
Special Focus COVID19—Simple Software Simulator for Teaching Embedded Programming

Simple Software Simulator for Teaching
Embedded Programming

https://doi.org/10.3991/ijep.v12i6.28193

Jan Dolinay(), Petr Dostalek, Vladimir Vašek
Tomas Bata University in Zlin, Zlín, Czech Republic

dolinay@utb.cz

Abstract—This article presents simple software simulator of a microcontroller
evaluation board FRDM-KL25Z. The simulator was developed to make it possible
to teach our embedded systems course online during the COVID-19 pandemic.
It is in principle a software library that handles function calls and register access
from student’s program and displays the outputs in a console window of a stan-
dard desktop application. It does not require any special hardware or software
tools except an IDE capable of building C++ applications for the desktop com-
puter. It can be easily modified for different microcontrollers and thus can be
useful if existing lessons need to be switched from in-person to distance learning
at a short notice.

Keywords—microcontroller, simulator, Kinetis, embedded programming

1	 Introduction

The COVID-19 pandemic forced great number of students and teachers to rethink
the way they learn and teach, as they needed to switch to distance learning to be able to
continue the educational process in partial or complete isolation [1]. This brought many
challenges. For example, teachers found that the conventional model based on teacher
explaining the materials is not effective in online teaching [2] and the courses need to
be adapted [3]. Online evaluation of the students can present significant problems as
well [4]. Both teachers and students also had to learn how to use new technologies [5].

Practical courses were especially affected by the unprepared shift to distance learn-
ing as these courses include application or practical work which is not available in
online environment [6]. Embedded programming courses are good example of such
practical courses. They are traditionally taught using specific hardware – an evalua-
tion board with a microcontroller (MCU). Such a board is normally provided in the
labs together with other devices needed for the course; the students do not have the
hardware at home.

This was also our case when faced with the requirement to organize our courses of
embedded systems programming online during the winter semester of 2020. In the labs
we use FRDM-KL25Z evaluation board attached to a custom-made expansion board
with many peripherals, such as LCD display, switches, potentiometer, rotation encoder,
temperature, and humidity sensor, etc. [7].

128 http://www.i-jep.org

https://doi.org/10.3991/ijep.v12i6.28193
mailto:dolinay@utb.cz

Special Focus COVID19—Simple Software Simulator for Teaching Embedded Programming

There are just enough boards for the 12 workplaces in our lab. Approximately 60
students take turns on the equipment every week during the semester. Although in the
summer of 2020 it looked that the course will be organized as usual, perhaps with the
lectures in online mode, as the pandemic situation rapidly worsened at the beginning of
the semester, it was clear that also the labs will have to be taught online. We came up
with the following options:

1.	 Use remote access to the lab.
2.	 Use hardware which each student has (student buys or school buys or lends).
3.	 Use simulation (student needs just a computer/laptop to do the exercises).

As the title of the article suggests we decided for the third option. However, this is
not to say that this option is be the best; rather it was the only one that was feasible
given the limited time. Let us therefore briefly discuss all the above-mentioned options.

1.1	 Remote access to the lab

In general, enabling remote access to computers in school labs is not a problem and
it is often used as a replacement of physical labs for various reasons besides the pan-
demics [8]. Remote access was used at our faculty in several courses that require spe-
cific software (which the students cannot install at their computers because of license,
hardware, or other restrictions). However, for embedded programming course physi-
cal access to the evaluation board with microcontroller is needed for user interaction,
such as pressing a switch or rotating a knob. One solution to this problem is described
in [9]. In the lab the MCU kit is connected to a computer running standard IDE (Keil
microVision in this case) and the remote access to this computer is realized via remote
access application. This allows students to upload and debug their programs. The phys-
ical access to the board is realized using web camera and data acquisition board that
generates physical signals equivalent to a button press etc. The authors created vir-
tual instruments in LabVIEW to allow the students control various peripherals of their
MCU board using graphical interface. The drawback of this solution is that it is based
on relatively expensive software. In our situation, it would not be possible to implement
this kind of system in the limited time available even if the necessary investment would
be granted.

1.2	 Providing students with the hardware

If each student had their own development board, they could work with the pro-
grams during online lessons in a similar way as if physically present in the labs. As an
added benefit they could work on the assigned tasks at any time that suits them; not
being limited by the busy schedule of the lab. This benefit applies to course with phys-
ical presence in the lab as well, which makes it an interesting option – the investment
required to buy the board for every student would not be used just in this pandemic
situation, but the boards could be lent to new students in the following semesters.

However, this option was not practical for us because we use custom-made expan-
sion board of which we only have 12 pieces, while there are some 60 students taking
the course. Leaving aside the option of rotating limited number of boards between all

iJEP ‒ Vol. 12, No. 6, 2022 129

Special Focus COVID19—Simple Software Simulator for Teaching Embedded Programming

the students on e.g., a weekly basis, which would be logistically very complicated and
not possible for students who live far from the university or even in other countries,
there are two options left for fulfilment of the goal that each student has access to the
hardware: either the students buy the boards, or the school buys the boards for them.
Which option is more suitable will depend on many factors, for example, in some
countries students may be reluctant to spend their money on the hardware, it may be too
expensive for them, or it may take too much time for all of them to obtain the boards. It
may be easier that the school buys and distributes the hardware, as described in [10], if
this is not complicated by administrative requirements on buying any equipment (such
as selection procedures that take several months) or tight budget of many schools.

As already mentioned, we would not be able to provide students with the custom-
made expansion board containing all the peripherals, but it would be possible to use
just the core of our platform – the FRDM-KL25Z board that is factory-made and avail-
able in specialized shops. However, this would require considerable changes to the
course contents because many example programs are based on the hardware of the
custom-made expansion board. Using different hardware that is cheaper and more read-
ily available, such as Arduino boards, would require complete change of the course
materials.

Therefore, we eliminated this option even though in general, this is an interesting
alternative, especially if the course uses affordable factory-made hardware.

1.3	 Using simulation

The third option is not to use the hardware at all and teach with simulator. Most
teachers of embedded programming (including us) will probably argue that contact with
the real hardware is essential part of each embedded systems course. As [11] states, the
students need to work with teaching kits in order to assimilate the basics of program-
ming microprocessor systems. On the other hand, simulations and other technology
can add value to science study [12]. There are reports on platforms that use simulation,
such as interactive simulator-based approach described in [13] or software simulation
packages for 8051 and PIC microcontrollers [14]. In [15] the authors present Arduino
simulator which allows the users to access virtual Arduino board implemented on a
web server from the Arduino IDE in the same way as if they used the physical board.
An interesting system which proposes using complete toolchain based on simplified
MCU design, which include simulator but can also be implemented on real hardware is
presented in [16]. Simulators are also often used in online embedded systems courses
which are now offered in large number [17], although some courses also employ hard-
ware kits [18]. The research on effectiveness of computer simulation as an instructional
method does not provide uniform answers. For example, meta-analysis [19] from 40
reports found significant positive differences in achievements of students who used
computer simulated experiments as compared to students who used more traditional
learning activities, but no significant differences in retention or student attitudes toward
the subject. Based on the findings the author recommends using simulated experiments
and simulations to enhance students’ learning, especially in cases where the use of
traditional laboratory activities is expensive, dangerous, or impractical. A recent study

130 http://www.i-jep.org

Special Focus COVID19—Simple Software Simulator for Teaching Embedded Programming

[20] which compared experimental and simulation approaches for the same learning
content showed that simulation performs similarly to the experimental method.

In our opinion, simulator can be a helpful tool to improve the quality of learning, but
at some point, the real hardware should be used. Nevertheless, given the options men-
tioned above we concluded that simulation was the only option, at least in short term,
before we can implement necessary changes to the course. To make this option useful
the simulator should fulfill at least these criteria:

•	 Use the Kinetis MCU so that the course materials would not need to be excessively
updated.

•	 Be freely available and easy to use because there is no time to obtain licenses, etc.

Unfortunately, there seems to be no simulator support for the NXP Kinetis MCUs.
There are several simulators for the ARM CPU (Kinetis MCU uses ARM core), such as
[21], but these simulate only the ARM core, not the peripherals. As the peripherals of
an ARM-based MCUs are manufacturer-specific, it would be the MCU manufacturer
who would need to implement simulation support for the peripherals. Our course (and
probably most similar courses) is focused on working with peripherals, such as timers
or ADC and therefore using the ARM core simulator would not be sufficient.

2	 Simple source level simulator

We decided that implementing a very simple simulator would be the best solution
given the situation – we needed working environment within few weeks.

Typical MCU simulator simulates the instructions of the target CPU, reading the
binary code produced by the build tools. It would not be possible for us to implement
such a simulator in the time available. Therefore, we decided for an option that can be
described as a source-level simulator, or in another words, a port of the MCU code to a
desktop computer. This means that students will write their program for the simulated
MCU in a standard IDE as a standard console application for the operating system
running on their computer. The advantage of this approach is that it can be used on
Windows, Linux, or Mac operating systems because it uses standard C/C++ features
and there is no simulator binary that the students would need to run.

In practice, the students open or create C/C++ console application project, add the
simulator to the project as a module (header and source files) and then they can paste the
code used for the MCU into their source file and build it. When they run this applica-
tion, it shows the status of switches, LEDs, and an LCD display in the console window.
A switch press on the evaluation board can be simulated by pressing keyboard keys.

2.1	 Usage of the simulator

In the in-person labs we use Kinetis Design Studio IDE (KDS). In this IDE the stu-
dents are able to open example projects or create their own projects with the help of
several peripheral drivers, e.g., for an LCD display or for serial communication.

iJEP ‒ Vol. 12, No. 6, 2022 131

Special Focus COVID19—Simple Software Simulator for Teaching Embedded Programming

In simulator-based lessons a different IDE must be used because the KDS is not able
to build programs for the desktop computer. This is not a problem, as both the instruc-
tors and students already have experience with C/C++ development for desktop com-
puters from previous courses. We provided support materials for using the simulator
in CodeBlocks and Qt Creator IDEs in the form of preconfigured example projects
that the students could just open and run. If a new project is created, it is necessary
to add the source files of the simulator to the project. To simplify this process, we
concentrated the code into just two source files: simul_core.cpp and simul_kl25z.cpp.
The “core” file contains general code that is not specific to the MCU but rather to the
simulated I/O – it contains the code to display state of LEDs, virtual LCD display and
processing of the keyboard input. The kl25z file implements the code of the simulated
peripherals and drivers for our microcontroller.

The students can open the KDS project, copy the code into their simulator-enabled
project in CodeBlocks or Qt Creator IDE, build and run it without any further change.

2.2	 Simulator implementation

When implementing the simulator there were two main situations to handle.

•	 Simulating calls to driver functions.
•	 Simulating peripheral control using registers.

Simulating driver calls is straightforward. We just need to provide the implementa-
tion of the MCU function modified for the console application used in the simulator.
For example, consider LCD display driver function lcd_print that outputs texts to the
LCD display on the evaluation board. In the simulator this should output the text to a
console window. So, the simulation code is little more than just using the printf stan-
dard C function to output the text.

However, the focus of our course is on teaching how to control MCU peripherals
using registers. This is the universal knowledge that students can apply in their career,
no matter which MCU they work with. Simulating this proved more difficult. In the
students program the access to a peripheral register is equivalent to an assignment to a
variable, for example:

ADC0->SC1 = 0x05;

This code writes 5 to register SC1 of the ADC0 peripheral. Note that the peripheral
registers are defined as a C language structure in the header files for our MCU. Thus,
speaking in term of C language, the above code accesses member variable SC1 of
a structure representing the ADC registers and this structure is referenced through a
pointer named ADC0.

The problem in simulating peripherals is that we often need to perform an action
upon the assignment operation in user program. For example, when user program writes
to certain register, this should start simulated ADC conversion. Yet in the program there
is no function call that we could intercept and re-implement as in the above-mentioned
example of LCD driver function.

132 http://www.i-jep.org

Special Focus COVID19—Simple Software Simulator for Teaching Embedded Programming

Therefore, a mechanism is needed to perform an action in the simulated peripheral
when the user program assigns a value to the register of the peripheral.

One option to do this could be to monitor the variable in a background thread for
changes, but apart from solvable problems with access to the variable from multiple
threads it would hardly be possible to deliver realistic behavior. Consider a program
that contains two consequent writes to two registers. In real peripheral the response
to the first write is immediate, but in the simulator many lines of the simulated program
could be executed before the background thread would be scheduled and could update
the state of the peripheral. The results of this approach would be unsatisfactory.

Better solution is to handle the modification directly – to have simulator code exe-
cuted upon write to the simulated register. While we are not aware of a simple way to
implement this in C language, it is relatively easy to do in C++ with operator over-
loading technique. For this reason, we decided to use C++ language for the simulator
implementation even though the original MCU programs are written in C. Choosing
C++ does not present any problem; the students just need to create their projects for the
simulator as a C++ (instead of C) console application. The source code of the simulated
MCU program is not affected; it can be in C.

2.3	 Implementing register access

Each peripheral register is represented by a class that overrides the required operators
so that simulator code can be executed when the user program writes to this register.
Besides the assignment operator (=), the short-hand versions of OR with assignment
(|=) and AND with assignment (&=) which are commonly used in MCU code are also
implemented.

A user-defined callback functions are called when these operators are invoked. We
can define what these callback functions do depending on the peripheral. For example,
the ADC peripheral is a class which contains several registers (member variables) of
the register type. The callback functions are defined so that when the user program
writes to any of the ADC registers, appropriate action is performed.

3	 Peripherals available in the simulator

We implemented the following peripherals.

•	 Digital I/O (LEDs and push buttons) – as a driver.
•	 ADC – with register access.
•	 LCD display – as a driver.
•	 Timer TPM0 – with register access and simulated overflow interrupt.

3.1	 Digital I/O

Digital output for LEDs and input for switches are implemented using driver func-
tions. There are functions pinWrite and pinRead, similar to those available in the
Arduino framework. These functions are included in a driver which we use in the

iJEP ‒ Vol. 12, No. 6, 2022 133

Special Focus COVID19—Simple Software Simulator for Teaching Embedded Programming

in-person labs before learning how to control the pins directly using GPIO registers.
The simulator version allows controlling the RGB LED that is contained in the FRDM-
KL25Z board and three extra LEDs available in our expansion board. The state of each
LED is shown in the console window of the simulated program.

There is also support for reading four push buttons which are available in our expan-
sion board. In the simulated version these switches are controlled by pressing a key on
the computer keyboard.

3.2	 Analog to digital converter

The simulated ADC is greatly simplified but it allows controlling some properties of
the peripheral by registers, such as configuring the resolution, starting conversion, and
waiting for the conversion to complete. There is only one simulated channel available,
other channels always return 0. In the simulated channel the value changes with each
conversion – a next value from a predefined set is returned. It would be easy to provide
a mechanism for reading the values from a configuration file, but for our purpose sim-
ple approach with several hard-coded values was sufficient.

3.3	 LCD display

LCD display with four alphanumerical lines which is included in our expansion
board is also supported in the simulator. In the real labs the student use driver with
functions like lcd_puts (print a string) to interact with the display. The same interface is
implemented for the simulated program. The output is simply printed to designated area
of the console window which represents the LCD display, see Figure 1.

3.4	 Timer with overflow interrupt

The simulator also supports one of the timers available in the KL25Z MCU, the
TPM0 timer. In the real MCU there are two more instances of the same timer, TPM1
and TPM2. It would be quite easy to simulate these timers as well, but one timer was
sufficient for our purpose.

The simulated timer properly sets the overflow flag, so it is possible to use it in
programs which polls the flag to wait for certain time. It can also call a function (a
simulated interrupt service routine) when the counter overflows. The interrupt service
routine is defined in the same way as in the real MCU project, using weak symbol dec-
laration. It is then called from a separate thread to simulate asynchronous execution.

4	 Use case

We will illustrate the use of the simulator on an example program that uses ADC
to read potentiometer input and shows the level of the input as a bar graph with three
LEDs. The program repeatedly reads analog channel 11 and turns on appropriate num-
ber of LEDs depending on the obtained value from the ADC.

134 http://www.i-jep.org

Special Focus COVID19—Simple Software Simulator for Teaching Embedded Programming

The code relevant to ADC is as follows:

// Initialize the ADC
ADCInit();
// Enable clock for the input port we will use
SIM->SCGC5 |= SIM_SCGC5_PORTC_MASK;
// Set the pin function to ADC
PORTC->PCR[2] = PORT_PCR_MUX(0);
while (1) {
 // Start conversion on channel 11 where our pot is
 ADC0->SC1[0] = ADC_SC1_ADCH(11);
 // Wait for the conversion to complete
 while ((ADC0->SC1[0] & ADC_SC1_COCO_MASK) == 0)
  ;
 // Store the result
 uint16_t result = ADC0->R[0];
…

In the in-person labs the student can open example project in KDS IDE, build it and
run it. To use it with the simulator the student needs to copy the code of the main.c file
from the KDS project and paste it into the main.cpp file of their simulator project in the
C/C++ IDE, e.g., CodeBlocks.

To make it even easier for the students, example projects can be provided for the
target C/C++ IDE with the code already set.

Then the student builds the project and runs it as any other console application proj-
ect in the IDE. The output looks as shown in Figure 1.

Fig. 1. The output of the ADC example program

iJEP ‒ Vol. 12, No. 6, 2022 135

Special Focus COVID19—Simple Software Simulator for Teaching Embedded Programming

Figure 1 shows the console window of the example program. LEDs LD1 and LD2
are lit, LED3 is off. This changes over time as the simulate ADC result changes from
0 to maximum value.

To illustrate how the simulator works let us analyze what happens in the background
for several lines of the program.

When the program executes this line

ADC0->SC1[0] = ADC_SC1_ADCH(11);

It sets the status and control register SC1 of the ADC to certain values including
selecting channel 11 as the input for the ADC.

In the simulator the ADC class contains definition of the SC1 registers as follows:

Property<uint32_t> SC1[2];

The Property class is the class mentioned above with overloaded assignment opera-
tors. Upon assignment a callback function is called that validates the pin configuration
(and reports error if the input pin is not properly configured) and then it sets internal flag
indicating that the conversion is in progress. The relevant part of the callback function
code is shown below:

// For our pin - channel 11 check the pin config,
// for other channels just
// skip test and simulate that conversion completed.
// This is needed for calibration etc.
int channel = (data & ADC_SC1_ADCH_MASK) >>
ADC_SC1_ADCH_SHIFT;
if (channel == 11) {
    if (ADC0->IsPinConfigValid())
        ADC0->mConversionStarted = true;
} else {

// conversion must be started for any other
// channel, also for calibration
ADC0->mConversionStarted = true;

}

Then the code calls internal function UpdateData that first checks if the ADC clock
is enabled and outputs an error if not.

// test if clock is enabled
if ((SIM->SCGC6 & SIM_SCGC6_ADC0_MASK) == 0) {

printf(“BSOD - Default ISR :) \nADC - clock not
enabled!\n”);
while (1) ;

}

136 http://www.i-jep.org

Special Focus COVID19—Simple Software Simulator for Teaching Embedded Programming

If the ADC is configured properly, it sets new value into the simulated results
register R,

R[0].data = adc_values[mCurrentDataIndex++] << shift;

and sets the conversion complete flag:

SC1[0].data |= ADC_SC1_COCO_MASK;   // set coco flag

When the simulated program waits for the conversion to complete, it reads the value
of the SC1[0] member variable of the ADC class. Since the COCO flag is set, the
program continues to read the result like this:

uint16_t result = ADC0->R[0];

The code just obtains the value from the R member variable of the ADC class. This
variable contains one of the predefined conversion results.

4.1	 Implementation overview

Besides the code that is executed from the simulated program directly, by callback
mechanism attached to the assignment operators, the simulator contains three threads
that run independently of the simulated program. There is a thread that updates the
display (console output) – it prints the contents of global buffers to the console. These
buffers are updated by the code that simulates LCD and digital outputs (LED).

Second thread processes keyboard input and translates it to the state of the simulated
digital inputs. This is then processed by the part of the digital I/O driver that simulates
input switches.

Lastly, there is a thread that simulates the timer. It repeatedly executes a function
where the hardware of the timer is simulated; it increments the counter and if an over-
flow occurs, it sets the appropriate flags. If interrupt is enabled, it also calls the simu-
lated ISR.

4.2	 Practical experience

We used the simulator in our course during the winter semester 2020. The students
started in the labs but after 4 weeks we had to switch to online classes due to worsening
pandemic situation. The projects developed by students during the semester included a
bicycle light with simulated LEDs flashing in different modes or simple program that
reads ADC values and turns on different number of LEDs based on the values (a bar
graph). As mentioned later, towards the end of the semester we switched to TinkerCad
simulator for Arduino which was also used for the final student’s project.

At the end of the semester students answered short survey about the course. In total,
54 students finished the course and completed the survey. The survey questions focused
on general experience with the course, such as whether the lectures and labs were clear,
or the quality of learning materials was adequate. Nevertheless, several students men-
tioned positive experience with the simulator in their comments. They appreciated the
ability to see the output of their program, even though it was just in a console window.

iJEP ‒ Vol. 12, No. 6, 2022 137

Special Focus COVID19—Simple Software Simulator for Teaching Embedded Programming

There were no negative notes regarding the simulator. However, further research is
needed to evaluate the benefits and disadvantages of using this simple simulator, pref-
erably in comparison with classes using the hardware kit during the same semester.

We are aware that this solution cannot provide adequate replacement of the hardware
kit for complex tasks such as using timers to generate pulse-width modulated signal.
Also, the choice of peripherals is very limited. Nevertheless, it served its purpose and
provided us with some time to prepare lessons in an alternative environment. For the
last few weeks of the semester, we also used TinkerCad online environment with Ardu-
ino Uno board, using programs that access the peripherals of the MCU at registry level.
Registry access is supported by TinkerCad simulator to some extent; it is even possible
to set up a timer to generate PWM signal of desired frequency and check the results in
virtual oscilloscope. However, in our experience not all the hardware features work in
the simulator. There were cases where certain code worked on a real board but in the
simulator it did not.

5	 Conclusion

The COVID-19 pandemic brought dramatic changes to education. Schools were
shut and courses had to be organized remotely. Practical courses, such as embedded
systems programming, were among the most affected by this unprepared shift to dis-
tance learning as the equipment used in these courses cannot be easily made available
online. Alternative ways of teaching had to be used. In this article we described a simu-
lator which we implemented to quickly replace physical hardware kit for our embedded
systems course.

The main advantage of our solution is that it can be used quickly without the need to
change existing course materials. Students are able to use the same example programs
as in the in-person labs, only in different development environment. The output of the
program is displayed in a console window. Another advantage is that the simulator can
provide more debugging information than the real hardware, which is useful especially
in the distance learning settings, where the instructor is not immediately available to
assist with problems in the program. Thus, the simulator makes the learning process
smoother and less frustrating for the students.

From implementation point of view the advantage is that the simulator code can be
easily modified for other platforms and hardware boards, so it can be quickly used also
in courses based on different hardware.

Nevertheless, this simulator should be considered an emergency option for the spe-
cific situation where an embedded systems course must be switched from traditional to
online form at a short notice, rather than a full featured replacement for hardware kits or
professional simulation tools. Its main limitation is that it offers only a small subset of
the peripherals available in the real hardware. Namely, ADC and timer are implemented
at the registry level, allowing students to practice low-level control of these peripherals.
GPIO and LCD display functions are implemented using high-level driver functions.

From an educator’s point of view, using the simulator was a useful experience.
Although not completely new to this idea, we were not aware of certain benefits.
For example, one of the common programming errors with an ARM MCU is that the

138 http://www.i-jep.org

Special Focus COVID19—Simple Software Simulator for Teaching Embedded Programming

students do not enable the clock signal for a given peripheral in their code. When the
program attempts to access registers of this peripheral, the MCU generates an excep-
tion, and the program stops in a default exception handler. This is a rather confusing sit-
uation for the students, as they find their program stopped in the debugger in unknown
assembly code. In the simulator, it is easy to output a message such as “ADC clock is
not initialized”, which immediately points to the problem.

With the experience brought by the COVID-19 pandemic, we believe it will be bene-
ficial to employ some kind of simulator in our embedded systems course even in normal
situation where students are physically present in the labs. Although the hands-on expe-
rience with real hardware is irreplaceable, simulator can improve the learning in several
ways, such as the above-mentioned extended error reporting or the obvious advantage
that students can experiment with their programs outside the labs.

6	 References

	 [1]	Ž. Bojović, P. D. Bojović, D. Vujošević and J. Šuh, “Education in Times of Crisis: Rapid
Transition to Distance Learning,” Comput Appl Eng Educ., vol. 28, pp. 1467–1489, 2020.
https://doi.org/10.1002/cae.22318

	 [2]	P. Jana, N. Nurchasanah and S. Fatih ‘Adna, “E-Learning During Pandemic Covid-19
Era: Drill Versus Conventional Models,” International Journal of Engineering Pedagogy,
vol. 11, no. 3, pp. 54–70, 2021. https://doi.org/10.3991/ijep.v11i3.16505

	 [3]	N. Muhammad and S. Srinivasan, “Online Education During a Pandemic – Adaptation and
Impact on Student Learning,” International Journal of Engineering Pedagogy, vol. 11,
no. 3, pp. 71–83, 2021. https://doi.org/10.3991/ijep.v11i3.20449

	 [4]	D. Idnani, A. Kubadia, Y. Jain and C. P. Prathamesh, “Experience of Conducting Online
Test During COVID-19 Lockdown: A Case Study of NMIMS University,” International
Journal of Engineering Pedagogy, vol. 11, no. 1, pp. 49–63, 2021. https://doi.org/10.3991/
ijep.v11i1.15215

	 [5]	L. N. Fewella, L. M. Khodeir and A. H. Swidan, “Impact of Integrated E-learning: Tradi
tional Approach to Teaching Engineering Perspective Courses,” International Journal
of Engineering Pedagogy, vol. 11, no. 2, pp. 82–101, 2021. https://doi.org/10.3991/ijep.
v11i2.17777

	 [6]	I. A. Elhaty, T. Elhadary, R. Elgamil and H. Kilic, “Teaching University Practical Courses
Online during COVID-19 Crisis: A Challenge for Elearning,” J. Crit. Rev., vol. 7, no. 8,
pp. 1–10, 2020.

	 [7]	J. Dolinay, P. Dostálek and V. Vašek, “ARM-Based Microcontroller Platform for Teach
ing Microcontroller Programming,” International Journal of Education and Information
Technologies, vol. 10, pp. 113–119, 2016.

	 [8]	J. Ma and J. V. Nickerson, “Hands-On Simulated and Remote Laboratories: A Compara-
tive Literature Review,” ACM Comput. Surv., vol. 38, no. 3, pp. 7, 2006. https://doi.org/
10.1145/1132960.1132961

	 [9]	M. Gilibert, J. Picazo, M. Auer, A. Pester, J. Cusidó and J. A. Ortega, “80C537 Microcon-
troller Remote Lab for E-Learning Teaching,” International Journal of Online Engineering,
vol. 2, no. 4, pp. 1–3, 2006.

	[10]	N. Alamatsaz and A. Ihlefeld, “Teaching Electronic Circuit Fundamentals via Remote
Laboratory Curriculum,” Biomedical Engineering Education, vol. 1, no. 1, pp. 105–108,
2021. https://doi.org/10.1007/s43683-020-00008-x

iJEP ‒ Vol. 12, No. 6, 2022 139

https://doi.org/10.1002/cae.22318
https://doi.org/10.3991/ijep.v11i3.16505
https://doi.org/10.3991/ijep.v11i3.20449
https://doi.org/10.3991/ijep.v11i1.15215
https://doi.org/10.3991/ijep.v11i1.15215
https://doi.org/10.3991/ijep.v11i2.17777
https://doi.org/10.3991/ijep.v11i2.17777
https://doi.org/10.1145/1132960.1132961
https://doi.org/10.1145/1132960.1132961
https://doi.org/10.1007/s43683-020-00008-x

Special Focus COVID19—Simple Software Simulator for Teaching Embedded Programming

	[11]	M. Hedley and S. Barrie, “An Undergraduate Microcontroller Systems Laboratory,”
IEEE Trans. on Education, pp. 345–353, 1998. https://doi.org/10.1109/TE.1998.787371

[12]	L. Newton, and L. Rogers, “Thinking Frameworks for Planning ICT in Science Lessons,”
School Science Review, pp. 113–120, 2003.

[13]	S. Tang, “An Interactive Simulator-Based Pedagogical (ISP) Approach for Teaching
Microcontrollers in Engineering Programs,” Advances in Engineering Education, pp. 1–18,
2014.

[14]	N. Swain, “Teaching Microcontrollers through Simulation,” in 2011 ASEE Annual Confer-
ence & Exposition, Vancouver, BC, Canada, 2011, pp. 1–14.

[15]	F. Paulo, J. S. Gonçalves, A. Coelho and J. Durães, “An Arduino Simulator in Classroom –
a Case Study,” in First International Computer Programming Education Conference
(ICPEC 2020), Online, 2020.

[16]	S. Sirowy, D. Sheldon, T. Givargis and F. Vahid, “Virtual Microcontrollers,” ACM SIGBED
Review, vol. 6, no. 1, pp. 1–8, 2009. https://doi.org/10.1145/1534480.1534486

[17]	M. Koenig and R. Rasch, “Digital Teaching an Embedded Systems Course by Using Sim-
ulators,” 2021 ACM/IEEE Workshop on Computer Architecture Education (WCAE), 2021,
pp. 1–7. https://doi.org/10.1109/WCAE53984.2021.9707146

[18]	J. W. Valvano, R. Yerraballi, and C. Fulton, 2016. Teaching Embedded Systems in a MOOC
Format. 2016 ASEE Annual Conference & Exposition, June 28, 2016, New Orleans, USA.

[19]	J. V. LeJeune, A Meta-Analysis of Outcomes from the Use of Computer-Simulated
Experiments in Science Education, Dissertation, Texas A&M University, 2002.

[20]	A. Zendler, H. Greiner, The Effect of Two Instructional Methods on Learning Outcome in
Chemistry Education: The Experiment Method and Computer Simulation, Education for
Chemical Engineers, vol. 30, pp. 9–19, 2020. https://doi.org/10.1016/j.ece.2019.09.001

[21]	Crossware (2020). ARM Simulator [Online]. Available: https://www.crossware.com/arm/
simulator

7	 Authors

Jan Dolinay, Tomas Bata University in Zlin, Zlín, Czech Republic. E-mail: dolinay
@utb.cz

Petr Dostalek, Tomas Bata University in Zlin, Zlín, Czech Republic.
Vladimir Vašek, Tomas Bata University in Zlin, Zlín, Czech Republic.

Article submitted 2021-11-10. Resubmitted 2022-04-19. Final acceptance 2022-11-07. Final version
published as submitted by the authors.

140 http://www.i-jep.org

https://doi.org/10.1109/TE.1998.787371
https://doi.org/10.1145/1534480.1534486
https://doi.org/10.1109/WCAE53984.2021.9707146
https://doi.org/10.1016/j.ece.2019.09.001
https://www.crossware.com/arm/simulator
https://www.crossware.com/arm/simulator
mailto:dolinay@utb.cz
mailto:dolinay@utb.cz

iJEP − Vol. 12, No 6, 2022

Imprint
iJEP – International Journal of Engineering Pedagogy
Online issue: http://www.i-jep.org

Editor-in-Chief
Matthias Christoph Utesch, TU München, Germany

Executive Editor
Michael E. Auer, CTI Villach, Austria

Deputy Editor-in-Chief
Matthias Gottlieb, TU München, Germany

Senior Editor
Klaus-Tycho Foerster, University of Vienna, Austria

Editors
José Couto Marques, University of Porto, Portugal
Tatiana Yurievna Polyakova, MADI, Moscow, Russian Federation
Istvan Simonics, Obuda University, Hungary

Technical Editor
Sebastian Schreiter, Lagorce, France

Editorial Board
Teresa L Larkin, American University, United States
Eleonore Lickl, HBLVA, Vienna, Austria
Maria Teresa Restivo, University of Porto, Portugal
Tiia Rüütmann, Tallinn University of Technology, Estonia
Phillip A. Sanger, Purdue University College of Technology, United States
Alexander Solovyev, MADI, Moscow, Russian Federation
JamesWolfer, Indiana University South Bend, United States
Axel Zafoschnig

Indexing
International Journal of Engineering Pedagogy (iJEP) is indexed
in Elsevier Scopus, Clarivate Analytics ESCI, EBSCO, DOAJ and DBLP.

Publication Frequency
Bi-monthly (January, March, May, July, September, November)

ISSN
2192-4880

Publisher
International Society of Engineering Education (IGIP)
Europastrasse 4
A-9524 Villach
Austria

