vol. 52, no. 2,

pp. 249–268, (2005).

22. ISO/IEC 20926:2009 (IFPUG), Software and systems engineering -- software measure-

ment -- IFPUG functional size measurement method 2009

about:blank

13

23. Marcos, F., Marcelo, F., Sun, V.: Sun, Improvements to the Function Point Analysis

Method: A Systematic Literature Review, IEEE Transactions on Engineering Management

62(4):1-12 (2015).

24. Kampstra, P, Verhoef. C: Reliability of function point counts — Department of Computer

Science, VU University Amsterdam, Amsterdam, The Netherlands (2010).

25. Kemerer, C. F: Reliability of function points measurement: A field experiment. Commun.

ACM, vol. 36, no. 2, pp. 85–97 (1993).

26. Meli, R: Functional metrics: Problems and possible solutions. Proc. 1st Eur. Software

Meas. Conf., Antwerp, Belgium (1998).

27. Xia, W., Capretz, L. F., Ho, D.: Neuro-fuzzy approach to calibrate function points, Proc.

8th WSEAS Int. Conf. Fuzzy Syst., pp. 116-119, (2007)

28. Xia, W., Capretz, L. F., Ho, D., Ahmed, F.: A new calibration for function point complexi-

ty weights. Inf. Softw. Technol., vol. 50, no. 7–8, pp. 670-683, (2008).

29. Xia, W., Ho, D., Captrez, L. F.: A neuro-fuzzy model for function point calibration.

WSEAS Trans. Inf. Sci. Appl., vol. 5, no. 1, pp. 22-30, (2008).

30. Hajri, M. A., Ghani, A. A. A., Sulaiman, M. N., Selamat, M. H.: Modification of standard

function point complexity weights system. J. Syst. Softw., vol. 74, no. 2, pp. 195-206,

(2005).

31. Ya-Fang, F., Xiao-Dong, L., Ren-Nong, Y., Yi-Lin, D., Yan-Jie, L.: A software size esti-

mation method based on improved FPA. Proc. 2nd World Congr. Softw. Eng., pp. 228-

233, (2010).

32. C. Gencel and O. Demirors, "Functional size measurement revisited," ACM Transaction

on Software Engineering and methodology, vol.17, no. 3, pp.15.1-15.36, June 2008.

33. R. Meli and L. Santillo, "Function point estimation methods: a comparative overview," in

FESMA '99 Conference Proceedings, Amsterdam, 4-8, October 1999.

34. Silhavy, Petr & Silhavy, Radek & Prokopová, Zdenka. (2019). Categorical Variable Seg-

mentation Model for Software Development Effort Estimation. IEEE Access. PP. 1-1.

10.1109/ACCESS.2019.2891878.

35. Prokopova, Zdenka & Silhavy, Petr & Silhavy, Radek, "VAF factor influence on the accu-

racy of the effort estimation provided by modified function points methods," Annals of

DAAAM & Proceedings. 2018, Vol. 29, p0076-0084. 9p

36. J. Wena, S. Lia, Z. Linb, Y. Huc, C. Huang, "Systematic literature review of machine

learning-based software development effort estimation models," Information and Software

Technology, vol. 54, no. 1, pp. 41-59, 2012.

	1 Introduction
	2 Background
	2.1 Function Point Analysis
	2.2 The Multiple Linear Regression

	3 Research Methodology
	3.1 Data Description
	3.2 Evaluation criteria
	3.3 Methodology used

	4 Result and Discussion
	5 Conclusion
	References

