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Abstract: The prediction level at x (PRED(x)) and mean magnitude of relative error (MMRE) are
measured based on the magnitude of relative error between real and predicted values. They are the
standard metrics that evaluate accurate effort estimates. However, these values might not reveal the
magnitude of over-/under-estimation. This study aims to define additional information associated
with the PRED(x) and MMRE to help practitioners better interpret those values. We propose the
formulas associated with the PRED(x) and MMRE to express the level of scatters of predictive
values versus actual values on the left (sigLe f t), on the right (sigRight), and on the mean of the scatters
(sig). We depict the benefit of the formulas with three use case points datasets. The proposed
formulas might contribute to enriching the value of the PRED(x) and MMRE in validating the
effort estimation.

Keywords: mean magnitude of relative error; prediction level at x; sig; software effort estimation
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1. Introduction

One of the essential aspects of developing software projects is software effort estima-
tion (SEE) [1–5]. In the early stages of project development, resources or budgets must
be measured. The estimation might assist software project managers in determining how
much money from the budget is being spent on maintenance activities or project com-
pletion. The inaccurate estimate might lead to unrealistic resource allocation and project
risk, leading to project failure [6]. The accuracy of effort estimation is, therefore, crucial.
Scientists have always adopted evaluation criteria when comparing their proposal models
to estimate software project efforts with others. The model that best meets the evaluation
criteria is likely to be the most appropriate model chosen to be used to estimate subsequent
projects [6,7].

The magnitude of relative error (MRE), prediction level at x (PRED(x)), and mean
magnitude of relative error (MMRE) that were proposed by [8] are well-known evaluation
criteria in SEE (see Equations (1)–(3) below). Although Myrtveit, Stensrud, and Shepperd
stated that this criterion might have some disadvantages given the MMRE, it is still widely
used in the validation of real effort estimation. As presented in Table 1, many researchers
have used them for measuring the accurate predictive effort estimation:

MREi =
|yi − ŷi|

yi
(1)

MMRE =
∑N

i=1 MREi

N
(2)
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PRED(x) =
1
N

N

∑
i=1

{
1 if MREi ≤ x
0 otherwise

(3)

where ŷi is the predicted and yi is the i-th observed value.

Table 1. Summary of reviewed related papers in recent years, where the MMRE was adopted.

Authors Proposal Model Compare With Criteria

Mahmood et al. [3] Machine-learning-based ensem-
ble techniques Machine-learning-based solo techniques MMRE, PRED(x)

Praynlin [9] Metacognitive neuro-fuzzy Particle swarm optimization, genetic al-
gorithm, and backpropagation network

MMRE, PRED(x),
and other evalua-
tion criteria

Fadhil et al. [10] DolBat COCOMO II MMRE, PRED(x)

Bilgaiyan, S. et al. [11] Feedforward backpropagation
NN Cascade correlation NN, Elman NN MMRE, PRED(x),

MSE

Mustapha et al. [12] RF Classical regression tree MMRE, PRED(x),
MdMRE

Ullah et al. [13] Flower pollination algorithm COCOMO-II MMRE

Sethy and Rani [14] TLBO Bailey, COCOMO 2, Halstead, SEL BCO MMRE

Effendi et al. [15] Optimization of COCOMO II con-
stants COCOMO II MMRE

Khan et al. [16] Optimization of COCOMO COCOMO MMRE

Desai and Mohanty [17] ANN-COA Other neural network-based techniques MMRE, RMSE

As can be seen, Equations (2) and (3) only provide evaluation criteria for estimation,
and they might not reveal the distribution of predicted values and observed values around
a baseline. A baseline is a straight line where predictive and actual values are the same,
i.e., a line with an equation ŷi = yi. Although such information might be determined by
analyzing the prediction residuals, additional information associated with the PRED(x)
and MMRE might be more interesting. The distribution of these values might be help-
ful information for researchers because it might bring additional information about the
predictive model’s performance.

This article proposes the additional information related to the PRED(x) and MMRE
by defining formulas, sigLe f t, sigRight, and sig, to determine how the predicted values in
comparison with actual values are symmetric around the baseline. The sigLe f t, sigRight,
and sig values may reflect the proposed model’s trend. The closer the values reach 0,
the better the proposed model distributes around the baseline. On the other hand, if they
approach either –1 or +1, the proposed model is either under- or over-estimated. Hence,
their value might contribute to the PRED(x) and MMRE.

The sections of this article are organized as follows: Section 2 presents the related
works; Section 3 proposes the three formulas sigLe f t, sigRight, and sig; the characteristics
of the sig formula are presented in Section 4; Section 5 presents the research questions;
Section 6 gives the result and discussion; Section 7 conveys the conclusion and future work.

2. Related Works

The PRED(x) and MMRE might be used in SEE situations because they interpret the
absolute percentage error. Since the PRED(x) and MMRE do not scale, they might be
used to aggregate estimated errors from software development projects of various sizes.
According to Jørgensen et al., however, there is no top score constraint for overestimating
in the MMRE; underestimating effort will never result in an MMRE score more significant
than one. In their publication [18], they investigated the requirements for the practical
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usage of the MMRE in effort estimation contexts. As a result, they stated that this criterion
was still helpful in effort estimation in most cases.

According to Conte et al., one of the advantages of the MMRE is that its comparison
might be adopted for all kinds of predicted models [8]. However, Foss et al. [19] concluded
that it might not be correct when they simulated analysis using the model evaluation criteria
MMRE. They realized that the MMRE might be an untrustworthy or insufficient criterion
when choosing suitable linear predicted models in terms of the MMRE. They stated that
the MMRE is likely to select a model that delivers an underestimation of a model. They
advised employing a combination of the theoretical justification for the proposed models
and additional criteria. A similar conclusion was also shown by Myrtveit et al. [20].

In addition, Kitchenham et al. [21] proposed the variable z (where z = predicted/actual)
derived from the MMRE. They argued that the distribution of z was required to evaluate
the accuracy of a predictive model. However, they also pointed out that the z variable had
a limit regarding the summary statistics. The estimation may prefer prediction models that
minimize overestimations over prediction systems rather than underestimates. Further-
more, several researchers used other criteria when evaluating the performance of effort
estimation, such as the mean inverse balanced relative error (MIBRE), mean balanced
relative error (MBRE), mean absolute error (MAE), and standardized accuracy (SA). They
stated that the MMRE might be unbalanced and yield an asymmetry distribution [22,23].
This means that this criterion might cause some problems identifying under-estimating
or over-estimating.

Moreover, as mentioned in the reports [24,25], the MMRE is possibly the most widely
used measure of estimation error in research and industrial applications. There might be
several advantages of the MMRE that can boost its popularity, such as: (1) it is unaffected
by the sizing unit used; it makes no difference whether SEE is measured in hours or months
of workload [20]; (2) it might be not influenced by scale; this means that the accuracy of the
MMRE does not change with the sizing unit selected [26].

This section presents a literature overview of recent papers that used the MMRE and
PRED(x) to validate the model’s accuracy in SEE. The search criteria are based on the most
recently published articles with high citations. In addition, we will present some review
studies in which the authors list the research articles related to SEE and the number of
studies that use the MMRE and PRED(x).

In 2022, Mahmood et al. investigated the effectiveness of machine-learning-based
effort estimation based on the MMRE and PRED(0.25) [3]. They concluded that ensemble
effort estimation techniques might be better than solo techniques. Praynlin 2021 also
used the MMRE and other evaluation criteria to validate meta cognitive neuro fuzzy
and other methods (particle swarm optimization, genetic algorithm, and backpropagation
network) [9]. Furthermore, Fadhil et al. [10] proposed the DolBat model to predict effort
estimation; this proposal was compared with the constructive cost model (COCOMO)
based on the MMRE and PRED(x) [10]. As a result, they concluded that their model
was better than COCOMO II. This criterion was also used by Hamid et al. [27] when they
compared the IRDSS model with Delphi and Planning Poker [27].

Bilgaiyan, S. et al. [11] adopted the MMRE, PRED(x), and mean-squared error
(MSE) in comparison to the performance of the feedforward back-propagation neural
network (NN), cascade correlation NN, and Elman NN in terms of effort estimation [11].
Mustapha et al. also used the PRED(0.25), MMRE, and median of the magnitude of the
relative error (MdMRE) to identify the accuracy of their approach when they investigated
the use of random forest in software effort estimation [12]. The MMRE was also adopted
to validate the accurate effort estimation reported in the publication [13,14].

On the other hand, this criterion was employed by Desai and Mohanty [17]; Effendi,
Sarno, and Prasetyo [15]; and Khan et al. [16]. Effendi et al. compared the Optimization
of COCOMO with COCOMO [15]; Khan et al. used it and the PRED(x) to compare their
proposal and Delphi and Planning Poker [16], while Desai et al. applied the MMRE and



Mathematics 2022, 10, 4649 4 of 14

root-mean-squared error (RMSE) to validate ANN-COA with Other neural network-based
techniques [17].

Last but not least, Asad Ali and Carmine Gravino (2019) studied the machine learning
approaches employed in software effort prediction from 1991 to 2017 [28]. A total of
75 papers were selected after carefully evaluating the inclusion/exclusion and quality
assessment filter. The MMRE, PRED(0.25), and MdMRE were studied in those papers.
Out of the 75 papers chosen, 69 used the MMRE as a measure of accuracy, accounting
for 92% of the total. The following highest percentages were the PRED(0.25) at 69%
and 47% for the MdMRE. They claimed that the MMRE and PRED(0.25) are frequently
employed as accuracy metrics in the papers they chose. In 2018, Gautam et al. examined
software effort estimates published between 1981 and 2016 [29]. They provided a list of
56 publications that included the datasets used, validation techniques, performance metrics,
statistical tests, and graphical analyses, where the MMRE and PRED(x) take into account
32 out of 56 observations (57%).

As presented above, there are several criteria that researchers might consider for their
proposals, such as the SA, MIBRE, MBRE, MAE, and RMSE. However, the MMRE and
PRED(x) are frequently used as evaluation criteria. Table 1 summarizes the several articles
that adopted those criteria in validating SEE in recent years.

3. Sig Formula

This paper proposes a function sign(yi, ŷi) expressed below by Equation (4). “i” repre-
sents the i-th item in the survey dataset. If the predicted value of the i-th item, denoted as
ŷi, is greater than the actual value of the i-th item, denoted as yi, the value of sign(yi, ŷi) is
set to +1. If the predicted value is less than the actual one, the value of sign(yi, ŷi) is set
to –1. If there is no difference between the predicted and actual values, then sign(yi, ŷi) is
setto be equal to zero.

Three new sig formulas (sigLe f t(y, ŷ), sigRight(y, ŷ), and sig(y, ŷ)) are introduced
by Equations (5)–(7). The double sum in each of Equations (5) and (6) is the sum of
“cumulativesum′′ of sign(yi, ŷi) of the studied pairs. N is the number of all pairs.

sign(yi, ŷi) =


1 if ŷi > yi

0 if ŷi = yi

−1 ŷi < yi

(4)

sigLe f t(y, ŷ) =
2

N(N + 1)

N

∑
k=1

k

∑
i=1

sign(yi, ŷi) (5)

sigRight(y, ŷ) =
2

N(N + 1)

N

∑
k=1

k

∑
i=1

sign(yN−i+1, ŷN−i+1) (6)

sig(y, ŷ) =
sigLe f t(y, ŷ) + sigRight(y, ŷ)

2
(7)

Suppose a coordinate system where actual values yi are on the horizontal axis and
predicted values ŷi are on the vertical axis. In Figure 1, there is such a system with a dashed
line of the equation ŷi = yi (further, this line will be addressed as a “baseline’) and some
dots. Each dot (yi, ŷi) represents a studied pair. Its first coordinate is the actual value,
and its second coordinate is the predicted value.
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Figure 1. A sample of the distribution of predicted and actual values around the baseline.

Lemma 1. Assume “n” is the number of dots above the baseline and “m” is the number of dots
below the baseline; we have:

sig(y, ŷ) =


> 0 if n > m,
< 0 if n < m,
= 0 if n = m, or “all dots lie on the baseline”

(8)

Proof. Let us denote shortly ai = sign(yi, ŷi); Equations (5)–(7) will then be:

sigLe f t(y, ŷ) =
2

N(N + 1)

N

∑
k=1

k

∑
i=1

sign(yi, ŷi) =
2

N(N + 1)

N

∑
k=1

k

∑
i=1

ai

⇒ sigLe f t(y, ŷ) =
2

N(N + 1)

N

∑
i=1

(N − i + 1)ai. (9)

sigRight(y, ŷ) =
2

N(N + 1)

N

∑
k=1

k

∑
i=1

sign(yN−i+1, ŷN−i+1)

⇒ sigRight(y, ŷ) =
2

N(N + 1)

N

∑
k=1

k

∑
i=1

aN−i+1 =
2

N(N + 1)

N

∑
i=1

(N − i + 1)aN−i+1. (10)

sig(y, ŷ) =
sigLe f t(y, ŷ) + sigRight(y, ŷ)

2
,

⇒ sig(y, ŷ) =
1
2

2
N(N + 1)

N

∑
i=1

(N + 1)ai =
1
N

N

∑
i=1

ai. (11)

The sum in Equation (11) is the sum of all signs. As the sign of each dot is +1 if the dot
lies above the baseline, –1 if it lies below the baseline, and 0 if the dot lies on the baseline, it
is obvious that the sum in Equation (11) is greater than zero if the number of dots above
the baseline is greater than the number of dots below.

Similarly, the sum is less than zero if the number of dots above the baseline is less than
the number of dots below the baseline.

Finally, the sum is equal to zero either if the number of dots above the baseline is the
same as the number of dots below the baseline or if all dots lie on the baseline.
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Lemma 2. Let us suppose a chart with N dots such that not all of them lie below the baseline.
Changing the y-coordinate of any dot with a position below the baseline (with its x-coordinate
unchanged) such that this change causes the dot to move to a position above the baseline will result
in an increase of the values of both sigLe f t(y, ŷ) and sigRight(y, ŷ).

Proof. Let us denote shortly again ai = sign(yi, ŷi) and denote k (1 ≤ k ≤ N) as the
position of the k − th dot with the changed y-coordinate. The change means than that
abe f ore

k = sign(yk, ŷk) = −1 will change to aa f ter
k = sign(yk, ŷk) = +1. Then, according to

Equation (9):

sigbe f ore
Le f t (y, ŷ) = 2

N(N+1) [Na1 + (N − 1)a2 + ... + (N − k + 1)abe f ore
k + ... + 1aN)]

⇒ sigbe f ore
Le f t (y, ŷ) = 2

N(N+1) [Na1 + (N − 1)a2 + ... + (N − k + 1) × (−1) + ... + 1aN ]

and

siga f ter
Le f t (y, ŷ) = 2

N(N+1) [Na1 + (N − 1)a2 + ... + (N − k + 1)aa f ter
k + ... + 1aN)]

⇒ siga f ter
Le f t (y, ŷ) = 2

N(N+1) [Na1 + (N − 1)a2 + ... + (N − k + 1)× (+1) + ... + 1aN ]

Thus:
The values of sigbe f ore

Le f t (y, ŷ) and siga f ter
Le f t (y, ŷ) differ only in a term (N − k + 1)× (−1),

respectively (N− k+ 1)× (+1). It is obvious that (N− k+ 1)× (−1) < (N− k+ 1)× (+1),
because:

−N + k− 1 < N − k + 1,
⇔ 2k < 2N + 2,
⇔ k < N + 1, as the assumption was k ≤ N.
Similarly, according to Equation (10),

sigbe f ore
Right (y, ŷ) = 2

N(N+1) [NaN + (N − 1)aN−1 + ... + (k)abe f ore
k + ... + 1a1)]

⇒ sigbe f ore
Right (y, ŷ) = 2

N(N+1) [NaN + (N − 1)aN−1 + ... + (k) × (−1) + ... + 1a1]

and

siga f ter
Right(y, ŷ) = 2

N(N+1) [NaN + (N − 1)aN−1 + ... + (k)aa f ter
k + ... + 1a1)]

⇒ siga f ter
Right(y, ŷ) = 2

N(N+1) [NaN + (N − 1)aN−1 + ... + (k)× (+1) + ... + 1a1]

The values of sigbe f ore
Right (y, ŷ) and siga f ter

Right(y, ŷ) differ only in a term (k)× (−1), respec-
tively (k)× (+1). Again, it is obvious that k× (−1) < k× (+1), because:

−k < k⇔ 0 < 2k⇔ 0 < k, as the assumption was 1 ≤ k.
We conclude that if the number of consecutive dots above the baseline increases,

the values of both sigLe f t(y, ŷ) and sigRight(y, ŷ) increase as well.
Remark: A similar lemma could be proven: If the number of consecutive dots below

the baseline increases, the values of both sigLe f t(y, ŷ) and sigRight(y, ŷ) decrease.

4. Characteristics of Sig Formula

Let us suppose a chart where the horizontal axis presents the actual values yi and the
vertical axis stands for the expected values ŷi. The baseline in such a chart would be a
straight line with the equation ŷ = y:

• If all predicted values are greater than all the respective actual values (i.e., all dots are
above the baseline), then, according to Equation (11):

sig(y, ŷ) =
1
N

N

∑
i=1

ai =
1
N

N

∑
i=1

(+1) = 1 (12)

which is the maximal possible value of sig(y, ŷ).
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• If all predicted values are smaller than all the respective actual values (i.e. all dots are
below the baseline), then, according to Equation (11):

sig(y, ŷ) =
1
N

N

∑
i=1

ai =
1
N

N

∑
i=1

(−1) = −1 (13)

which is the minimal possible value of sig(y, ŷ).
• If there is no difference between each predicted value and the respective actual value

(i.e., all dots are on the baseline), then, according to Equation (11):

sig(y, ŷ) =
1
N

N

∑
i=1

ai =
1
N

N

∑
i=1

(0) = 0 (14)

• In general, the predicted and actual values fluctuate. Some predicted values might be
greater than and others might be smaller than the respective actual ones. The dots in
Figure 1 then form a cloudy distribution around the baseline. The value of sig(y, ŷ)
lies then between –1 and +1.

• Moreover, in the case of a uniform symmetry (named UniSym), i.e., if the values
alternate around the baseline (one dot is above the baseline, the next one below,
the next above, etc.), then with the increasing number N of the observations, the value
of sig(y, ŷ) approaches 0.

lim
N→∞

sig(y, ŷ) = lim
N→∞

1
N

N

∑
i=1

ai = 0 (15)

5. Research Questions

These research questions (RQs) should be answered in this study:

• RQ1: What are the difference of the sigLe f t, sigRight, and sig formulas?
• RQ2: What is the importance of additional information related to the PRED(x) and

MMRE in measuring the performance of the predicted model?

6. Results and Discussion

In this section, we discuss the usefulness of additional information related to the
PRED(x) and MMRE based on twenty-eight projects (Dataset-1) collected from [30–33]
with eight different predicted assumptions as given in Table 2. The column “Real_P20” rep-
resents real efforts in terms of use case points (UCPs) [30,34]. The other columns (Model
1–Model 8) contain the corresponding estimated efforts. The UCPs were originally designed
by Karner [35] as a simplification of the functional points method [36]. Size estimation is
based on the UML use case model. The UCPs are used in industry or in research. Many
studies map effort methods, including UCPs and UCP modification [7,37–40]. Use case
points faced some design issues, which were discussed by Ouwerkerk and Abran [41]. The
UCP design flaws are mainly based on scale transformation when the values of the UCP
components are calculated [42].

The presented models simulate the possible prediction model’s behavior based on real
scenarios. The models’ behavior is configured as follows:

• Model 1: The predicted efforts are random guessing such that their values are mostly
greater than the real values, and the PRED(0.25) reaches the maximum compared
with Models 5, 6, 7, and 8.

• Model 2: The predicted values are random guessing, as opposed to Model 1, where
the PRED(0.25) is equal to the PRED(0.25) obtained from Model 1.

• Model 3: The predicted efforts are random guessing such that the first half of the pre-
dicted values is mostly less than the real values, but the remaining are mostly greater
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than the real values, where the PRED(0.25) is assumed equal to the PRED(0.25)
obtained from Model 1.

• Model 4: It is assumed to be similar to Model 3 in the inverse sense. Furthermore,
the predicted values in this model were purposefully chosen to minimize the MMRE.

• Models 5, 6, 7, and 8: The predicted efforts are based on the rule that one or more initial
predicted values are greater/less than the actual values, and one or more subsequent
predicted values are greater/less than the actual values. The following predicted
values follow the same sequence as the previous ones. The rule is repeated until
the testing dataset is exhausted. Furthermore, we assumed their PRED(0.25) are the
same; they are greater than 0.7, but less than PRED(0.25), and their MMRE is greater
than or equal to Models 1, 2, 3, and 4.

Table 2. The twenty-eight projects and eight different predicted assumptions.

EFFORT (Person-Hours)

No. Estimation (ŷ)

Real_P20 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

P1 151.85 157.2 135.9 108.4 157 148 149 133 145
P2 95.85 101 90 77.2 102 101 102 105.9 101.9
P3 58.65 64 48 51 60.3 55 53 39.8 49
P4 37.1 39 35 30 47 41 65.2 47 39.9
P5 30.7 54.6 24 28 34 17 25 18.2 20
P6 24.6 46 8 21 55 31.9 33 28 48
P7 13.85 15 5 6 15 8 9 8 8.2
P8 179.65 186 171 175.3 191.9 206 200 189 196
P9 84.05 83 82.3 68.2 103 78 74 72 76

P10 67.2 72 52 52 86 81 84 96 97
P11 61 80.5 41 46 64 64 49 58 44
P12 36 42 16 16 39.2 52 58 58 44.9
P13 25.7 31 13 8.7 34 22.6 24 18 17
P14 19.85 25 22.8 19 25 28 31 15.3 18
P15 184.2 193 182 197 170 157 176.3 181 179
P16 99 110 93 114 96 103 100 95 103
P17 197.5 203 180 207 183 192 169 193 178
P18 96.25 102 81.7 101 83 101 111 105 109
P19 108.75 115 93 109 93 72 78 93 93.1
P20 111.3 129 99.2 115 113.8 135.8 118 116 118
P21 132 145 118 145.9 113 105 103 109 113
P22 128.4 135.4 119 129 111 132 148.1 135.7 143
P23 152.1 172 151 155 138 123 151 137 149
P24 84.8 114 74 108.6 82 81 81 105.9 105
P25 183.5 195 177 230.2 171 193.2 200 157 167.2
P26 143 172 126 172 128.4 161 161 148 152
P27 137 156.1 121.6 154 117 148 148 123 132
P28 168 175 150 165 160 192 179 181 174

As for the predictions (estimated values):

• The predicted values produced by Model 1 are mostly greater than the corresponding
real values (all dots lie above the baseline), while Model 2 is the opposite.

• In Model 3, the dots in the first half mostly lie below and the dots in the second half
mostly lie above the baseline, and vice versa in Model 4.

• The dots in Models 5 and 6 lie around the baseline, but the number of dots above
the baseline is greater than the number of dots below the baseline (systematically
overestimated). This is to demonstrate that the sig value is positive.

• The dots in Model 7 also lie around the baseline, but the number of dots above the
baseline is smaller than the number of dots below the baseline. This is to demonstrate
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that the sig value is negative (systematically underestimated). Moreover, Model 8 is
an approximately UniSym model. The sig value then reaches zero.

Figure 2 illustrates the scatter of predicted efforts obtained from Models 1 and 2 vs.
actual efforts around the baseline. These scatters are generated by using the “scatter”
function from the “matplotlib” library of Python. By default, this function automatically
re-orders the values from the minimum to maximum values. Figures 3–5 below are used in
the same manner. As seen in these figures, most of the dots (a pair of actual and predicted
values) in Model 1 are above the baseline (where the predicted and actual values are the
same, ŷi = yi), resulting in sigLe f t, sigRight, and sig reaching +1.

Figure 2. The scatter of predictive efforts vs. actual efforts: Model 1 vs. 2.

Figure 3. The scatter of predictive efforts vs. actual efforts: Model 3 vs. 4.

In a similar manner in Model 2, all of the dots are below the baseline; therefore, sigLe f t,
sigRight, and sig reach −1 (see Table 3). In practice, these assumptions are improbable
because researchers are constantly looking for the most-efficient technique to obtain the
best model. In some circumstances, the scatter between the real and predicted efforts might
result in a case where the dots will lie around the baseline.

Table 3. The summary of the sig values among the eight models.

Metrics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

sigLe f t 0.901 −0.926 −0.488 0.527 0.059 −0.03 −0.172 −0.108
sigRight 0.956 −0.931 0.345 −0.384 0.227 0.172 −0.113 −0.034

Sig 0.929 −0.929 −0.072 0.072 0.143 0.071 −0.143 −0.071
MMRE 0.163 0.179 0.175 0.156 0.163 0.186 0.175 0.175

PRED(0.25) 0.80 0.80 0.80 0.80 0.76 0.76 0.76 0.76

Another scenario is shown in Models 3 and 4 (see Figure 3). The sig values calculated
from both models reach zero. However, the scatter of the predicted and real values might
not be realistic. In Model 3, the first half of the dots is mostly below the baseline, which
results in sigLe f t = −0.488(< 0), while the second half of dots is mostly above the baseline
sigRight = 0.345(> 0) (see Table 3). This outcome is contrary to Model 4. Therefore,
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besides using only the sig value, we might consider adding sigLe f t and sigRight to gain
an insight. On the other hand, Figure 4 presents another case (Models 5 and 6) where the
values of sigLe f t and sigRight are useful to be used together with sig, and the discussion below
might be the answer for RQ1 regarding the difference of sigLe f t, sigRight, and sig. As can be
seen, Models 5 and 6 are fairly random patterns around the baseline (see Table 4). Those
scatters lead to a result that the absolute values of the sigRight obtained from Models 5 and 6
are larger than the absolute values of sigLe f t (see Table 3). Furthermore, Model 6 is more
symmetrical than Model 5, and the predicted efforts obtained from the projects P10, P11,
and P12 in Model 5 show the different positive/negative errors compared with Model 6
(see Table 4), which leads to the fact that the absolute value of the sigLe f t obtained from
Model 5 is larger than that obtained from Model 6. Moreover, the sigRight obtained from
Model 5 is greater than the sigRight obtained from Model 6, which might reveal that the
number of dots on the same side of the baseline in the second half of Model 5 is greater
than in the second half of Model 6 (see Lema 2). This information might be interesting
because, if we use Model 5 as the predicted model, we should consider when we want to
predict effort estimation with high values, as these may be overestimated.

Table 4. The difference between real efforts compared with predicted models.

No. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

P1 −5.35 15.95 43.45 −5.15 3.85 2.85 18.85 6.85
P2 −5.15 5.85 18.65 −6.15 −5.15 −6.15 −10.05 −6.05
P3 −5.35 10.65 7.65 −1.65 3.65 5.65 18.85 9.65
P4 −1.9 2.1 7.1 −9.9 −3.9 −28.1 −9.9 −2.8
P5 −23.9 6.7 2.7 −3.3 13.7 5.7 12.5 10.7
P6 −21.4 16.6 3.6 −30.4 −7.3 −8.4 −3.4 −23.4
P7 −1.15 8.85 7.85 −1.15 5.85 4.85 5.85 5.65
P8 −6.35 8.65 4.35 −12.25 −26.35 −20.35 −9.35 −16.35
P9 1.05 1.75 15.85 −18.95 6.05 10.05 12.05 8.05

P10 −4.8 15.2 15.2 −18.8 −13.8 −16.8 −28.8 −29.8
P11 −19.5 20 15 −3 −3 12 3 17
P12 −6 20 20 −3.2 −16 −22 −22 −8.9
P13 −5.3 12.7 17 −8.3 3.1 1.7 7.7 8.7
P14 −5.15 −2.95 0.85 −5.15 −8.15 −11.15 4.55 1.85
P15 −8.8 2.2 −12.8 14.2 27.2 7.9 3.2 5.2
P16 −11 6 −15 3 −4 −1 4 −4
P17 −5.5 17.5 −9.5 14.5 5.5 28.5 4.5 19.5
P18 −5.75 14.55 −4.75 13.25 −4.75 −14.75 −8.75 −12.75
P19 −6.25 15.75 −0.25 15.75 36.75 30.75 15.75 15.65
P20 −17.7 12.1 −3.7 −2.5 −24.5 −6.7 −4.7 −6.7
P21 −13 14 −13.9 19 27 29 23 19
P22 −7 9.4 −0.6 17.4 −3.6 −19.7 −7.3 −14.6
P23 −19.9 1.1 −2.9 14.1 29.1 1.1 15.1 3.1
P24 −29.2 10.8 −23.8 2.8 3.8 3.8 −21.1 −20.2
P25 −11.5 6.5 −46.7 12.5 −9.7 −16.5 26.5 16.3
P26 −29 17 −29 14.6 −18 −18 −5 −9
P27 −19.1 15.4 −17 20 −11 −11 14 5
P28 −7 18 3 8 −24 −11 −13 −6

Figure 4. The scatter of predictive efforts vs. actual efforts: Model 5 vs. 6.
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Figure 5. The scatter of predictive efforts vs. actual efforts: Model 7 vs. 8.

Moreover, as shown in Figure 5, Models 7 and 8 randomly scatter between the pre-
dicted efforts against the actual efforts, whereas Model 8 is slightly more randomly scattered
than Model 7. It is clear that the predicted efforts from P1 to P12 and P17 to P28 in both
models have the same trend, but there are slight differences from P13 to P16 in Model 7
compared with Model 8 (see Table 4). The dots obtained from those efforts in Model 7
are below the baseline, which leads to the absolute value of sigLe f t, sigRight attained from
Model 7 being higher than those attained from Model 8. In addition, the number of dots
above the baseline in both models is less than the number of dots below it. As a result,
the calculated sig values in both models are less than zero, while the absolute value of sig
obtained from Model 7 is less than that obtained from Model 8.

Table 3 summarizes the statistical metrics from the eight models, including sigLe f t,
sigRight, sig, the MMRE, and the PRED(0.25). As can be seen, the MMRE and PRED(0.25)
obtained from Model 4 gain the best performance due to its MMRE reaching the minimum
and its PRED(0.25) reaching the maximum compared with the other models. Based
on these metrics, this model might be the most suitable among the remaining models.
Unfortunately, its specific information sigLe f t/sigRight values (obtained 0.527/−0.384) are
farther from zero in comparison to the corresponding values obtained in Models 5 to
8 (see Lema 2). Thus, if we want to choose the suitable predictive model among the
discussed eight models, we might consider choosing Model 5, 6, 7, or 8 due to the additional
information related to the MMRE and PRED(0.25) obtained from those models being
slightly closer to zero. This scenario might be a good example to answer RQ2; the values of
sigLe f t, sigRight, and sig might be the useful additional information related to the MMRE
and PRED(0.25).

On the other hand, we suppose that we are considering two predictive models, namely
Models 7 and 8, and we want to decide which one is better. We noticed that the MMRE and
PRED(0.25) obtained from both are the same, 0.175 and 0.76, respectively. As discussed
above, Model 8 has a fairly random scatter than Model 7 due to the sigLe f t, sigRight, and sig
values obtained from Model 8 being smaller than those obtained from Model 7. Based on
these findings, we might conclude that Model 8 outperforms Model 7.

Last but not least, sigLe f t, sigRight, and sig have a weakness, that is, if out of 28 pre-
dictions, 14 are underestimated by 1% and the remaining 14 are overestimated by 100%,
the method proposed will indicate the prediction errors as symmetrical. This issue might
raise confusion for software project practitioners. However, as mentioned in the purpose of
these formulas, they are only additional information related to the MMRE and PRED(x),
we still rely on the criteria of the MMRE and PRED(x) with more information obtained
from these formulas as useful information. As discussed above, if we omit sigLe f t, sigRight,
and sig, this might lead to the selection of an improper model.

Case study: To be more specific, we verified the benefit of the sigLe f t, sigRight, and sig
values based on the models obtained from XGBoost regression. XGBoost is a gradient-
boosted decision tree development created for a highly efficient and accurate model. It
is a Python open-source library, and it provides a framework such as the “fit” function
to build a model based on the training dataset and the “predict” function to predict new
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values based on a new dataset [43]. In our scenario, we adopted XGBoost with a group of
parameters. They include the learning rate (0.01), booster (“gblinear”), and n_estimators
chosen by experimentation. We used Dataset-1 (twenty-eight projects) [30–33] and Dataset-
2 (seventy-one projects) [31] as the historical datasets. Those datasets measure effort
estimation in terms of use case points (UCPs) [30,34]. Both datasets are described by the
unadjusted actor weight (UAW), unadjusted use case weight (UUCW), technical complexity
factor (TCF), environmental complexity factor (ECF), and Real-P20. Real-P20 is considered
as the dependent variable, and the UAW, UUCW, TCF, and ECF are considered as the
independent variables.

Dataset-1/Dataset-2 is divided into two datasets, 80% of projects for training and the
remaining projects for testing. As mentioned in Table 1, the PRED(x) an MMRE are used
as the criteria to measure the accuracy of effort estimation in UCPs. In addition, the values
of sigLe f t, sigRight, and sig are shown.

Table 5 shows the evaluation criteria obtained from the XGBoost models. As can be
seen, the sig value obtained from the proposed models based on Dataset-1 and Dataset-2
is −0.556 and 0.286, respectively. Criterion sig shows a model scatter (variance). If the
variance reaches zero, that model is better. In those two datasets, we can see that model
XGBoost has a tendency to underestimate Dataset-1 due to the values of sigLe f t, sigRight,
and sig being less than and so far from zero. The scatter of the model for Dataset-2
might be smaller than for Dataset-1 due to the absolute value of the sig obtained from the
model for Dataset-1 is larger than that obtained from the model for Dataset-2. As can be
seen, the absolute values of sigLe f t are similar for Dataset-1 and Dataset-2. However, the
|sigRight| obtained from Dataset-2 is smaller than that obtained from Dataset-1, which
demonstrates that the scatter of the model for Dataset-2 might be smaller than for Dataset-1.
These findings reveal that the sigLe f t, sigRight, and sig values might be used as reference
criteria to consider choosing an appropriate predictive model. Compared to the MMRE
and PRED(0.20), which is an absolute sig value, we might be confident to state that the
XGBoost model for Dataset-2 outperforms that for Dataset-1.

Table 5. Evaluation criteria obtained from XGBoost.

Dataset-1 Dataset-2

R-Squared 0.884 0.974
MMRE 0.318 0.136
PRED(0.20) 0.222 0.714
sigLe f t −0.422 0.429
sigRight −0.689 0.143
sig −0.556 0.286

7. Conclusions and Future Work

sigLe f t, sigRight, and sig refer to the sign of prediction error, not the magnitude. These
values’ usefulness might be considered a contribution to the MMRE and PRED(x). Using
the MMRE and PRED(x) together with them as performance indicators could be beneficial
to validate the symmetry of the predictive model values around the baseline. On the other
hand, since those values indicate under-/over-estimation in terms of effort estimation
independent of the used sizing unit, these criteria might be useful when validating the
accuracy of the predicted model along with the PRED(x) and MMRE.

Moreover, as mentioned in Lemma 2, the lower the absolute value of sigLe f t and
sigRight, the more homogeneous the distribution of the predicted and actual values around
the baseline. Using sigLe f t, sigRight, and sig might detect whether the predictive model is
under or over the baseline. Although this study proposes signals to identify the estimated
model as under or over the baseline based on the limited dataset, based on the proof of
Lemmas 1 and 2, the proposed formulas are completely adopted for the larger dataset. Last
but not least, as discussed in Section 4, based on the adjusted values of sigLe f t, sigRight,
and sig, the predictive model might be adjusted by increasing or decreasing the intercept,
which might lead to a higher accuracy of the predictive model.
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Limitations: Based on the sigLe f t, sigRight, and sig values, we just stated whether the
model is over or under the baseline. It may be more helpful when the quantification of this
over-/under-estimation is discussed further in the future.
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