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Abstract: Robotic manipulators are widely used in industrial applications, and their rigidity and
flexibility are very important factors during their deployment. However, their usage is not limited
to repetitive point-to-point tasks and can be used for more real-time control of various processes.
This paper uses a 7-degrees-of-freedom manipulator to control an unstable system (Ball and Plate)
as a proof of concept. The Ball and Plate system is widely used for testing algorithms designed for
unstable systems, and many recent works have dealt with robotic manipulators as a control motion
system. Robots are not usually used to control unstable systems, but bipedal robots are an exception.
This paper aims to design a controller capable of stabilizing an unstable system with solid robustness
while keeping actuator action values as low as possible because these robots will be indented to
work for a prolonged time. An algorithm for an LQ polynomial controller is described and designed,
and the whole setup is tested for ball stabilization in the center. The results show that the designed
controller stabilizes the ball even with large external and internal disturbances while keeping the
controller effort as low as possible.
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1. Introduction

There are many works on designing control strategies for robotic manipulators with
standard and broader approaches [1–4], but newer and more specialized control strategies
are still being developed [5,6], with many experts on this topic in the academic and private
sectors involved. A lot of papers are also focused on using robotic manipulators as a black-
boxed motion mechanism for control of the end effector of the robot based on external
sensors such as force and torque sensors [7–10], optical sensors and cameras [11,12], or
accelerometers and other electrical sensors [13,14]. However, none of these works handle
the response of the robotic manipulator to externally unstable and relatively fast processes,
although the need for a robotic manipulator controlling such a process in an industrial
environment may arise in the future with fast-developing technologies such as virtual
and augmented reality with tactile feedback for teleoperation of robots [15–19]. Remote-
operated industrial robots are also on the rise, mostly in dangerous environments or remote
locations such as offshore oil and gas platforms [20,21]. Self-motion of these robots is
relatively important and can require more delicate tasks with more advanced algorithms
supporting better stability of handled tasks. Although these applications do not control
unstable processes, it can be assumed their development will lead to a broader scope of
applications that may need such feedback control (see [15]) in processes such as polishing,
grinding, or deburring in human-robot collaboration tasks or many advanced applications
requiring a non-standard approach to industrial robotic systems [22].

Many different designs of B&P structures can be found in educational, research,
or hobby projects, from the “classic” 2 degrees of freedom (DoF) design with actuators
connected in series [23,24] or parallel [25,26] configuration to the 6 degrees of freedom
parallel Stewart platform [27,28]. There are also several higher DoF solutions for actuators
connected in series, such as [29–31].
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This vast range of solutions for B&P systems proves it is a very interesting and
challenging problem to solve, and this thesis adds to this portfolio of electromechanical
structures and their control to reach the goal of ball stabilization and trajectory tracking.
Many B&P control solutions use standard PID control or state-space controllers and their
variations (PD, LQR) [25–28]. Among the “non-standard” solutions are double feedback
loop structures based on fuzzy logic [32], fuzzy supervision and sliding control [33], non-
linear switching [34], and the H-infinity approach [35]. The control of the B&P model is
tested in [29] using a 7-degrees-of-freedom robotic manipulator (Robai Cyton Gamma 300),
but only the last 2 axes are used for control and others are stationary. This decoupled design
would not be able to perform the positioning of the plate in space or move the end effector
to another location while still maintaining the correct control.

This paper aims to use the full extent of all seven axes; although several of them
might be moving only slightly, they are still being used in kinematic calculations, and
their dynamics influence the whole system. In addition, they can be used to move the
whole plate in space while balancing the ball. The motivation is to extend current works
on this topic to standard industrial serial manipulators while using all their joints in the
control itself. An optimal controller algorithm is derived to have a better grasp of the
control process with easily adjustable penalization of action value to reduce the load on
the manipulator’s servos and gearboxes, which must be kept in mind while using the
manipulator for longer periods. There are many references to the topic of B&P control,
but most of them deal only with the quality of the control, neglecting the factor of the
manipulator’s wear and tear.

2. Ball and Plate Mathematical Model

The best approach in the case of the B&P model is to divide it into two separate
directional components, x and y. The model setup of such a system for one coordinate
is depicted in Figure 1, which describes the motion of a ball on a plate in one of these
dimensions. The position of the ball (x, y [m]) is expressed in the local coordinate system of
the plate xz, defined in the right-handed Cartesian base frame x0z0. The plate can rotate
around the center of this local coordinate system by the angle α (and β for a 2-dimensional
system). The ball, described by its radius r [m] and velocity ẋ [ms−1], moves on the plate
with gravitational acceleration g [ms−2] acting on the ball.
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Figure 1. Ball and Plate model setup.

This model is slightly simplified and does not show forces acting on the ball other
than gravity. These forces (e.g., friction) are present but neglected in favor of simplification
in following the mathematical description, which helps with its derivation and design of
the controller. The following assumptions are considered, which simplify the model:

• The air friction is neglected;
• The friction between the ball and the plate is neglected;
• The ball is a homogeneous, ideal sphere (or spherical shell);
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• The plate has no boundaries and stretches infinitely long;
• There is always slip-free contact between the ball and the plate.

The simplified and linearized model, resulting from the Euler-Lagrange equation of
the second kind, is:

..
x = Kbα , (1)
..
y = Kbβ , (2)

where α and β are angles of the plate for x and y coordinates, respectively, and Kb [ms−2] is
a constant of the ball dependent only on the type of the ball (a full or hollow sphere) and
gravitational acceleration. Double-dot notation expresses the second-time derivation of
a given coordinate. The linearization is assumed for the ball’s position near the center of
the plate and takes into account the assumption of sin(α) ≈ α for small angles (<5◦). These
equations can be expressed in Laplace format with transfer functions Gx and Gy:

Gx(s) =
Kb
s2 , (3)

Gy(s) =
Kb
s2 , (4)

Which clearly shows that the Ball and Plate system is symmetric for both coordi-
nates. This symmetry is broken for the robotic manipulator used in this paper and it is
approximated with first order transfer function and combined with Equation (3), resulting
in a mathematical description of the whole Ball and Plate system with dynamics of the
manipulator included in both the continuous form G(s) and the discrete form G(z−1):

G(s) =
Kb
s2

Kr

Tr + 1
=

K
s2(Trs + 1)

, (5)

G
(

z−1
)
=

B
(
z−1)

A(z−1)
=

b1z−1 + b2z−2 + b3z−3

1 + a1z−1 + a2z−2 + a3z−3 , (6)

where Kr is the gain of the robot system, Tr is its time constant, B(z−1) and A(z−1) are
the nominator and denominator polynomials of the whole system, and bi and ai are their
respective coefficients. This discrete transfer function will be used later in the design of the
controller.

3. Linear-Quadratic Polynomial Controller Design

The controller designed in this paper has a 2-degrees-of-freedom structure (as seen
in Figure 2), with the feed-forward part Cf acting as a filter for the reference value and
responsible for reference tracking and the feed-back part Cb responsible for stabilization
and disturbance rejection. It also contains a summation part 1/(1 − z−1) and a controlled
plant G(z−1). There are five signals present in the structure, namely the reference value w(k)
(desired position of the ball), controller output u(k) (plate angle), the position of the ball
y(k), and respective disturbances n(k) and v(k) acting on the system externally or through
simplifications of the mathematical model.
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The control law is derived from the linear-quadratic pole-placement control more
closely described in [36] and follows a minimization of the criterion

J =
∞

∑
k=0

{
[e(k)]2 + qu[u(k)]

2
}

, (7)

to obtain coefficients of the characteristic polynomial D(z−1) of the controller structure
described in Figure 2:

D
(

z−1
)
= A

(
z−1
)(

1 − z−1
)

P
(

z−1
)
+ B

(
z−1
)

Q
(

z−1
)

. (8)

Parts of the criterion e(k) and u(k) are control error and controller output, respectively,
and qu is a penalization constant used to better control the influence of the controller
output in this criterion. In Figure 2, B(z−1) and A(z−1) are the nominator and denominator
polynomials of the whole system, respectively, and Q(z−1) and P(z−1) are the nominator
and denominator polynomials of controller Cb. The degrees of these polynomials are
directly dependent on the degrees of polynomials B(z−1) and A(z−1), which are more
closely described in [36]. For this specific case, where ∂B = 3 (degree of polynomial B(z−1))
and ∂A = 3 from Equation (6), we have polynomials of controller parts Cb and Cf degrees
∂P = 2, ∂Q = 3 and ∂R = 0, thus the characteristic polynomial in Equation (8) will have
∂D = 6:

D
(

z−1
)
= d0 + d1z−1 + d2z−2 + d3z−3 + d4z−4 + d5z−5 + d6z−6 . (9)

The whole controller can now be derived for implementation using the degrees of
the controller’s polynomials and its structure from Figure 2 and expressed in the form of
previous values of given signals in step k:

C f

(
z−1
)
=

R
(
z−1)

P(z−1)
=

r0

1 + p1z−1 + p2z−2 , (10)

Cb

(
z−1
)
=

Q
(
z−1)

P(z−1)
=

q0 + q1z−1 + q2z−2 + q3z−3

1 + p1z−1 + p2z−2 , (11)

u(k) = r0w(k)− q0y(k)− q1y(k − 1)− q2y(k − 2)− q3y(k − 3)
+(1 − p1)u(k − 1) + (p1 − p2)u(k − 2) + p2u(k − 3) ,

(12)

where the polynomial P(z−1) has the coefficient p0 deliberately chosen p0 = 1 for practical
purposes and the simplification of further calculations.

The parameters of polynomials Q(z−1) and P(z−1) are calculated by minimizing the
presented criterion in equation (7) using a method known as spectral factorization of
polynomials. This method is more closely described in [36] and is solved numerically using
the Polynomial Toolbox [37] in MATLAB. The result of this method is half of the poles
of the characteristic polynomial D(z−1), thus obtaining a semi-optimal solution because
another half of its poles are placed by the user.

It is also stated in [36] that it is possible to calculate the value of the coefficient r0 for a
step-changing signal as:

r0 =
∑6

i=0 di

∑3
i=1 bi

=
3

∑
i=0

qi. (13)

4. Robotic Manipulator and Ball and Plate Hardware

The robotic manipulator with 7 degrees of freedom (DoF) is chosen as the motion
system of the Ball and Plate setup. It is a dual-arm collaborative robot, ABB IRB 14,000,
shown in Figure 3a. Only one manipulator arm of the robot is used for this paper, but it is
possible to duplicate the solution for the second arm in the future, which can extend the
plate to make it longer and be controlled by both arms in coordinated 14-DoF motion. The
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configuration of the manipulator, in which the plate is held, is shown in the simulation
view in Figure 3b.
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Figure 3. (a) ABB IRB 14000 manipulator [38]; (b) configuration of its arm holding the plate.

There are two options for controlling the manipulator that are directly supported by
the manufacturer and are non-invasive:

1. Standard point-to-point approach used for most applications of robotic manipulators,
in which the manipulator plans its movements and executes them accordingly;

2. A direct method that bypasses the motion planner of the robot and executes the desired
action directly without the path planning functionality (option EGM in ABB robots).

Both of these options for control are implemented and compared. The first option is
expected to be much slower and may not be enough for such a fast, unstable system.

The sensor for the position of the ball is a resistive touchscreen glass commonly
used in monitors with resistive touchscreens. It is an analog four-wire sensor that can be
used instead of a more standard camera solution, which is prone to lightning conditions,
reflections, and necessary calibration, and whose field of detection (view) cannot be covered
by objects or hands. It is shown in Figure 4 with its dimensions and mounted on the
real robot.
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5. Results

The results of the Ball and Plate system controlled by a 7-DoF collaborative robot
manipulator are presented in this chapter, starting with the identification of parameters
of the whole system and calculating controller parameters based on these findings. These
results show the quality of the designed controller, its robustness against controller value
disturbances, and its ability to stabilize the desired system.
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5.1. System Identification

The dynamic parameters of the manipulator are not disclosed by the manufacturer, and
the manipulator is handling its own kinematic and dynamic calculations, so identification
of the whole system is needed. Parameters of the system presented in Equation (5) are
identified from measurements of a step response of the system, approximated by a least-
square minimization method and the Nelder—Mead simplex algorithm. The step response
is a solid choice in this case because of the unstable nature of the system, which could be
unpredictably excited by a signal with more complicated characteristics. Careful choice
of an excitation signal must be considered and step change is predictable enough to
provide valid results while keeping the ball on the expected path. The configuration of
the manipulator is the same as presented in Figure 3b, which is also the configuration
used for control, and the system is not symmetric for x and y coordinates, thus both
must be identified separately, although results for only the x-coordinate are presented
below. Figure 5 shows multiple-step responses for a 2-degree step change, but the resulting
approximation is the result of multiple measurements and multiple step values in the range
from −3 to 3 degrees. The same procedure was taken in the simulation environment of
RobotStudio, which provides precise virtualization of the robot, and the results of this
pseudo-identification were analyzed in the same way as the real results presented in
this paper.
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The system approximated from these measurements is based on the structure of
Equation (5) and, for this specific case, has the following result for both x and y coordinates:

Gx(s) =
K

s2(Tr + 1)
=

0.8306
s2(0.4687s + 1)

, (14)

Gy(s) =
K

s2(Tr + 1)
=

0.9168
s2(0.4108s + 1)

. (15)

The correlation of identified parameters is also presented in Figure 6, showing how
closely related coefficients of unstable aperiodic systems are and how different combina-
tions of values provide similar responses.
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The transfer function of the manipulator was also measured to correctly estimate the
sampling period and see how good the estimation of a 1st-order system’s dynamics is in
Equation (5). Figure 7 shows this measurement, and it can be seen that it has 2nd-order
dynamics. The first control tests were conducted with an approximation of the 2nd-order
system, but it had no benefit in results, so a 1st-order system approximation was used to
simplify calculations.
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5.2. Controller Designs and Parameters

The identified system was discretized with a sampling period of 0.05 s. It is based on
the dynamics of the manipulator from Figure 7, which showed it can reach a 2-degree angle
in this time, which is enough for most of the movements needed for control. This discretized
system, expressed in the Z-transform, has the following structure and parameters:

Gx

(
z−1
)
=

B
(
z−1)

A(z−1)
=

(
3.596z−1 + 14.01z−2 + 3.409z−3)10−5

1 − 2.899z−1 + 2.798z−2 − 0.8988z−3 , (16)

Gy

(
z−1
)
=

B
(
z−1)

A(z−1)
=

(
4.512z−1 + 17.51z−2 + 4.245z−3)10−5

1 − 2.885z−1 + 2.771z−2 − 0.8854z−3 . (17)
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As stated in previous chapters, the optimal solution provides only half of the needed
poles of the characteristic polynomial, so the other half must be chosen. The remaining
three poles are all chosen to be real and to have the same value, pp1,2,3 = 0.92. This creates
half of the characteristic polynomial D(z−1):

Dpp

(
z−1
)
= 1 − 2.7600z−1 + 2.5392z−2 − 0.7787z−3 . (18)

The other half is calculated numerically using the Polynomial Toolbox with a penaliza-
tion constant, qu = 10, and for each coordinate, it leads to:

Dsp fx

(
z−1
)
= 1 − 2.7924z−1 + 2.6004z−2 − 0.8074z−3 , (19)

Dsp fy

(
z−1
)
= 1 − 2.7846z−1 + 2.5849z−2 − 0.7998z−3 . (20)

The resulting characteristic polynomials for x and y coordinates (Dx(z−1) and Dy(z−1))
are thus a product of the pole-placed part and the calculated part using spectral factorization:

Dx

(
z−1
)
= Dpp

(
z−1
)

Dsp fx

(
z−1
)

; Dy

(
z−1
)
= Dpp

(
z−1
)

Dsp fy

(
z−1
)

. (21)

Solving the Diophantine equations by comparing the coefficients of the z−i character-
istic polynomial in Equation (9) leads to the solution of the controller coefficients:

C fx

(
z−1
)
=

R
(
z−1)

P(z−1)
=

0.001462
1 − 1.6542z−1 + 0.7001z−2 , (22)

Cbx

(
z−1
)
=

Q
(
z−1)

P(z−1)
=

17.438 − 49.789z−1 + 47.356z−2 − 15.004z−3

1 − 1.6542z−1 + 0.7001z−2 , (23)

C fx

(
z−1
)
=

R
(
z−1)

P(z−1)
=

0.000975
1 − 1.6598z−1 + 0.7039z−2 , (24)

Cbx

(
z−1
)
=

Q
(
z−1)

P(z−1)
=

12.691 − 36.115z−1 + 34.224z−2 − 10.799z−3

1 − 1.6598z−1 + 0.7039z−2 . (25)

These parameters were implemented according to Equation (12) and are shown below
in matrix form:

x :

r0
p1
p2

 =

0.001462
−1.6542
0.7001

;


q0
q1
q2
q3

 =


17.438
−49.789
47.356
−15.004

 , (26)

y :

r0
p1
p2

 =

0.000975
−1.6598
0.7039

;


q0
q1
q2
q3

 =


12.691
−36.115
34.224
−10.799

 . (27)

5.3. Real System Control

The first implementation of the robot system was by using its motion planner to plan
movements controlled by the designed controller. The reference value was in the middle
of the plate (0 for both coordinates), thus only stabilization was tested in this case. In the
beginning, a disturbance was introduced to the position of the ball in the form of a force
with random magnitude and direction. Figures 8 and 9 show this control process. Using a
motion planner is not the best strategy. It executes approximately every sixth command
from the controller (not displayed in the figures) and hardly keeps the system stable.
Figures show the system was able to stabilize the ball around the center in approximately
30 s, after which it was still not completely stabilized with expected angles of zero (the only
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values at the edge of stability). Figures thus show a closeup of the angle to show there is
still an error and that the controller is trying to compensate for it, although very slightly in
the magnitude of thousands of degrees. It can be best seen in the x-coordinate results.
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This bad quality of control is obvious when not every calculated action value is
executed or is executed with a large time delay compared to the dynamics of the process.
This big bottleneck is caused by the robot’s system execution policy, which is advantageous
in standard point-to-point applications but not well handled for fast processes.
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It is worth mentioning how robust the controller is, given that it stabilizes the system
in these conditions despite the poor control quality and slow settle time. Such a large
disturbance as skipping the controller’s output value is a tough task to handle, and the
designed controller is at least keeping the system stable.

Another approach was bypassing the motion planner of the robot and sending com-
mands from the controller directly to the motion system, using the option of the robot
controller called EGM (Externally Guided Motion). This approach can send commands to
the robot with a latency of 4–20 ms, which is still below the 0.05 s sampling period used in
the controller design. Multiple disturbances were injected during measurements, always a
few seconds after the ball was stabilized in the center. These measurements are presented
in Figures 10 and 11.
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These disturbances can be seen at times of 2, 12, and 20 s, approximately. The force
applied to the ball was gradually increased, and the ball deviated to 1

3 , 1
2 , and 2

3 of the
dimension of the plate in the x direction. The rate of change of the angle is quite large, and
the angle reaches five degrees in the last case, which could be damped a little by choosing a
larger qu value in the controller calculation or by placing three poles closer to one. However,
this would make the control action slower and the settling time longer. It can be seen
that the ball is stabilized in approximately 5 s for each magnitude of disturbance, which
is relatively good and constant behavior with just a minor overshoot on the way back to
the center.

Figure 12 shows the position of the ball in the x-y plane, and both coordinates are
displayed together, omitting the time axis. The direction of external disturbances is visible
there, intentionally each in a different direction so they do not overlap in the x-y plot. It
does not show how quickly the ball returns to the center, but rather the path it takes. The
ball starts in the center and returns thereafter each disturbance is applied, and the plot thus
shows mainly the movement of the ball on the plate and its deflection from the center after
each disturbance. Figure 12 is directly related to Figures 10 and 11 and omits the time axis
in favor of presenting both x and y coordinates in one plot.
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These results show that the designed controller is more than capable of stabilizing
the system using a robotic manipulator while keeping the rate of change of plate angles at
reasonable values regarding the robot’s mechanics and expected prolonged use. Robots are
designed to repeat their tasks, so their actions cannot be brought to their maximum, and
their service life needs to be kept in mind during the design of their movements.

6. Discussion

This paper presented the Ball and Plate problem and its solution using a collaborative
robotic manipulator as an electro-mechanical part of the model. It also presented the
design and usage of a 2-DoF LQ polynomial controller, in which spectral factorization
of polynomials was explored in search of a more optimal solution compensating for the
dynamics of the controlled system while keeping the controller effort (and its fast change)
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within the limits of the manipulator used. Before the experimental part was tested on a
real manipulator, it was implemented in a simulation environment to verify the proposed
methods and approaches. This feasibility study was then confidently implemented in
the real system and thoroughly tested for ball stabilization and disturbance rejection.
Results can provide a solid ground for education in automation courses, which are heavily
influenced by robots and industrial robotic manipulators. The path to the solution leads
through many disciplines and shows not only controller design strategies but also controller-
robot operation and communication, the kinematics and dynamics of the robot, and the
real application of the problem with its specific limitations and rules of operation.

Integrating the Ball and Plate model on a collaborative 7-axis manipulator is not the
most optimal method of solving this problem, but the main purpose of this thesis was
the usage of robotic manipulators and systems for fast and unstable processes, and the
B&P model is the best representative of such a system to be used in laboratory conditions
(together with an inverted pendulum). Applications of bipedal robots can greatly benefit
from the algorithms proposed in this thesis, as these robots have to solve movement in
space while stabilizing their own bodies, battery packs, and, more importantly, random
external forces acting on them. These applications have been around for several decades,
but the movement of bipedal robots was mostly reliant on shifting the weight from one
leg to another, thus greatly reducing the unstable characteristics of the movement itself.
Another very important feature of these robots used in real-world applications is the load
on their actuators, gears, and other mechanical parts. Many controllers fail to maintain
the correct ratio of fast stabilization and low controller effort. In addition, lower controller
effort also reduces power consumption of the whole system, thus reducing operating costs
and increasing the operation time of the robots running on batteries. Thus, the results
shown in this thesis comply with the described criteria and reliably compete with standard
algorithms used in control theory.
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