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The Effect of Face Masks on Physiological Data
and the Classification of Rehabilitation Walking
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Abstract— Gait analysis and the assessment of reha-
bilitation exercises are important processes that occur
during fitness level monitoring and the treatment of neu-
rological disorders. This paper presents the possibility of
using oximetric, heart rate (HR), accelerometric, and global
navigation satellite systems (GNSSs) to analyse signals
recorded during uphill and downhill walking without and
with a face mask to find its influence on physiological func-
tions during selected walking patterns. The experimental
dataset includes 86 signal segments acquired under dif-
ferent conditions. The proposed methodology is based on
signal analysis in both the time and frequency domains. The
results indicate that face mask use has a minimal effect on
blood oxygen concentration and heart rate, with the average
mean changes of these parameters being less than 2%. The
support vector machine, a Bayesian method, the k-nearest
neighbour method, and a two-layer neural network showed
very good separation abilities and successfully classified
different walking patterns only in the case when the effect
of face mask wearing was not included in the classification
process. Our methodology suggests that artificial intelli-
gence and machine learning tools are efficient methods
for the assessment of motion patterns in different motion
conditions and that face masks have a negligible effect for
short-duration experiments.

Index Terms— Classification, computational intelligence,
face masks, gait analysis, machine learning, motion moni-
toring, physiological data acquisition.

I. INTRODUCTION

MOTION analysis and gait assessment are important
research areas related to the monitoring of physical

activities [1] and the diagnosis of neurological disorders
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[2], [3]. The associated exercises moreover may be affected
by wearing face masks [4]. The evaluation of the influence
of masks on dyspnoea and cardiorespiratory parameters has
been extensively studied using specific sensors for the analysis
of the blood oxygen concentration [5] and peak heart rate
data. Some results show that in healthy adults, face masks
have a minimal impact on dyspnoea during short exercise
tests [6], [7]. Other papers [8] based on studies of the use of
protective surgical facial masks during clinical practice point
to the reduction of the blood oxygen concentration, an increase
in the frequency of the heartbeat, and the sensation of shortness
of breath.

Gait assessment involves the analysis of data recorded
by different microelectromechanical sensor units (MEMS),
camera systems, depth sensors, thermal cameras, oximeters,
heart rate sensors, and accelerometers. Specific wearable
devices [9], [10], [11], [12], [13], [14] and sensor systems
can warn wearers that their face mask is leaking, and these
sensors can simultaneously record the wearer’s heart rate
and breathing frequency using sensitive accelerometers [15].
Accelerometers, global navigation satellite systems (GNSSs),
and wireless communication links can be applied to more
general gait analysis in real conditions [16].

Applications of gait and motion analysis include early diag-
nostics in neurology [17], [18], [19], COVID diagnosis [20],
physical therapy, rehabilitation, and the monitoring of sport
activities. The ataxic gait assessment of patients with multiple
sclerosis is a very important problem in this area.

This paper is devoted to the analysis of the blood oxygen
concentration, heart rate changes, and accelerometric data
processing during walking with and without a face mask.
Figure 1 presents the walking route in the mapping environ-
ment and the acquired data, including the altitude profile,
blood oxygen concentration, heart rate data, and accelero-
metric signals. Figure 2 presents the oximeter and the mobile
phone screen, which contains information from the accelero-
metric and GNSS sensors used by Matlab Mobile to record
positioning and motion data.

General numerical methods are commonly used to process
data from sensors in the time, frequency, or scale domains. Ini-
tial signal processing steps include de-noising, time synchro-
nisation using timestamps, and resampling. Selected statistical
methods are often used to analyse data in the time domain.
Spectrograms and scalograms are then used for the detection
of signal features in the frequency and scale domains [21].

Complex datasets with repeated cluster observations and
event-related signals can be analyzed by linear mixed
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Fig. 1. Presentation of (a) the walking route in the mapping environment
labelled to show the minutes during a selected experiment, and acquired
data, including (b) the altitude profile, (c) blood oxygen concentration,
(d) heart rate data, and (e) accelerometric data.

Fig. 2. Physiological data acquisition using oximeter, accelerometric,
and GNSS sensors to make measurements during motion and using
a mobile phone and Matlab Mobile, which were connected to the
MathWorks cloud for recording.

models [22], [23] and algorithmic blocks available in
Matlab [24]. Additional methods include the use of com-
putational intelligence tools for the classification of walking
patterns by the support vector machine (SVM), a Bayesian
method, the k-nearest neighbour (k-NN) method, and the
two-layer neural network (NN) [25]. Further, a more sophis-
ticated approach could be based on artificial intelligence and
deep multilayer neural network models [26], [27], [28].

The goal of the present study is to contribute to the analysis
of the effect of face masks on physiological functions during
a walk along a real route recorded by the GNSS. This effect
is studied through the analysis of selected physiological data
(blood oxygen concentration and heart rate). The evaluation of
walking segments is performed through the frequency domain
analysis of accelerometric data recorded by a mobile phone in
the optimal position [19] on the body. From a more general
point of view, the whole methodology contributes to the
classification of motion patterns [1], [29], rehabilitation, and
human activity monitoring.

II. METHODS

A. Data Acquisition

Physiological signals observed during walks on the route
presented in Fig. 1 were recorded using simultaneous data

Fig. 3. The set of walking experiments performed on the uphill and
downhill segments, showing (a) the locations of experiments in the map-
ping environment, (b) the associated altitude profiles, (c) acceleration
values, (d) the spectrogram of accelerometric data, and (e, f) the blood
oxygen concentration and the heart rate for walking without and with a
face mask.

acquisition by oximetric, heart rate, accelerometric, and GNSS
sensors. Figure 3(a) presents the route segment and the set of
five downhill and uphill walks; the altitude profile is shown
in Fig. 3(b) and was recorded by the mobile phone’s GNSS
sensor. The blood oxygen concentration and heart rate data
were recorded by the wrist oximeter with a sampling frequency
of 1 Hz during each set of experiments (Figs. 3(e) and 3(f)).
The associated accelerometric data shown in Fig. 3(c) were
recorded by the mobile phone’s sensors with a sampling
frequency of 100 Hz. The locations of the accelerometric
sensors on the spine were selected according to previous
studies [19]. All experiments were performed both without
any face cover and with the five layer FFP2 face mask (FFP2
NR premium, Promedor24 manufacturer).

The time synchronisation of all sensors was performed using
the mobile phone and the time stamps associated with all the
data, which were recorded in comma-separated values (CSV)
and transmitted to the mobile phone and computer using the
Bluetooth short-length wireless technology standard and wire-
less communication links. Matlab Mobile and the MathWorks
cloud were used to record the GNSS and accelerometric data.

The set of all 86 segments of a selected individual recorded
during different weather conditions included the following:

1) Downhill walking without (class A, 25 segments) and
with (class C , 25 segments) a face mask;

2) Uphill walking without (class B , 18 segments) and with
(class D, 18 segments) a face mask.

For the analysis of accelerometric data, classes A and C , and B
and D were joined to form classes AC and B D, respectively.
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The project was approved by the local ethics committee in
accordance with the 1964 Declaration of Helsinki.

All of the data segments related to individual classes were
randomly divided into training and testing sets with 90 %
and 10 % of the observations, respectively. A comparison
of classification accuracies was then performed for both the
training and testing sets.

B. Feature Extraction and Classification

Data sets of oximetric, heart rate, positioning, and accelero-
metric signals included timestamps for each observation that
enabled their time synchronisation. The segmentation process
was based on GNSS altitude data. As the observed values
are affected by noise components, the digital filtering of
these signals was performed first. The finite impulse low-pass
impulse filter (FIR) of order M = 60 with a normalised cutoff
frequency of 0.05 was used to transform initial altitude values
{x(n)}N−1

n=0 of each segment into a new signal {y(n)}N−1
n=0 using

filter coefficients {b(k)}M−1
k=0 . Time delay compensation was

used in the final algorithmic process.
Statistical analysis was then applied to the oximetric and

heart rate signals. Signal segments with different altitude
profiles and slopes were analysed separately for walks taken
without and with a face mask.

Accelerometric data recorded by the three-axis sensor
formed three sequences {sx (n), sy(n), sz(n)}L

n=1, and their
modulus,

s(n) =
√

sx (n)2 + sy(n)2 + sz(n)2, (1)

for n = 1, 2, . . . , L , was used for further processing. Signals
were analysed in the frequency domain using the short-time
discrete Fourier transform after the removal of the mean value
s̄ = mean({s(n)}L−1

n=0 ) of each segment:

S(k) =
L−1∑

n=0

(s(n) − s̄) e− j k n 2 π/L . (2)

Then, the following spectrogram evaluation was performed.
The signal features of accelerometric data can be evaluated

in both the time and scale domains using either the discrete
Fourier or wavelet transforms [30]. The use of spectral domain
features requires the evaluation of the relative energy Ew in
the frequency band Bw = 〈 f c1(w), f c2(w)〉:

Ew =
∑

k∈�w
|S(k)|2

∑L/2
k=0 |S(k)|2

, (3)

where �w is the set of indices for the frequency components
fk ∈ 〈 f c1(w), f c2(w)〉. In the given case two frequency
bands for the relative energy evaluation were used: B1 =
〈0, 6〉 Hz and B2 = 〈6, 12〉 Hz to define the first (F1) and
the second (F2) feature, respectively.

The classification of both accelerometric and physiological
data involved the use of the pattern matrix PR,Q and the target
vector T1,Q . The value of Q stands for the number of column
pattern vectors specified for each segment and R is equal
to the number of features. The associated target vector T1,Q
specifies the classes corresponding to each experiment. The

following classification process was performed by different
machine learning algorithms [1], [28], [31], [32], including the
k-nearest neighbour method, support vector machine (SVM),
Bayesian method, and two-layer neural network model. Both
the accuracies and the cross-validation errors were then eval-
uated to select the best algorithm for a given application.
More sophisticated methods could use a selected deep learning
strategy.

The proposed two-layer neural network model used the
sigmoidal transfer function f 1 in the first layer and the
probabilistic softmax transfer function f 2 in the final layer.
The values of the output layer, which are based on Bayes’
theorem [33], provided the probabilities for each class.

The confusion matrix was used as an efficient tool to
evaluate the classification results. The confusion matrix shows,
for each class c(k)C

k=1 out of C classes, the number of correctly
(T C(k)) and incorrectly (FC(k)) classified experiments. The
final accuracy ACC of Q experiments is then evaluated
according to the following relation:

ACC =
∑

T C(k)N
k=1

Q
. (4)

Cross-validation errors were then evaluated to measure the
generalisation abilities of classification models using the leave-
one-out method.

III. RESULTS

The physiological and GNSS data recorded during walking
experiments on the route presented in Fig. 3 were time syn-
chronised at first. The altitude signals were then preprocessed
by digital filtering to reduce additional noise components. The
FIR low-pass filtering with its normalized cutoff frequency
of 0.05 simplified the use of altitude signals for automatic
detection of altitude extremal values and the separation of sig-
nal segments for uphill and downhill walking. All evaluations
were performed in Matlab 2022a.

Figure 4 shows the time evolution of oximetric data and
heart rate signals from experiments without and with a face
mask for both downhill and uphill walking and the mean
values of the set of experiments.

Mean values of oximetric and heart rate data during last
4 minutes of each segment were used as features for further
processing. Owing to the measurements errors, the whole set
of measurement was reduced by 3 segments (3.5%) from 86 to
83 ones. Figure 5 presents the distribution of the walking
patterns in terms of the mean values of the blood oxygen
concentration and mean heart rate values for segments of uphill
and downhill walking without and with a face mask, with
limits showing 0.5, 1, and 1.5 times the standard deviation.
These results show that the face mask has a minimal influence
on physiological functions for short-duration exercises; this is
in agreement with several previous papers [6]. Table I presents
the associated statistical parameters. The two-sample t-test
was evaluated to test the decision for the null hypothesis
that data of the blood oxygen concentration (and the heart
rate) for walking with and without the face masks comes
from independent random samples with equal means. All tests
accepted this hypothesis on the 5 % significance level.
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Fig. 4. The time evolution of physiological signals from walking without
and with a face mask. (a, b) Oximetric data and (c, d) heart rate data for
both downhill and uphill walking, featuring the mean values of the set of
experiments.

Fig. 5. Distribution of walking patterns in terms of the mean values of
the blood oxygen concentration and mean heart rate values for segments
of uphill and downhill walking without and with a face mask with limits
showing 0.5, 1, and 1.5 times the standard deviation.

The classification of statistical features related to individual
walking segments was performed by different classification
methods. The pattern matrix PR,Q has the mean blood oxygen
concentration and heart rate in its first and second row,
respectively, associated with each segment q = 1, 2, . . . , Q
and Q = 83 standing for the number of segments used during
the classification process.

Figure 6(a) presents the results of the pattern matrix
processing by the two-layer R − S1 − S2 neural network. Its
structure includes R = 2 input elements, S1 = 10 neurons

TABLE I
STATISTICS OF THE MEAN BLOOD O2 CONCENTRATION AND MEAN

HEART RATE FOR DOWNHILL (D) AND UPHILL (U) WALKING

WITHOUT (N) AND WITH (W) A FACE MASK

Fig. 6. Classification by the two-layer neural network of physiological
walking patterns (mean oxygen concentration and mean heart rate)
(a) into four classes that stand for walking downhill/uphill with and without
a face mask and (b) into two classes that represent walking downhill/uphill
without distinguishing between wearing and not wearing a face mask.

in its first layer, and S2 = 4 output elements that provide
probabilities of the class affiliation. The sigmoidal and softmax
transfer functions were applied in the first and the second
layer, respectively. Due to the overlapping clusters of walking
without and with a face mask, the classification accuracy
was only 79.5 %, as presented in Table II. Similar results
with slightly lower accuracies were achieved by the support
vector machine, Bayes method, and the 3-nearest neighbour
method. Results show the highest accuracy and the lowest
cross-validation errors for the two-layer neural network for
the given set of experiments.

Figure 6(b) presents the results of the two-layer neural
network classification into two classes, without distinguishing
between wearing and not wearing a face mask. Class AC is
formed by classes A/C , and class B D by classes B/D of the
previous classification. The feature values form well-separated
clusters in this case, allowing very reliable classification.

Table III presents the confusion matrix of the two-layer
neural network model (Fig. 6(a)), and results of physiological
data classification into four classes: A - HillDown walking
without face mask (CA), B - HillUp walking without face
mask (CB), C - HillDown walking with face mask (CC),
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TABLE II
ACCURACY (ACC) AND CROSS-VALIDATION ERRORS (CVS) FOR THE

CLASSIFICATION OF PHYSIOLOGICAL DATA (MEAN BLOOD O2
CONCENTRATION AND MEAN HEART RATE) INTO FOUR CLASSES BY

THE SVM, BAYESIAN METHOD, 3-NEAREST NEIGHBOUR

METHOD, AND TWO-LAYER NN

TABLE III
CONFUSION MATRIX OF THE CLASSIFICATION OF PHYSIOLOGICAL

DATA INTO FOUR CLASSES BY THE NEURAL NETWORK MODEL,
WITH TRUE VALUES ON THE MATRIX DIAGONAL (IN BOLD),

TRUE RATES (TR(k)), PREDICTION VALUES (PV(k)),
AND ACCURACY (ACC)

D - HillUp walking with face mask (CD). It presents true
values on the matrix diagonal (in bold), true rates (T R(k)),
prediction values (PV (k)), and accuracy (ACC). Due to the
compact clusters in Fig. 6(b), the classification accuracy is
100%.

Similar compact clusters occur for the accelerometric data
recorded by the sensor on the spine. Figure 7(a,b) presents the
spectral components of walking downhill and uphill during the
selected set of experiments. The features, which are evaluated
according to the mean values of energy in the frequency
bands 〈0, 6〉 and 〈6, 12〉, are presented in Fig. 7(c); they form
compact clusters when no distinction is made between wearing
and not wearing a face mask, allowing a simple classification.
The two-sample t-test was evaluated to test the decision for
the null hypothesis that accelerometric data for walking up
and down comes from independent random samples with
equal means. All tests rejected this hypothesis on the 5 %
significance level.

IV. DISCUSSION

The evaluation of gait patterns based on the analysis of
different motion, physiological sensors, and video cameras is
a very wide research area with many applications. Common
approaches include the analysis of spatial domain features
based on stepping characteristics [34] and the performance of
accelerometric data processing [17], [19], [35], [36] to form
clinical biomarkers.

Fig. 7. Mean spectral values of accelerometric data for (a) downhill
walking and (b) uphill walking, and (c) the distribution of feature values
evaluated according to the mean energy in selected frequency bands of
accelerometric data for class AC (downhill walking) and class BD (uphill
walking).

The relationship between blood oxygen concentration and
heart rate and the wearing of face masks is a widely studied
topic that has yielded different conclusions. The present paper
makes a contribution to these studies. Its results are based on
downhill and uphill walking without and with a face mask
and the analysis of the associated datasets. The mean blood
oxygen concentration decreased from 94.88 % to 94.82 % and
from 94.63 % to 94.26 % for downhill and uphill walking,
respectively (less than 0.4 %). The mean heart rate increased
from 107.03 bpm to 109.28 bpm and from 126.55 bpm to
126.90 bpm for downhill and uphill walking, respectively (less
than 2 %).

It seems that the effect of face mask wearing is minimal and
can be neglected for short-duration experiments. These results
correspond with recent papers [6], [37], [38] that focused on
making measurements of physiological functions without and
with mask wearing. No significant difference was detected in
these studies. The experiments in this study that make similar
contributions included downhill and uphill walking for about
6 minutes.

The medical explanation of the statistical results achieved is
related to aerobic and anaerobic work. The face mask increases
the air resistance during the inhale, it increases the pressure
difference inside the lungs and the surrounding air, and it
increases the breathing work. The oxygen turnover in the
lungs is compensated by a higher and deeper breathing rate.
This compensation mechanism can keep the blood oxygen
concentration inside normal limits for lower-level and time-
limited physical activities.

The simultaneous recording of accelerometric data was
done by a sensor located on the spine according to previous
studies [17], [19]. No changes in the walking patterns were
observed for walking without and with a face mask. However,
the resulting analysis of accelerometric data confirmed the
possibility of downhill and uphill walking having different
frequency components for different altitude profiles. Results
of the present paper correspond with previous observations of
accelerometric data during cycling experiments [1], [28].
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Recent tests [39] were done for the set of 16 individuals
(11 males and 5 females of their age between 24 and 48 years)
during their physical training on a home exercise bike. Data
of separate segments (load and rest periods) were recorded
for the uncovered face and with the face mask, and acquired
by sensors identical with those used for walking experiments.
Data evaluation of these 128 segments proved nearly no
effect of face masks on the blood oxygen concentration and
the heart rate. These conclusions are in the agreement with
results of the present paper for uphill and downhill walking
and analysis of 86 signal segments acquired under different
conditions.

Both physiological and accelerometric data acquisition
using wireless mobile sensors showed the usefulness of these
sensors in motion data processing and the usefulness of per-
forming analyses in both the time and frequency domains. The
use of timestamps associated with each observation has shown
the importance of these timestamps for the synchronisation of
signals recorded by different sensors with different sampling
rates.

V. CONCLUSION

This paper has used selected mathematical and machine
learning methods for gait analysis to study the effect of
wearing face masks during walking in different conditions.
The whole database included 86 signal segments and data
acquired with sampling frequencies of 1 Hz (for oximetric and
heart rate data), 100 Hz (for accelerometric data) and the mean
sampling frequency of 1 Hz for positioning data acquired by
the global navigation satellite system.

The results show that the effect of face masks use is
negligible for short-duration walking experiments. These con-
clusions correspond with some papers [6], [7] presenting
that face masks have a minimal impact on dyspnoea and
the expected decrease of the blood oxygen concentration is
compensated by the increase of the breathing frequency and
its depth. On average, the use of a face mask decreased the
blood oxygen concentration by about 0.4 % and increased
the heart rate by about 2 % only for the given set of
experiments.

Additional results demonstrate the usefulness of physiolog-
ical and accelerometric data in recognising different walking
patterns for uphill and downhill walking with and without
a face mask. Neural network systems can be used for the
classification of the associated features in both the time and
frequency domains. The standard classification tools used
included the SVM, Bayesian method, k-nearest neighbour
method, and two-layer neural network.

The analysis of motion patterns and face mask wearing
has many applications in neurology, surgery, rehabilitation,
and fitness level assessment during various sport activities.
Future studies will be devoted to the use of further sensors,
including video- and thermal-based systems for the analysis of
different body motion activities. More extensive experiments
will allow the use of efficient deep learning methods and
artificial intelligence as well.

This paper constructs a multidisciplinary approach to
motion data processing by using computational intelligence

to contribute to the more reliable monitoring of rehabilitation
exercises and the diagnosis of neurological disorders in a
clinical environment. It describes how wearable sensors and
appropriate data processing tools can be used in the detection
of motion patterns and it contributes to the study of the effect
of face mask wearing on physiological data changes. The
general background of this research suggests that it may be
possible to use similar mathematical methods [29] for motion
pattern classification in many different fields.
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