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Abstract: The current study was conducted to evaluate the effect of the addition of selected hydrocol-
loids [agar (AG), κ-carrageenan (KC), or gelatin (PG); as a total replacement for emulsifying salts]
on the viscoelastic properties and microstructure of processed cheese (PC) samples during a storage
period of 60 days (at 6± 2 ◦C). In general, PC viscoelastic properties and microstructure were affected
by the addition of hydrocolloids and the length of storage time. The evaluated PC reported a more
elastic behavior (G′ > G′′) over the viscous one. The highest values of viscoelastic moduli (G′; G′′;
G*) were recorded for PC samples manufactured with KC addition, followed by those prepared with
AG and PG. The control sample presented values of viscoelastic moduli similar to those of the PG
sample. All PC samples tested had fat globule size values lower than 1 µm. Moreover, PC with AG
and KG addition presented similar microstructures and sizes of fat globules.

Keywords: processed cheese; hydrocolloids; rheology; microstructure; storage time

1. Introduction

In general, processed cheese (PC) is a dairy-based gel characterized as a stable oil-
in-water emulsion with viscoelastic properties [1–3]. Furthermore, PC is a dairy product
that differs from natural cheese because it is not manufactured directly from milk. The
main ingredient in PC production is/are natural cheese/cheeses (of various types and
degrees of maturity). The smooth and homogeneous consistency of PC is formed by mixing
natural cheese with appropriate emulsifying salts (ES), heated under moderate pressure and
constant shear, commonly at a temperature within the range of 90–100 ◦C [4,5]. Moreover,
the development of the desired PC uniform consistency can be influenced by three groups
of factors, including (i) composition and properties of the raw materials utilized (type
and maturity level of the natural cheeses, pH of the natural cheese to be melt, dry matter
(DM) and fat in dry matter (FDM) contents, ES type and/or concentration, possible use
of hydrocolloids), (ii) processing conditions (stirring speed and duration, cooling time
and rate) and (iii) storage conditions (storage time and temperature, packaging material
properties) [5–7].

During the manufacture of PC, ES play a crucial role in the manufacture of PC, leading
to the development of homogeneous products with the desired consistency. In particular,
the key role of ES is Ca sequestration, leading to the development of the more soluble Na-
paracaseinate, which in turn can act as an active emulsifier. Additionally, the application of
ES results in emulsification and stabilization of the fat present in the PC matrix because
protein chain peptization, dispersion, hydration, and swelling will occur [8,9]. Phosphates
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and citrates or combinations of these are most commonly used in the manufacture of PC
and similar products [8,10].

From the point of view of human nutrition, an ideal ratio of Ca and P absorbed is
1:1. However, the aforementioned ratio in PC is generally reduced to 1:1.5–3.0 due to the
presence of phosphate-based ES [11–13]. According to Černíková et al. [14], a possible
decrease in the P amount in PC could result in its better nutritional rating. Replacement of
the ES can be realized according to the following three approaches. The first option is to
reduce the amount of ES by partially replacing them with other substances. The second
variant is to substitute ES with other food additives or mixtures completely. Finally, the
last approach consists of partially removing calcium ions from the raw material mixture by
physical or physicochemical methods [14–16]. Moreover, the successful substitution of ES
by hydrocolloids in PC allows for (i) a decrease of the level of P and an increase in the Ca:P
ratio; (ii) a decrease of the Na concentration; (iii) utilization of biodegradable food additives
from alternative sources instead of P; (iv) formation of PC products with potential health
benefits for consumers.

Hydrocolloids are a heterogenous group of long-chain biopolymers (polysaccharides
and/or proteins) that are mainly applied in various food systems to create and disperse
emulsions, stabilize foams, and form gels. The typical level of hydrocolloids added to food
products is less than 1%. Furthermore, natural/modified starches, carrageenan, pectin,
agar, xanthan gum, locust bean gum, guar gum, gum arabic, gelatin, casein, caseinates,
and whey proteins are among the hydrocolloids most frequently applied in the food
industry [13,17,18].

To our knowledge, no study has been found to date that provides a direct comparison
of viscoelastic characteristics and microstructure of PC manufactured using agar (AG), κ-
carrageenan (KC), or gelatin (PG) as a total replacement for ES. Therefore, the main objective
of the current study was to evaluate the effect of different gel hydrocolloids (AG, KC, PG)
addition (as a total replacement for ES) on the viscoelastic properties and microstructure
of PC samples during a storage period of 60 days (at 6 ± 2 ◦C). Moreover, a secondary
objective was to compare the developed viscoelastic properties and microstructure of PC
with hydrocolloids in addition to that of a control sample (CS; PC in which conventional
phosphate-based ES was used).

2. Materials and Methods
2.1. Materials

For the preparation of PC samples with a DM content of 40% w/w and an FDM content
of 55% w/w, the following raw ingredients were used: Edam cheese (8-week maturity;
50% w/w DM, 30% w/w FDM; Kromilk, a.s., Kroměříž, Czech Republic); butter (82% w/w
DM; Sachsenmilch Lepperdorf, GmbH, Wachau, Germany) and hydrocolloids: KC, AG,
and PG (Sigma-Aldrich, Inc., Saint Louis, MO, USA). ES were purchased from Fosfa PLC
Company (Břeclav, Czech Republic). Glutaraldehyde solution, cacodylate buffer, ethanol,
and chloroform were obtained from Sigma-Aldrich, Inc. (Saint Louis, MO, USA).

2.2. Manufacture of Processed Cheese Samples

The model PC samples were manufactured using the Stephan UMC-5 (Stephan Ma-
chinery GmbH, Halmen, Germany) equipped with indirect heating. The target temperature
was set at 90 ◦C with a holding time of 60 s, and the raw materials mixture was thermally
treated under a partial vacuum. The stirring speed of 3000 rpm was applied. The PC
samples were manufactured according to the production schema previously reported by
Pluta-Kubica et al. [19]. The formulation of PC samples is presented in Table 1. The hot PC
melt was filled in cuboid shape polypropylene containers (length: 95 mm, width: 75 mm,
height: 30 mm). The filled containers were sealed with aluminum lids and allowed to cool.
Subsequently, the PC samples were transferred to a refrigerator (at 6 ± 2 ◦C), where they
were stored throughout the experiment. The analyses were realized on the 1st, 14th, 30th,
and 60th days after the production day (day 0 was the production day).
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Table 1. Formulation of the raw materials and processing parameters used for the processed cheese
samples ***.

Raw Materials
Processing Parameters

Composition % (w/w)

CS * AG * CR * PG *

Raw materials
Water 35.4 33.2 33.2 33.2

Edam cheese 43.1 47.7 47.7 47.7
Butter 19.0 18.1 18.1 18.1

Emulsifying salts ** 2.5 none none none
Hydrocolloid none 1.0 1.0 1.0

Processing parameters
Stirring speed (rpm) 3000 3000 3000 3000

Holding time (s) 60 60 60 60
Target temperature (◦C) 90 90 90 90

Total time (min) 11 11 11 11
* CS—sample with emulsifying salts; AG—sample with agar; * CR—sample with κ-carrageenan; * PG—sample
with gelatin. ** Monosodium phosphate (NaH2PO4), disodium hydrogen phosphate (Na2HPO4), tetrasodium
diphosphate (Na4P2O7), and sodium salt of polyphosphate having chain length n ≈ 20 were used in a ratio of
1.9:1.6:1.4:1.4. *** The total weight of the samples produced ranged from 1015.8 to 1026.2 g per batch. The weight
of the sample in one container was approximately 90 ± 2 g.

2.3. Basic Chemical Analysis

The DM and fat contents of the evaluated PC samples were determined according to
ISO 5534 [20] and ISO 1735 [21], respectively. The pH values were measured at 20 ± 1 ◦C
using the glass tip electrode of a pH meter (pH Spear, Eutech Instruments Europe B.V.,
Landsmeer, The Netherlands) by directly inserting the spear into the PC samples in 3 ran-
domly selected spots (in each packaging). The recorded values were the mean of nine
repetitions (n = 9).

2.4. Rheological Measurements of Processed Cheese Samples

The determination of PC viscoelastic properties was performed using a dynamic
oscillatory shear rheometer (RheoStress 1, Haake, Bremen, Germany) equipped with a
parallel plate-plate geometry (diameter: 35 mm). Rheological measurements were made at
20.0 ± 0.1 ◦C, and a 1.0 mm gap was applied. In order to determine the linear viscoelastic
regions (LVR), amplitude sweeps were performed. Therefore, the amplitude of shear stress
of 20 Pa was selected within the LVR. The exposed edge of the parallel plate-plate geometry
was covered with a thin layer of silicone oil to prevent the PC samples from dehydrating.
During the tests, the elastic (G′; Pa) and viscous (G′′; Pa)Pa) moduli were recorded in a
frequency range of 0.01–100.00 Hz, and subsequently, the complex modulus of elasticity
(G*; Pa) was calculated according to the following Equation (1):

G∗ =
√
( G ′)2 + ( G ′′)2 (1)

The frequency of 1 Hz was chosen as the reference frequency for the presentation of
the complex viscosity η, tan δ, and G*. The recorded values were the mean of nine replicates
(n = 9).

2.5. Scanning Electron Microscopy of Processed Cheese Samples

The Jeol JSM-7401F scanning electron microscope (Jeol, Tokyo, Japan) was imple-
mented to evaluate the microstructure of the model PC samples. PC samples were prepared
according to Černíková et al. [22]. In particular, part of the PC sample (size = approximately
5 × 2 × 2; mm) was placed in a glutaraldehyde solution of 3% (v/v) in a cacodylate buffer
of 0.2 mol/L for a 24 h period. The samples were then washed in cacodylate buffer (3 times
for 15 min). Postfixation was performed for 48 h in 2% (w/v) OsO4. The samples were
washed again in cacodylate buffer (3 times for 15 min). Furthermore, PC samples were
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dehydrated by solutions with an increased concentration of ethanol from 30 to 100%. The
samples were subsequently frozen, fractured in liquid nitrogen, and defatted with chloro-
form. Fragments of the model PC were dried with carbon dioxide (Leica EM CPD300, Leica
Microsystems, Vienna, Austria). The samples were mounted on an aluminum stem and
holder and sputter coated (Sputter Coater SCD 050, Bal-Tec, Balzers, Liechtenstein) for a
period of 98 s (20-nm layer of gold). The samples were viewed using a Jeol JSM-7401F (Jeol,
Tokyo, Japan) scanning electron microscope, and each image was analyzed using ImageJ
software (US National Institute of Health website, https://www.nih.gov/, accessed on 14
March 2022). The image of each PC sample was analyzed to determine the diameter of the
fat globule (µm). Each PC sample was analyzed twice, and the results were expressed as
the median ± standard deviation.

2.6. Statistical Analysis

The results represented the average means with standard deviation (SD) of repeated
measurements (n = 9). Nonparametric statistical methods were used in this study. Two-
factor Kruskal–Wallis analysis of variance (ANOVA) was applied to determine the effect
of hydrocolloid type addition (factor A) and storage period (factor B) on the viscoelastic
properties of PC. Multiple comparison procedure among means was performed using
Tukey’s method. The chi-square test was applied to compare the fat droplet size of the
model PC. All the statistical analysis methods were performed at the probability level of
p <= 0.05 (Minitab, Ltd., Coventry, UK).

3. Results and Discussion
3.1. Basic Chemical Analysis of Processed Cheese Samples

The DM content of the model PC samples ranged from 40.54 to 41.42% (w/w), providing
valuable information on the stability of the DM content of the samples. Furthermore, the fat
content of the PC samples was in the range of 22.5% to 23.0% (w/w). Furthermore, another
significant factor affecting the functional and viscoelastic properties of PCs is the pH value.
Figure 1 shows the development of the pH values of the PC samples as affected by the length
of storage time. The pH values of the samples produced with the addition of hydrocolloids
were within the 5.33–5.59 interval throughout the storage time (p < 0.05). Furthermore, the
pH values of the CS were in the range of 5.57 to 5.77. However, during the 60-day storage
period, a slight decrease in pH was observed in all samples tested (p < 0.05). According to
Černíková et al. [22], a possible decrease in the pH values during storage by 0.1–0.2 can be
explained by the hydrolysis of diphosphates and polyphosphates or by possible changes in
the dissociation of ES or other compounds present in the developed PC-matrix. In terms of
PC, in which hydrocolloids were added, there was no significant decrease (p ≥ 0.05) in pH
values during storage. The pH results of the PC samples manufactured with the addition of
AG as a total substitute for ES approached a pH value of 5.6 only on the first and fourteenth
day of storage, and then the pH decreased to 5.3. For PC samples with the addition of KC,
the pH values were nearly 5.4, and the pH values did not decrease further with increasing
storage time. Furthermore, the pH value of the PC samples containing PG was 5.4 at the
beginning of the experiment, and after 60 days of storage, the pH value decreased to 5.3.

https://www.nih.gov/
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Figure 1. Development of pH values for processed cheese samples manufactured with different types
of hydrocolloids: [control sample (black), agar (red), κ-carrageenan (green), and gelatin (yellow)]
during a storage period of 60 days at 6 ± 2 ◦C [n = 9; the results were expressed as means (columns)
and standard deviations (bars); processed cheese samples were sampled after 1, 14, 30 and 60 days
of storage].

3.2. Rheological Measurements

Rheology can prove to be a very valuable tool that allows for direct insight into the func-
tional properties (in terms of consistency) of a material [23]. The results of dynamic oscilla-
tory rheometry for PC samples manufactured with the addition of three individual hydro-
colloids (as a total replacement for ES) and CS are depicted in Figures 2 and 3 and Table 2.

From the results obtained, it can be stated that higher values of elastic (G′) and
viscous (G′′) moduli were recorded for PC samples, in which KC and AG were used. In
comparison, samples with PG addition showed lower values of both tested moduli (G′ and
G′′) compared to CS. Generally, all tested PC samples presented more elastic behavior (G′

> G′′). According to the rheological definition of a gel, the latter is a viscoelastic system
with an ‘elastic’ modulus (G′) larger than the ‘viscous’ modulus (G′′). Furthermore, G′

is a measure of the energy that is elastically stored in the structure of the material (gel)
during a periodic application of stress, and G′ is a measure of the energy dissipated (or
the viscous response). The ratio equal to G′′/G′ (i.e., tan δ) provides information about
how much stress and strain are out of phase with each other [18,24]. The results obtained
show that the application of three individual hydrocolloids influenced the viscoelastic
properties of the model PC samples. The highest values of G′ (Figure 2) were recorded
for PC samples manufactured with KC addition, followed by those prepared with AG
and PG. The CS presented values of G′ similar to those of PG. The G′′ values of the tested
PC samples followed a similar trend, as was previously mentioned (Figure 3). Generally,
with increasing frequency, a gradual increase in the values of both recorded moduli was
observed for all investigated PC samples.
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Table 2. Values of the complex modulus of elasticity, complex viscosity, and loss tangent of the model processed cheese samples during a storage time of 60 days (at
6 ± 2 ◦C).

Storage Time (days)

1 14 30 60

Hydrocolloid G* (Pa) η (Pa·s) tan δ G* (Pa) η (Pa·s) tan δ G* (Pa) η (Pa·s) tan δ G* (Pa) η (Pa·s) tan δ

CS * 7445 ± 197 a,A 1335 ± 2 a,A 0.6 a,A 8866 ± 213 a,B 1257 ± 2 a,B 0.6 a,A 9441 ± 268 a,C 1075 ± 3 a,C 0.5 a,B 10778 ± 314 a,D 148 ± 1 a,D 0.5 a,B

AG * 44159 ± 576 b,A 1624 ± 3 b,A 0.2 b,A 39817 ± 512 b,B 2758 ± 3 b,B 0.2 b,A 38523 ± 451 b,B 3437 ± 3 b,C 0.2 b,A 36950 ± 425 b,C 4129 ± 3 b,D 0.1 b,B

CR * 85682 ± 931 c,A 6286 ± 4 c,A 0.2 b,A 80343 ± 889 c,B 7450 ± 3 c,B 0.2 b,A 77249 ± 817 c,C 10692 ± 4 c,C 0.2 b,A 75521 ± 756 c,D 12016 ± 4 c,D 0.1 b,B

PG * 10504 ± 278 d,A 1011 ± 2 d,A 0.3 c,A 8090 ± 195 d,B 1081 ± 2 d,B 0.4 c,B 7687 ± 187 d,B 1242 ± 2 d,C 0.4 c,B 5369 ± 138 d,C 2016 ± 2 d,D 0.5 c,C

* CS—control sample with 2.5% (w/w) emulsifying salts; * AG—sample with 1% (w/w) agar; * CR—sample with 1% (w/w) κ-carrageenan; * PG—sample with 1% (w/w) gelatin. Means
within a column (the difference between hydrocolloid type; comparing the control sample was also included) followed by different superscript letters differ (p < 0.05). Means within a
row (the difference between storage time; comparing the same hydrocolloid type; the control sample was also included) followed by different uppercase letters differ (p < 0.05). G*, η,
and tan δ were evaluated individually.
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Figure 2. Development of elastic modulus G′ values for processed cheese samples manufactured with
different types of hydrocolloids (control sample—full circle; agar—open circle; κ-carrageenan—full
triangle; gelatin—open triangle;) without emulsifying salts, a storage period of 60 days (at 6 ± 2 ◦C).
Processed cheese samples were sampled after 2 (part (A)), 9 (part (B)), 30 (part (C)), and 60 (part (D))
days of storage.

Table 2 presents the results of complex modulus of elasticity (G*), tan δ, and complex
viscosity (η) (for the reference frequency of 1 Hz) for PC samples manufactured with
hydrocolloids as a function of storage time. The data provided shows that the sample with
the addition of 1% (w/w) KC showed the highest G* values, followed by the PC sample,
in which AG was used. On the other hand, the sample in which PG was added showed
G* values similar to those of the CS. According to Piska and Štětina [25], an increase in the
values of G* would result in elevated stiffness of PC. Černíková et al. [26] concluded that
elevated concentration of KC could lead to changes in gel properties or to more intensive
interactions between carrageenan chains, resulting in the formation of a “dense” network
structure and, therefore, increasing the stiffness of the PC. Gels formed with KC addition
present synergistic effects in terms of high values of moisture, elasticity, and viscosity.
Furthermore, when the G* values of PC samples manufactured with AG and KC were
compared, the sample with the addition of KC presented G* values almost two times higher
than the sample in which AG was used. The latter phenomenon could be explained by the
fact that AG is very weakly compared to neutrally charged polysaccharides and does not
interact with proteins or other charged molecules, forms weak secondary and branched
networks, and exhibits lower syneresis compared to anionic polysaccharides such as pectin,
к-carrageenan, or xanthan gum [27–29].

In general, the samples prepared with the addition of gelatin presented low values
of all tested viscoelastic moduli (G′; G′′; G*), similar to those of CS. It is generally known
that gelatin is proteinaceous in nature, has the ability to form a protein network, and binds
to water, preventing syneresis [30]. Additionally, when comparing PC samples with the
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addition of PG and AG, it was found that samples containing gelatin had G* values of
about a quarter lower compared to samples with AG addition.
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Figure 3. Development of viscous modulus G′′ values for processed cheese samples manu-
factured with different types of hydrocolloids (control sample—full circle; agar—open circle;
κ-carrageenan—full triangle; gelatin—open triangle) without emulsifying salts during a storage
period of 60 days (at 6 ± 2 ◦C). Processed cheese samples were sampled after 2 (part (A)), 9 (part (B)),
30 (part (C)), and 60 (part (D)) days of storage.

In CS produced with the addition of ES, a slight increase in G* was observed during the
storage period (p ≥ 0.05). On the contrary, the rigidity of PC samples manufactured using
hydrocolloids showed a significant (p < 0.05) decrease in G* over the whole experiment.
Therefore, a hypothesis might be suggested that during storage, the structures of the
hydrocolloid-protein complex are probably rearranged, and the present water is bound
less intensively to the developed matrix. Furthermore, the aforementioned decrease in
G* resulted in PC samples, probably due to the smaller number of interactions within
the matrix occurring during storage [6]. The results of complex viscosity agreed with
those of G*.

3.3. Scanning Electron Microscopy

In addition to the interconnection of the developed PC matrix evaluated by the vis-
coelastic properties, the different consistencies of the evaluated PC with the addition of hy-
drocolloids can also be explained by the varying sizes of the fat droplets
(Figures 4 and 5 and Table 3). Statistically, the median value of the size of the fat droplets
(Table 3) in CS with added ES differed significantly from the samples with added hydrocol-
loids (p < 0.05). The size of the fat globules of the samples was determined using scanning
electron microscopy, and it was found that the samples with the addition of ES showed
the lowest values (Table 3), indicating that the emulsification of the fat present within the
PC matrix was much more effective than in the samples with the use of hydrocolloid. In
general, all PC samples tested presented fat globule size values lower than 1 µm. Further-
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more, ES possesses the ability to modify the ‘environment’ of the raw materials mixture
so that the proteins present in the PC matrix can act as true emulsifiers. As mentioned
above, the main role of ES is the ion exchange of calcium ions (of the insoluble calcium
para-caseinate) for sodium ions, resulting in the development of the more soluble sodium
para-caseinate [14,31,32]. However, less emulsified fat was observed in PC samples with
KC addition, which presented the highest values of fat globule size. Furthermore, the
difference value describes the difference between the smallest and the largest fat globule
observed in the microphotographs of the investigated PC samples. When comparing
individual samples, it was found that the fat globule size was statistically significantly
different (p < 0.05). Furthermore, a significant difference (p < 0.05) was reported between
the samples with the addition of PG and the samples with the remaining hydrocolloids
applied (AG and KC). Thus, it can be stated that PC with AG and KG addition presented
similar structures and sizes of fat globules. This similarity could probably be explained
by the fact that both hydrocolloids are derived from seaweed [33]. Additionally, the size
values of the fat globules for the samples prepared with PG were similar to those of CS.
This phenomenon could be explained by the protein nature of gelatin [30]. The size of fat
droplets could affect the consistency of PC; a greater number of small fat droplets might
disorder the continuity of the protein matrix less intensively compared to the presence of a
smaller number of orders of magnitude larger fat droplets, resulting in the development of
a firmer structure [19].
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Figure 4. Scanning electron microscopy images of the model processed cheese (the scale bars represent
1 µm; 5000×magnification). (A) Sample with agar; (B) sample with κ-carrageenan; (C) sample with
gelatin; (D) sample with emulsifying salts; FG* (and white arrows)—void space of fat globules;
P—protein structure; PPS—protein-polysaccharide structure.
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Figure 5. Scanning electron microscopy images of the model processed cheese (the scale bars represent
10 µm; 1000×magnification). (A) Sample with emulsifying salts; (B) sample with agar; (C) sample
with κ-carrageenan; (D) sample with gelatin; FG* (and white arrows)—void space of fat globules;
P—protein structure; PPS—protein-polysaccharide structure.

Table 3. Size (diameter) of fat globules of the model processed cheese samples; the results are
expressed as mean ± standard deviation.

Size of Fat Globules

Hydrocolloid Mean (µm) Minimum Size (µm) Maximum Size (µm) Difference (µm)

CS * 0.199 ± 0.015 a 0.029 ± 0.034 a 0.790 ± 0.052 a 0.761 ± 0.018 a

AG * 0.756 ± 0.084 b 0.135 ± 0.071 b 4.583 ± 0.098 b 4.448 ± 0.027 b

CR * 0.761 ± 0.056 b 0.145 ± 0.028 b 2.507 ± 0.067 c 2.362 ± 0.039 c

PG * 0.490 ± 0.062 c 0.052 ± 0.049 c 3.890 ± 0.073 d 3.838 ± 0.024 d

* CS—control sample with emulsifying salts; * AG—sample with agar; * CR—sample with κ-carrageenan;
* PG—sample with gelatin. Means within a column (the difference between hydrocolloid type; comparing the
control sample was also included) followed by different superscript letters differ (p < 0.05).

In Figure 4, images of PC samples with hydrocolloid addition [AG (part A), KC (part
B), PG (part C), and CS (part D)] are shown (at 5000 × magnification). Based on the size of
the fat globules, it is evident (Figure 4) that the largest fat globules, or empty fat globule
spaces, are in the AG-containing PC samples (Figure 4, part A). Furthermore, it is also
possible to observe the association of the KC and casein fractions that form a compact
protein-polysaccharide matrix (Figure 4, part B). A more detailed structure of the developed
model PC samples is shown in Figures 5 and 6. In particular, it can be seen that the samples
produced with AG (Figure 5, part B, and Figure 6, part B) presented a less homogeneous
PC matrix (heterogeneous structure compared to the microstructure of the CS with ES
addition; Figure 5, part A, and Figure 6, part A). In addition, fat globules were not well
noticeable in the CS at 1000×magnification (Figure 4D). Thus, the structure of the CS could
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still be characterized as homogeneous and uniform. PC containing larger fat globules has a
smoother and softer consistency compared to PC with small fat globules [3,34].
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Figure 6. Scanning electron microscopy images of the model processed cheese (scale bars represent
1 µm; 10,000×magnification). (A) Sample with emulsifying salts; (B) sample with agar; (C) sample
with κ-carrageenan; (D) sample with gelatin; FG*—void space of fat globules; P—protein structure.

4. Conclusions

The impact of three different hydrocolloids [agar (AG), κ-carrageenan (KC), or gelatin
(PG)] on the viscoelastic properties and microstructure of PC manufactured without ES was
evaluated during a storage time of 60 days (at 6 ± 2 ◦C). The application of hydrocolloids
led to the manufacture of PC samples with divergent viscoelastic characteristics and
microstructure. Furthermore, the addition of KC to PC samples resulted in increased values
of G′, followed by those of AG. The control sample presented values of viscoelastic moduli
similar to those of the PG sample. Moreover, a practical conclusion of the current study
could be considered that for consumers who prefer PC products with softer consistency,
the addition of PG could be recommended. On the other hand, if consumers prefer PC
products with a firmer consistency, KC or AG could be applied. Last but not least, based on
the results obtained from this study, it could be concluded that the application of AG, KC,
or PG might lead to the development of new PC products with better health-promoting
properties that meet the growing demands of consumers.
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Michaela Černíková for their help.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Hosseini-Parvar, S.H.; Matia-Merino, L.; Golding, M. Effect of basil seed gum (BSG) on textural, rheological and microstructural

properties of model processed cheese. Food Hydrocoll. 2015, 43, 557–567. [CrossRef]
2. Hanaei, F.; Cuvelier, G.; Sieffermann, J.M. Consumer texture descriptions of a set of processed cheese. Food Qual. Prefer. 2015, 40,

316–325. [CrossRef]
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