
Phys. Fluids 35, 013105 (2023); https://doi.org/10.1063/5.0138220 35, 013105

© 2023 Author(s).

Measurement and modeling of uniaxial
and planar extensional viscosities for linear
isotactic polypropylenes 
Cite as: Phys. Fluids 35, 013105 (2023); https://doi.org/10.1063/5.0138220
Submitted: 09 December 2022 • Accepted: 19 December 2022 • Accepted Manuscript Online: 20
December 2022 • Published Online: 09 January 2023

 Jiri Drabek and  Martin Zatloukal

COLLECTIONS

Note: This paper is part of the special topic, One Hundred Years of Giesekus.

 This paper was selected as Featured

ARTICLES YOU MAY BE INTERESTED IN

Prevention of edge fracture using a nontoxic liquid metal sealant
Physics of Fluids 35, 011704 (2023); https://doi.org/10.1063/5.0135554

Knowledge discovery with computational fluid dynamics: Supercritical airfoil database and
drag divergence prediction
Physics of Fluids 35, 016113 (2023); https://doi.org/10.1063/5.0130176

Dissipation-optimized proper orthogonal decomposition
Physics of Fluids 35, 015131 (2023); https://doi.org/10.1063/5.0131923

https://images.scitation.org/redirect.spark?MID=176720&plid=1977913&setID=405127&channelID=0&CID=725233&banID=520885224&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=13cb7f834198e7a63e028bdd3ed6dfe27658f897&location=
https://doi.org/10.1063/5.0138220
https://aip.scitation.org/topic/collections/featured?SeriesKey=phf
https://doi.org/10.1063/5.0138220
https://orcid.org/0000-0001-5979-5475
https://aip.scitation.org/author/Drabek%2C+Jiri
https://orcid.org/0000-0003-1894-2103
https://aip.scitation.org/author/Zatloukal%2C+Martin
https://aip.scitation.org/topic/collections/featured?SeriesKey=phf
https://doi.org/10.1063/5.0138220
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0138220
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0138220&domain=aip.scitation.org&date_stamp=2023-01-09
https://aip.scitation.org/doi/10.1063/5.0135554
https://doi.org/10.1063/5.0135554
https://aip.scitation.org/doi/10.1063/5.0130176
https://aip.scitation.org/doi/10.1063/5.0130176
https://doi.org/10.1063/5.0130176
https://aip.scitation.org/doi/10.1063/5.0131923
https://doi.org/10.1063/5.0131923


Measurement and modeling of uniaxial
and planar extensional viscosities for linear
isotactic polypropylenes

Cite as: Phys. Fluids 35, 013105 (2023); doi: 10.1063/5.0138220
Submitted: 9 December 2022 . Accepted: 19 December 2022 .
Published Online: 9 January 2023

Jiri Drabek and Martin Zatloukala)

AFFILIATIONS

Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic

Note: This paper is part of the special topic, One Hundred Years of Giesekus.
a)Author to whom correspondence should be addressed: mzatloukal@utb.cz

ABSTRACT

In this work, novel rectangular and circular orifice (zero-length) dies were used to measure planar and uniaxial extensional viscosities as a
function of strain rate for various linear isotactic polypropylene melts by using Cogswell methodology. The obtained experimental data were
combined with shear and uniaxial extensional viscosity data determined at very high strain rates. The ability of the molecularized generalized
Newtonian fluid (mGNF) [M. Zatloukal and J. Drabek, “Generalized Newtonian fluid constitutive equation for polymer liquids considering
chain stretch and monomeric friction reduction for very fast flows modeling,” Phys. Fluids 33(8), 083106 (2021)], Giesekus, and explicit Yao
constitutive equations to describe the measured data was tested. It has been shown that including the effect of the chemical environment (i.e.,
the role of the oligomeric solvent) using a simplified version of the mGNF constitutive equation (instead of the commonly used Newton’s
law) can significantly improve the ability of the Giesekus and Yao viscoelastic constitutive equations to describe the measured experimental
data, especially at very high strain rates with using adjustable parameters with a clear physical meaning.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0138220

I. INTRODUCTION

Planar extension flow is when the polymer melt stretches in one
direction, shrinks in the thickness direction, and has no shrinkage in
the width direction. The extrusion film casting process is an energy
storage membrane manufacturing technology in which planar stretch-
ing is important because it determines the polymer flow inside the flat
dies and controls the unwanted neck-in phenomenon.1–4 In more
detail, it was found that the neck-in depends on the ratio of planar and
uniaxial extensional viscosity.5–8 While uniaxial extensional viscosity is
a material property that can be relatively easily measured using a vari-
ety of experimental techniques,9–12 determining planar extensional vis-
cosity is one of the most challenging rheological tasks because of the
difficulty of generating and controlling planar extensional flow. It is
therefore not surprising that the planar extensional viscosity is not cor-
rectly handled when modeling polymer processing, and the flow phe-
nomena associated with this material property are not yet fully
understood. The objective of this work is to first use new rectangu-
lar13,14 and circular orifice (zero-length) dies15,16 to measure uniaxial
and planar extensional viscosities for various polypropylene melts

using the Cogswell model14,17,18 at medium strain rates and combine
them with very-high-strain-rate-dependent shear and uniaxial exten-
sional viscosities taken from our previous work.19–22 Second, we assess
the ability of the recently proposed molecularized generalized
Newtonian fluid (mGNF),23,24 Giesekus,25–27 and recently proposed
explicit Yao28 constitutive equations to describe the shear and both
extensional viscosities with a single set of parameters. Finally, we gen-
eralize Newton’s law for the oligomeric solvent contribution to the
stress tensor (i.e., to include the role of chemical environment) in the
used viscoelastic constitutive equations to improve their behavior at
very high strain rates.

II. EXPERIMENTAL

Three linear isotactic polypropylenes (iPPs) Borflow HL504FB
(76 k), HL508FB (64 k), and HL512FB (56 k) were used in this work.
The molecular characteristics of the linear isotactic polypropylene
melts used are summarized in Table I. Polypropylenes were character-
ized at 230 �C using a Rosand RH7-2 twin-bore capillary rheometer
equipped with polyether ether ketone (PEEK) piston tips. Two circular
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dies with the same diameter of Dd¼ 0.5mm but different length-to-
diameter ratios, L/D, (0.1214,29 and 16), and also two rectangular dies
of width, w¼ 10mm, gap size h¼ 0.15mm and different L/h ratios
(0.1214,29 and 16) were used to determine the uniaxial and planar
extensional viscosities using the Cogswell model14,17,18 (see Table II).
In this table, Q is the volumetric flow rate; R is the radius of the capil-
lary die; w and h are the width and gap size of the rectangular die,
respectively; L is the length of the long die; PL,U and PL,P are the pres-
sure drop through the long die, which is circular and rectangular in
shape, respectively; and P0,U and P0,P represent the entrance pressure
drop measured on the circular and rectangular orifice die, respectively.
The obtained data were combined together with shear and uniaxial
extensional viscosity data determined at very high strain rates reported
in our previous works.19–22 The maximum Hencky strain, emax,
achieved when measuring uniaxial and planar extensional viscosity
during the abrupt contraction flow is given as

emax ¼ ln
Ab

Ad

� �
; (1)

where Ab and Ad are the cross-sectional area of the barrel and the die,
respectively.30 The maximum Hencky strain for circular (emax;U ) and
rectangular (emax;P) orifice dies is then given as

emax;U ¼ 2 ln
Db

Dd

� �
; (2)

emax;P ¼ ln
pD2

b

4wh

� �
; (3)

where Db is the barrel diameter (15mm), Dd is the orifice circular die
diameter (0.5mm), and w and h are the width (10mm) and gap size
(0.15mm) of the rectangular orifice die. According to Eqs. (2) and (3),
emax;U ¼ 6:8 and emax;P ¼ 4:8. Note that emax;U is the same for uniax-
ial extensional viscosity measured at low strain rates (this work) and
high strain rates (experimental data taken from our previous
work19–22). It should also be mentioned that for the same volume flow
rate and circular and rectangular die dimensions used, the Hencky
strain, extensional strain rate (including wall shear rate and wall shear
stress used in the Cogswell analysis) is smaller for planar extensional
flow compared to uniaxial extensional flow. While maintaining the
same volume flow rate in circular and rectangular geometries, the
pressure measured on rectangular dies is much less compared to circle
dies. Thus, given the limited resolution of pressure transducers, experi-
mental data from rectangular dies are typically quantifiable at much
higher volume flow rates compared to circular geometries.

III. THEORETICAL

The following constitutive equations were chosen to describe the
measured rheological data.

A. Molecularized generalized Newtonian fluid model
(mGNF)

A recently proposed molecularized generalized Newtonian fluid
model was used in this work23

s ¼ 2g IID ; II�L
� �

D; (4)

where s stands for the extra stress tensor, D represents the strain rate

tensor, �L is the objective velocity gradient (defined as �L ¼ L � X,

where L is velocity gradient and X is the tensor that gives the rate of
rotation of the eigenvectors of D31–35) and gðIID ; II�L Þ means the vis-

cosity, which can vary with the second IID ¼ 2trðD2Þ invariant of D
as well as on the second invariant of the objective velocity gradient

II�L ¼ 2trð�L 2Þ according to Eq. (5) (note that �L and the velocity gradi-

ent tensor L are same in the steady-state flows34,35)

TABLE I. Basic characteristics of the isotactic polypropylenes used.

Sample Mn Mw Mz Mzþ1 Mw/Mn

Name (gmol�1) (gmol�1) (gmol�1) (gmol�1) (�)

HL504FB (76 k) 17 200 75 850 165 500 278 000 4.41
HL508FB (64 k) 14 650 63 750 138 000 235 500 4.35
HL512FB (56 k) 14 250 56 250 114 500 187 500 3.95

TABLE II. A summary of the Cogswell model for the determination of uniaxial and planar extensional viscosities.14,17,18

Uniaxial extensional flow Planar extensional flow

Apparent shear rate
_capp;U ¼

4Q
pR3

_capp;P ¼
6Q
wh2

Corrected shear stress
sxy;corr;U ¼

ðPL;U � P0;U ÞR
2LU

sxy;corr;P ¼
ðPL;P � P0;PÞ h

2LP
Apparent index of
non-Newtonian behavior nU ¼

d logðsxy;corr;U Þ
d logð _capp;UÞ

nP ¼
d logðsxy;corr;PÞ
d logð _capp;PÞ

Extensional stress
rE;U ¼

3
8
ðnU þ 1ÞP0;U rE;P ¼

1
2
ðnP þ 1ÞP0;P

Extensional strain rate
_eU ¼

4sxy;corr;U _capp;U
3ðnþ 1ÞP0;U

_eU ¼
2sxy;corr;P _capp;P
3ðnþ 1ÞP0;P

Extensional viscosity gE;U ¼
rE;U

_eU
gE;P ¼

rE;P

_eP
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g IID ; II�L
� �

¼ A
1�f II�L
� �

g IID
� �f II�L

� �
: (5)

Here, gðIIDÞ is given by the well-known Carreau–Yasuda model, Eq.

(6), and f ðII�L Þ varies between 1 (IIL ! 0) and 2 (IIL !1) and is

given by Eq. (7),

g IID
� �

¼ g1 þ
g0 � g1

1þ k1
ffiffiffiffiffiffiffiffiffiffi
IIDÞa

q� 	1�n
a

;

" (6)

f IIL
� �

¼ 2

tanh k2
ffiffiffiffiffiffi
II�L

q
þ b

� �
 	 logtanh bð Þ2
: (7)

Here, the parameters g0 (zero-shear-rate viscosity), g1 (infinite-shear-
rate viscosity), k1 (reptation-mode relaxation time), a (parameter char-
acterizing transition from Newtonian to power-law regime), and n
(power-law index) are related to the shear viscosity curve while b
(extensional strain hardening parameter), k2 (Rouse mode relaxation
time), and A (parameter related to the asymptotic value for extensional
viscosity, i.e., for _e !1) are obtained by fitting the steady-state
extensional viscosity.

In pure shear flow

D ¼ 1
2

0 _c 0

_c 0 0

0 0 0

0
B@

1
CA (8)

and

L ¼ L ¼
0 _c 0

0 0 0

0 0 0

0
B@

1
CA; (9)

and thus, f ðII�L Þ defined by Eq. (7) becomes equal to 1 because

II�L ¼ 0; that is, the shear viscosity becomes dependent on the second

invariant of the strain rate tensor only with IID ¼ _c2 as follows:

g _cð Þ ¼ g1 þ
g0 � g1

1þ k1 _cð Þa
� �1�n

a

: (10)

In general steady-state extensional flow

D ¼ L ¼ L ¼ _e

1 0 0

0 m 0

0 0 � 1þmð Þ

0
B@

1
CA; (11)

IID ¼ IIL ¼ IIL ¼ 4_e2 m2 þmþ 1ð Þ: (12)

For simple uniaxial extensional flow m¼�0.5, for a planar exten-
sional flow m¼ 0, and for equibiaxial extensional flow, m¼ 1.9 A
combination of Eqs. (4)–(7), (11), and (12) leads to the following
expression for the extensional viscosity:

gE ¼ 2 2þmð ÞA1�f _eð Þg _eð Þf _eð Þ
; (13)

where

g _eð Þ ¼ g1 þ
g0 � g1

1þ k12_e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þmþ 1
p� �ah i1�n

a

(14)

and

f _eð Þ ¼ 2

tanh k22_e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þmþ 1
p

þ b
� �� � logtanh bð Þ2

: (15)

The asymptotic formula for extensional viscosity is given as

gE;1 ¼ lim
_e!1

gE ¼ 2 2þmð Þ g
2
1
A
: (16)

The constant A can be expressed from Eq. (16) considering uniaxial
extensional flow, that is gE;U ;1 ¼ lim

_e!1
gEðm ¼ �0:5Þ, as follows:

A ¼ 3g21
gE;U ;1

: (17)

In this model, the expression for the uniaxial extensional viscosity at
the high strain rate limit gE;U ;1 corresponds to the molecular expres-
sion for a fully extended Fraenkel chain36 and is given by the following
formula:23

gE;U ;1 ¼ 3g0
k2max

Me
Mx�1

c M2�x feq
faligned

 !�1
; (18)

whereMe is the molar mass between entanglements, kmax is the maxi-
mum chain stretch ratio,Mc is the critical molar mass at which entan-
glements begin to occur, M is the molar mass, x represents the value
by which the zero-shear rate viscosity, g0, scales with Mx above

Mc(typically 3:56 0:2 for all linear and flexible molecules37), and
feq

faligned

represents the ratio of monomeric friction coefficients for equilibrium
and fully aligned chains. Alternatively, the parameter A can also be
determined from the known molecular parameters of the polymer
melt by combining Eqs. (17) and (18) as follows:23

A ¼ g21
g0

Me

k2max

Mc
1�xMx�2 feq

faligned
: (19)

B. Modified Giesekus model

The original Giesekus model has been proposed from a simple
dumbbell theory for dilute solutions with the consideration of aniso-
tropic drag.25–27 The model is given as follows:

s ¼ sp þ ss ; (20)

sp þ a
k
gp

sp
2 þ k sp

r ¼ 2gpD; (21)

ss ¼ 2g1D; (22)

g0 ¼ g1 þ gp; (23)

where s is the extra-stress tensor, sp and ss are the polymer and sol-

vent contribution to the stress tensor, g1 is the solvent viscosity, gp is
the polymer viscosity, g0 is the zero-shear-rate viscosity, D is the strain
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rate tensor, k is the relaxation time, the symbol r represents the
upper-convected time derivative, G is the modulus, and a is the
parameter characterizing anisotropic hydrodynamic drag. The mini-
mum and maximum anisotropies correspond to a¼ 0 and a¼ 1,
respectively.38 The steady-state shear viscosity is given by the following
equations:39

g ¼ g1 þ gpð Þ
g1

gp þ g1
þ 1� g1

gp þ g1

� � 1� fð Þ2

1þ 1� 2að Þf

" #
; (24)

f ¼ 1� v
1þ 1� 2að Þv ; (25)

v2 ¼ 1þ 16a 1� að Þ k_cð Þ2
� �1=2 � 1

8a 1� að Þ k _cð Þ2
: (26)

The steady-state extensional viscosity is given by the following
equation:

gE ¼ 2 mþ 2ð Þg1 þ
1
2a_e

gp
k

�
2_ek mþ 2ð Þ þ 1þ 4_e2k2 þ 8a� 4ð Þk_e

� �1=2
� 1þ 4k2 1þmð Þ2 _e2 � 8k a� 1

2

� �
1þmð Þ_e


 	1=2
8>><
>>:

9>>=
>>;:
(27)

It has been showed40–43 that increasing the molecular weight of the
oligomeric solvent leads to co-aligned orientation of short solvent mol-
ecules with long polymer chains, which reduces the monomeric fric-
tion coefficient and the extensional viscosity. In order to include this
effect in viscoelastic models, let us assume that the solvent contribu-
tion to the stress tensor is given by the molecularized generalized
Newtonian fluid model introduced in Sec. IIIA (with gðIIDÞ being
replaced by g1 and A replaced by AG) as follows:

ss ¼ 2A
1�f II�L
� �

G g
f II�L
� �
1 D: (28)

In this case, the expression for shear viscosity remains unchanged
(because f ðII�L Þ¼1), but the expression for extensional viscosity

changes from Eq. (27) to the following expression:

gE ¼ 2 mþ 2ð ÞA
1�f II�L
� �

G g
f II�L
� �
1 þ 1

2a_e

gp
k

�
2_ek mþ 2ð Þ þ 1þ 4_e2k2 þ 8a� 4ð Þk_e

� �1=2
� 1þ 4k2 1þmð Þ2 _e2 � 8k a� 1

2

� �
1þmð Þ_e


 	1=2
8>><
>>:

9>>=
>>;;
(29)

which gives the following asymptotic formula:

gE;1 ¼ lim
_e!1

gE ¼
2 mþ 2ð Þ

AG
g21 þ

2
a

gp: (30)

The constant AG can be expressed from Eq. (30) for the case of
uniaxial extensional flow, that is, gE;U ;1 ¼ lim

_e!1
gEðm ¼ �0:5Þ, as

follows:

AG ¼
3g21

gE;U ;1 �
2
a

gp

¼ 3g21

gE;U;1 �
2
a

g0 � g1ð Þ
: (31)

Since AG is defined as a positive value, gE;U ;1 > 2
a ðg0 � g1Þ.

C. Modified explicit Yao model

Yao proposed a constitutive equation in which the extra stress
tensor is an explicit function of the objective velocity gradient with
finite stretch and rotational recovery.28 The model is based on a modi-
fied stress law for a general elastic material that includes finite stretch
and disentanglement

s ¼ GB�; (32)

G ¼ G0n
�w; (33)

n ¼ S0

S0 þ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
tr D � D
� �r ; (34)

B� ¼ exp na0n0k0�L
� �

� exp na0n0k0�L
T

� �
 	1=n0
: (35)

Here, s is the extra stress tensor, G is the elastic modulus, G0 is the ini-

tial elastic modulus (G0 ¼ g0
k0
), n�w represents the elastic modulus

shape function controlled by the strain hardening coefficient w
(0 � w � 1)35 taking into account the effect of finite chain stretch on
the elastic modulus (i.e., that G increases with increasing chain
stretch), S0 is the ceiling stretch (typically in the range of 1–3),35 k0 is
the relaxation time at small strain, D is the strain rate tensor, B� is the

generalized Finger tensor representing the accumulated elastic strain
in the polymer melt considering both the effect of rotational relaxation
controlled by index of rotational recovery n0 (1 � n0 � 2)35 and the
effect of the finite stretch on the relaxation time by using the shape
function na0 controlled by the parameter a0 with a typical value
around 128 (i.e., a decrease in k0 with increased chain stretch), and L is

the objective velocity gradient. The explicit nature of the model repre-
sents the main advantage over previous implicit Yao models,34,35 from
which the current model is based. The explicit Yao model can be fur-
ther generalized by including the solvent contribution via a molecular-
ized Newtonian model (i.e., analogous to the modification describe
above for the modified Giesekus model) to include the role of the
chemical environment reported in Refs. 40–43, which leads to the fol-
lowing expression for the extra stress tensor:

s ¼ gP
kP

n�w exp na0n0kPL
� �

� exp na0n0kPL
T

� �
 	1=n0

þ 2A
1�f II�L
� �

Y g
f II�L
� �
1 D; (36)

where n is given by Eq. (34). The steady-state shear viscosity is given
by the following equation:

g ¼ gp
n�w

kp _c
R2=n0 � 4=Rð Þ2=n0

22=n0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4

p þ g1; (37)

where n ¼ S0
S0þkPffiffi

3
p _c

, c ¼ na0n0kP _c, and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ c2

p
þ c.28
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The steady-state extensional viscosity is given by the following
equation:

gE ¼
gp
kp _e

n�w½exp ðna0 2kp _eÞ � exp ð�na0 2kpð1þmÞ_eÞ�

þ 2ð2þmÞAY
1�f ð_eÞgf ð_eÞ1 ; (38)

where

n ¼ S0

S0 þ 2_ekP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þmþ 1

3

r : (39)

The asymptotic formula for extensional viscosity is given as

gE;1 ¼ lim
_e!1

gE ¼ 2 2þmð Þ g
2
1
AY

: (40)

The constant AY can be expressed from Eq. (40) considering
uniaxial extensional flow, that is, gE;U ;1 ¼ lim

_e!1
gEðm ¼ �0:5Þ, as

follows:

AY ¼
3g21

gE;U ;1
: (41)

As can be seen, the expression for the Yao model constant AY is the
same as for the mGNF model constant A [compare Eqs. (17) and
(41)]. Note that the original Yao’s expressions for both viscosities are
recovered if g1 ¼ 0 (i.e., gP ¼ g0 and kP ¼ k0) in Eqs. (36)–(38). It
should also be mentioned that the explicit Yao model is viscoelastic;
that is, it can predict the first and second normal stress differences,28

while the mGNF model cannot.

IV. RESULTS AND DISCUSSION

Measured data for all three iPP samples combined with very-
high-strain-rate-dependent shear and uniaxial extensional viscosities
taken from our previous work19–22 are shown in Figs. 1–3 together
with the mGNF model (Fig. 1), the original and modified explicit Yao
model (Fig. 2), and original and modified Giesekus model (Fig. 3). The
corresponding model parameters are given in Tables III–VII.

The mGNF model has a high ability to describe all the measured
rheological data shown in Fig. 1. Here, g0, g1, k1, a, and n¼ 0, gE;U ;1
parameters were taken from our previous work19,21–23 and k2 and b
were determined from the fit of uniaxial and planar extensional viscos-
ities (see Table III). As expected, the reptation-mode relaxation time
k1 and Rouse mode relaxation time k2 increase with the weight-
averaged molecular weight,Mw, while the extensional strain hardening
parameter b decreases with increasingMw.

23,44

A comparison between the single-mode Giesekus model predic-
tions and the measured data is shown in Fig. 2 (left), and the corre-
sponding model parameters are provided in Table IV. Also in this
case, the parameters g0 and g1 were taken from our previous
work19,21–23 (i.e., the polymer viscosity gp is known in advance because
gp ¼ g0 � g1). The remaining model parameters k and a were deter-
mined by fitting the measured strain-rate dependent shear, uniaxial,
and planar extensional viscosities. As can be seen in Fig. 2 (left), the
model captures the shape of shear viscosity vs shear rate, even when
single-mode approach was used. However, the model is not able to
describe the extensional strain thinning because it does not consider

the finite stretching of the polymer chains.45–48 Weak extensional thin-
ning in uniaxial extensional viscosity at moderate strain rates can only
be achieved if a is sufficiently high. At very high extensional strain
rates, the model predicts a constant extensional viscosity given as

gE;1 ¼ 2 mþ 2ð Þg1 þ
2
a

gP: (42)

The asymptotic formulas for the uniaxial and planar extensional vis-
cosities for the case of the most extensional thinning (i.e., when a ¼ 1)
are thus given as follows:

gE;U ;1 a ¼ 1ð Þ ¼ 2g0 þ g1; (43)

gE;P;1 a ¼ 1ð Þ ¼ 2g0 þ 2g1: (44)

As can be seen, none of the above extensional viscosities ever drop
below 2g0 þ g1. A closer analysis of Eq. (42) shows that the Giesekus
model provides extensional thinning for uniaxial and planar exten-
sional viscosity only when 2=3 < a � 1 and 1=2 < a � 1, respec-
tively. The dependence of both extensional viscosities on the
extensional strain rate for different values of a is shown in Fig. 4 using
the parameters for the 76 k polypropylene melt. This explains why the
Giesekus model is unable to describe the measured extensional strain
thinning followed by extensional strain thickening in both extensional
viscosities for the given iPP melts shown in Fig. 2 (left). On the other
hand, the Giesekus’s reptation-mode relaxation time k and the anisot-
ropy parameter a (causing a decrease in gE;1 as a increases) correctly
increase withMw as expected.

The modified Giesekus model shows improved behavior in both
extensional viscosities at very high extensional strain rates, as seen in
Fig. 2 (right). The model describes extensional thinning for both
extensional viscosities at moderate strain rates in the same way as the
original Giesekus model (by setting 2=3 < a � 1 with a minimum
achievable uniaxial and planar extensional viscosity of 2g0 þ g1 and
2g0 þ 2g1, respectively), but it can also handle extensional strain
hardening at very high strain rates (i.e., at values higher than the recip-
rocal value of the Rouse time) due to a modified expression for the sol-
vent contribution to the stress tensor. The ability of the model to
describe the extensional viscosities increases with the reduced Mw of
the tested iPPs, because in that case the minimum attainable exten-
sional viscosities predicted by the original Giesekus model approach
the experimentally determined minimum extensional viscosities. It is
clear that the proposed modification of the “solvent” viscosity (to
account for the effect of the chemical environment) can significantly
improve the ability of the viscoelastic constitutive equations to describe
the extensional rheology at very high strain rates. It should be men-
tioned that the behavior of the Giesekus model at moderate exten-
sional strain rates can be further improved by modifying the
expression for the polymer contribution to the stress tensor by incor-
porating the finite extensibility of the polymer molecules into dumb-
bell kinetic theory using the Peterlin approximation as shown in Refs.
45–48. The trend between the modified Giesekus’s reptation-mode
relaxation time k and Mw remains the same as for the original
Giesekus and mGNF models. Since k2 is of the same order as in the
mGNF model, but its value increases (and does not decrease) with
decreasing Mw, the k2 is also correlated with Rouse time in this case,
but inversely. The effect ofMw on the strain-hardening-related param-
eters a and b is not clear in this case, as the ability of the modified

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 013105 (2023); doi: 10.1063/5.0138220 35, 013105-5

VC Author(s) 2023

https://scitation.org/journal/phf


Giesekus model to fit the extensional viscosity data varies significantly
with Mw (the ability of the model to fit experimental data increases
with reduced Mw, see Fig. 2 (right) and Table V for the fitting errors
evaluated using the root mean square error, RMSE), which does not
allow a direct physical interpretation of both parameters.

A comparison between the experimental data and the original
explicit Yao model predictions is shown in Fig. 3 (left). As can be seen,
the model is unable to describe the secondary Newtonian plateau in
the shear viscosity curve, fails to describe the uniaxial viscosity data,
and unrealistically predicts that the uniaxial and planar extensional
viscosities cross each other at moderate strain rates and become infi-
nite at very high strain rates. The corresponding model parameters

(six in total) are listed in Table VI, where g0 was taken from Refs. 19
and 21–23 and the ceiling stretch S0 was adjusted to 1 to ensure that
model predicts extensional thinning at moderate strain rates35 (which
is typical flow behavior for linear polymer melts such as the tested
iPPs). The Yao relaxation time is found to increase correctly withMw,
but its value is about one order of magnitude higher than the
reptation-mode relaxation time, that is, on the order of milliseconds,
which is interestingly the same order as the longest relaxation time for
the given iPP. For example, the longest relaxation time for iPP with
Mw¼ 76 kg/mol was found to be 5.36ms at 230 �C20 and the Yao’s
relaxation time for the same material and temperature is 1.91ms (see
Table VI). The index of rotational recovery n0 was found to be equal

FIG. 1. Comparison between measured
strain rate-dependent shear (open sym-
bols), uniaxial (red full triangles and
squares) and planar extensional viscosi-
ties (blue full circles), and mGNF model
fits (curves) at 230 �C for three linear iso-
tactic polypropylenes [76 k (a), 64 k (b),
and 56 k (c)]. Here, gS is the shear viscos-
ity, gE,U is the uniaxial extensional viscos-
ity, gE,P is the planar extensional viscosity,
_c is the shear rate, and _e is the exten-
sional strain rate.
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to 1, independent ofMw, which is a typical value when no second nor-
mal stress difference, N2, is available during the fitting procedure (in
which case the model predicts N2¼ 028). Yao pointed out that n0> 1
to correctly predict N2. There is no simple relationship between the
strain hardening coefficient w and Mw (see Table VI), which can be
explained by the loss of physical meaning of w due to the poor ability
of the model to represent extensional viscosities at a very wide strain
rate range.

The modified Yao model removes the shortcomings of the origi-
nal Yao model, as can be deduced from Fig. 3 (right) and Table VII;
that is, it correctly predicts both the occurrence of the secondary
Newtonian plateau in the shear viscosity curve and the uniaxial and
planar extensional viscosities over the entire strain rate range. Here,
g0, g1, and gE;U ;1 parameters were taken from our previous
work19,21–23 (i.e., polymer viscosity gp is known in advance because
gp ¼ g0 � g1), S0 and n0 were kept the same, equal to 1 as in the case
of the original Yao model and remaining five parameters (kP, a0, w, k2,
and b) were determined from the fit of shear, uniaxial, and planar
extensional viscosities (see Table VII). As can be seen, the conclusions
formulated for the Yao relaxation time kP remain unchanged for the

modified version of the model and both strain hardening parameters
w and b have a direct physical meaning as they both increase with
reducedMw as expected.44 k2 is of the same order as in the case of the
mGNF model, but its value increases with decreasingMw; that is, k2 is
also inversely related to the Rouse time as in the case of the mGiesekus
model.

It should be mentioned that the molecularized generalized
Newtonian fluid (mGNF) constitutive equation as well as the explicit
Yao model can only be used to model steady-state flows. On the other
hand, the proposed modification (i.e., taking into account the role of
the oligomeric solvent by replacing the commonly used Newton’s law
with a simplified mGNF equation in the fully viscoelastic constitutive
equations) demonstrated here on the Giesekus model enables the
modeling of transient flow types, since the extra-stress tensor in both
the original and the modified Giesekus model is given as the sum of
the time-dependent polymer stress and the time-independent stress
contribution from the oligomeric solvent.

A second note is related to the high strain rate viscosity data
(taken from Refs. 19 and 49), which are visualized in Figs. 1–3 together
with the low strain rate data measured in this work. In our previous

FIG. 2. Comparison between measured strain rate-dependent shear (open symbols), uniaxial (red full triangles and squares) and planar extensional viscosities (blue full
circles), and model fits (curves) at 230 �C for three linear isotactic polypropylenes [76 k (a) and (d), 64 k (b) and (e), and 56 k (c) and (f)]. The original and modified single-
mode Giesekus model predictions are shown in [(a)–(c)] and [(d)–(f)], respectively. Here, gS is the shear viscosity, gE,U is the uniaxial extensional viscosity, gE,P is the planar
extensional viscosity, _c is the shear rate, and _e is the extensional strain rate.
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work, we demonstrated through finite element method (FEM) simula-
tions that for the given iPP melts, die design used and experimental
conditions, the effect of viscous dissipation and pressure canceled each
other out (for more details, see the section “effect of viscous dissipation
and pressure” in our previous paper19). We have shown that, first, the
secondary Newtonian viscosity, g1 (occurring above shear rates of
2� 106 s�1), depends linearly on the weight-averaged molecular
weight, Mw, for both entangled linear and branched polypropylene
melts, indicating that polymer chains became fully disentangled at the

FIG. 3. Comparison between measured strain rate-dependent shear (open symbols), uniaxial (red full triangles and squares) and planar extensional viscosities (blue full
circles), and model fits (curves) at 230 �C for three linear isotactic polypropylenes [76 k (a) and (d), 64 k (b) and (e), and 56 k (c) and (f)]. The original and modified explicit Yao
model predictions are provided in [(a)–(c)] and [(d)–(f)], respectively. Here, gS is the shear viscosity, gE,U is the uniaxial extensional viscosity, gE,P is the planar extensional vis-
cosity, _c is the shear rate, and _e is the extensional strain rate.

TABLE III. Parameters of the mGNF model.

Sample g0 g1 k1 a n k2 b gE,U,1 RMSE
name (Pa s) (Pa s) (s) (�) (�) (s) (�) (Pa s) (�)

76 k 22.80 0.229 0.000 222 0.714 66 0 2.949� 10–7 2.25� 10–3 65.56 0.040 589
64 k 11.27 0.199 0.000 101 0.644 10 0 2.850� 10–7 3.92� 10–3 66.62 0.035 214
56 k 7.79 0.165 0.000 070 0.666 42 0 2.811� 10–7 5.74� 10–3 63.32 0.052 357

TABLE IV. Parameters of the single-mode original Giesekus model.

Sample gp g1 k a RMSE
name (Pa s) (Pa s) (s) (�) (�)

76 k 22.571 0.229 0.000 175 0.884 329 0.140 602
64 k 11.071 0.199 0.000 134 0.684 022 0.127 962
56 k 7.625 0.165 0.000 108 0.550 478 0.112 149

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 013105 (2023); doi: 10.1063/5.0138220 35, 013105-8

VC Author(s) 2023

https://scitation.org/journal/phf


secondary Newtonian plateau region. This conclusion was supported
by the experimental observation that the high shear rate flow activa-
tion energy E1 for the given PP melts is comparable to the zero-shear
rate flow activation energy, E0, of PP-like oligomer (squalane, C30H62;
2,6,10,15,19,23-hexamethyltetracosane).19,49 Second, the free volume
increases at the secondary Newtonian plateau due to complete chain
disentanglement (most likely due to the coalescence of shaped free vol-
ume cavities), as indicated by a large change in the flow activation
energies of PPs (E0 > E1).

19,49 Moreover, it was experimentally dem-
onstrated by Takahashi et al.50 that there is no wall slip at very high
shear rates for PP at 230 �C (i.e., for the same polymer and flow condi-
tions utilized in our work), which can also be explained by the com-
plete chain disentanglements and significant increase in the free
volume (i.e., no cohesive slip appears to occur and the adsorption force
of the iPP chains to the wall surface appears to be high enough to sup-
press adhesive slip at very high strain rates).

V. CONCLUSIONS

In this work, the Cogswell methodology was used to determine
strain-rate-dependent planar and uniaxial extensional viscosities for
various polypropylene melts using novel rectangular and circular ori-
fice (zero-length) dies. The obtained experimental data were combined
with shear and uniaxial extensional viscosity data determined at very
high strain rates. The ability of the recently proposed mGNF constitu-
tive equation to describe the measured data was shown to be very

TABLE V. Parameters of the single-mode modified Giesekus model.

Sample gp g1 k a k2 b gE,U,1 RMSE
name (Pa s) (Pa s) (s) (�) (s) (�) (Pa s) (�)

76 k 22.571 0.229 0.000 171 0.894 346 2.692� 10–7 3.715 65.56 0.140 334
64 k 11.071 0.199 0.000 102 0.870 280 6.113� 10–7 3.701 66.62 0.109 443
56 k 7.625 0.165 0.000 071 0.876 304 7.054� 10–7 3.658 63.32 0.068 144

TABLE VI. Parameters of the original explicit Yao model.

Sample g0 k0 w S0 a0 n0 RMSE
name (Pa s) (s) (�) (�) (�) (�) (�)

76 k 22.80 0.001 908 0.261 329 1 0.850 123 1 0.077 523
64 k 11.27 0.001 042 0.286 876 1 0.836 304 1 0.064 623
56 k 7.79 0.000 445 0.211 563 1 0.808 501 1 0.076 174

TABLE VII. Parameters of the modified explicit Yao model.

Sample gP g1 kP w S0 a0 n0 k2 b gE,U,1 RMSE
name (Pa s) (Pa s) (s) (�) (�) (�) (�) (s) (�) (Pa s) (�)

76 k 22.571 0.229 0.001 044 2.464 340 1 3.250 488 1 2.172� 10–7 1.33� 10–9 65.56 0.049 322
64 k 11.071 0.199 0.000 741 2.587 159 1 3.301 594 1 2.482� 10–7 5.82� 10–7 66.62 0.041 267
56 k 7.625 0.165 0.000 259 2.786 014 1 3.626 322 1 2.528� 10–7 7.13� 10–7 63.32 0.045 144

FIG. 4. Effect of the anisotropic parameter a on the normalized uniaxial (a) and pla-
nar (b) extensional viscosities predicted by the Giesekus model for 76 k iPP melt at
230 �C.
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high. The Giesekus and recently introduced explicit Yao viscoelastic
constitutive equations were modified to include the effect of chemical
environment (i.e., the role of the oligomeric solvent influencing the
monomeric coefficient and extensional viscosities) using a simplified
version of the mGNF constitutive equation for the solvent contribu-
tion to the stress tensor. The proposed generalization of Newton’s law
for an oligomeric solvent has been shown to significantly improve the
ability of both constitutive equations to describe measured experimen-
tal data, especially at very high extensional strain rates using parame-
ters with a clear physical meaning.
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