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ABSTRACT 

This paper delves into the intersection between discrete dynamical systems and bio-inspired 

metaheuristic algorithms. Chaos, an inherent phenomenon manifested by both continuous and 

discrete dynamic nonlinear systems has become an essential component of engineering design. This 

study examines the relationship between chaos and bio-inspired metaheuristic algorithms from two 

distinct angles: the presence of chaos within the realm of algorithms, and the application of bio-

inspired algorithms for the identification, control, or synthesis of complex systems. Furthermore, this 

paper offers an in-depth exploration of the interplay between metaheuristics and complex nonlinear 

dynamics, including potential avenues for future research. The presented simulation studies, along 

with the design of objective functions for optimization and the implementation of metaheuristics, 

serve as a valuable foundation for subsequent experiments involving discrete nonlinear systems and 

complex systems with time delays. Such systems may benefit from multiparametric or multicriteria 

optimization approaches, paving the way for novel advancements in the field. 
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1. Introduction 

In modern science, difference and differential equations play an indispensable role in the 

mathematical apparatus. They can be used to solve many real engineering problems and define 

fundamental research theorems. Classical tools have long been used to solve such equations and 

systems of equations, but in the last several decades, computers and algorithms have come to play a 

very important role. The family of algorithms allowing us to solve problems based on difference 

equations is very rich. The metaheuristic algorithms (including evolutionary algorithms and swarm 

intelligence) can not only be used to optimize tasks defined by set of differential equations but also to 



design their structure given the measured data from a given problem. They can also be used to control 

physical systems studied and described using difference or differential equations, control and 

synthesize chaotic systems, and solve/optimize many other complex problems. 

This paper represents a summary of selected areas with an interesting intersection of both classical 

mathematics in the field of difference equations and their solution and modern optimization 

approaches that belong to the family of metaheuristics, specifically evolutionary algorithms and swarm 

intelligence. The main goal of this paper is only to draw attention to the existence of the intersection 

- fusion of these two fields and their importance. The focus here is on discrete nonlinear systems 

producing chaotic behaviour and how such systems can be modeled, stabilized, identified, or possibly 

synthesized using modern algorithmic techniques. 

The organization of this paper is the following. First, a brief background on deterministic chaos, 

metaheuristics (evolutionary computational techniques), and the motivation that has led to many 

research papers linking discrete or continuous chaos and metaheuristics are provided. Selected 

important cases are presented, such as the analysis of chaos in metaheuristics, the evolutionary 

synthesis of new chaotic systems, and especially the evolutionary control of discrete chaotic maps and 

real systems. These technical demonstrations include a literature review, references to related 

publications, and a briefdiscussion. Finally, all the findings are summarized in a brief conclusion. 

 

1.1.Deterministic chaos 

One of the important moments in the twentieth century is the emergence of the ‘new science’ 

popularly known as ‘Chaos.’ Many researchers were involved in its creation, and this gradually 

emerging discipline can be traced back to the 19th century. For example, so-called Lyapunov exponents 

are typical examples. These exponents, usually referred to as 𝜆, characterize the rate at which nearby 

trajectories in a dynamical system diverge or converge over time. It provides a measure of the 

sensitivity of a system to initial conditions, which is a key feature of chaotic systems. The Lyapunov 

exponent quantifies the exponential separation rate between two initially close trajectories in phase 

space as they evolve in time. If the exponent is positive, it indicates that the trajectories diverge 

exponentially, suggesting chaos. Conversely, if the exponent is negative, the trajectories converge 

exponentially, indicating stability. A zero Lyapunov exponent implies that the trajectories neither 

converge nor diverge significantly, resulting in a neutral or marginally stable behaviour. More details 

can be found in survey paper [3]. 

Another example is the celestial mechanic’s field, specifically the study of the motion of three bodies 

in gravitational interaction [39]. The three-body problem is one of the fundamental demonstrations of 

the deterministic chaos of so-called Hamiltonian systems. 

Popularization and increased interest in chaos are linked to E. N. Lorenz, who became famous for 

discovering the so-called ‘Butterfly Effect,’ which he presented in the 1960s. The butterfly effect refers 

to the impossibility of long-term weather forecasting (max. 2-3 days) and, thus to its chaotic nature. 

The so-called catastrophe theory is closely related to chaos theory, developed by the French 

mathematician Rene Thom in the 1960s [52]. 

In recent decades new types of chaotic systems have been discovered [9, 53], which according to [55], 

are so-called dual systems. In parallel with these systems, other types have been described and 

intensively studied, such as (dissipative) Lozi, Tinkerbell, Ikeda, Sinai, Burger and Duffing systems, or 

(conservative) Chirikov, Arnold, Baker, Nose-Hoover, and Henon-Heiles systems. These systems are 



mainly derived from existing physical systems. Typical examples are the Lorenz system (weather), the 

Duffing system (steel belt in a magnetic field), and the logistic equation (biological hunter-prey 

system). 

 

1.2. Evolutionary computational techniques 

Optimization algorithms are a powerful tool for solving many problems in engineering practice. They 

are usually used where solving a problem by analytical methods is inappropriate or impracticable. 

‘Metaheuristics’ is an established term for modern nature-inspired optimization methods, first used in 

1986 [23]. Without any doubt, it can be said that nowadays, evolutionary algorithms (𝐸𝐴𝑠) represent 

the most popular metaheuristics [17]. In computer science, 𝐸𝐴𝑠 or so-called evolutionary computation 

techniques (𝐸𝐶𝑇𝑠) are a subfield of artificial intelligence (𝐴𝐼) that allows for solving complex 

optimization problems. 𝐸𝐶𝑇𝑠 are inspired by Darwinian principles of natural selection as a critical 

mechanism of evolution and Mendel’s law of heredity [5, 21]. 

The operation of evolutionary algorithms can be generally characterized as the sequence of operations 

(Algorithm 1). To get a clear idea of the functionality of the typical sequence of operations, it is still 

necessary to define the relationship between the optimization problem itself and the 𝐸𝐴/𝐸𝐶𝑇, i.e. 

how the algorithm obtains feedback on the quality of the solution to control the evolutionary process 

using specific operators. This connecting element is the objective function (or fitness function). The 

best solution is the global extreme - the maximum or minimum of the objective function. 

 

 

As already mentioned, metaheuristics often find inspiration in biological phenomena. Over time, two 

large groups of algorithms have emerged, distinguished by different philosophies of function (mainly 

due to different ‘inspirations’). Thus, in the literature and in the scientific community, it is possible to 

find the labelling of these two important groups as ‘classical 𝐸𝐴’ and ‘swarm’ algorithms. Classical 

evolutionary algorithms generally use an iterative process representing the evolution of a population. 

This class of algorithms is characterized by the use of special operators to drive the evolutionary 

process to find the ideal solution, such as the genome, mutation, crossover (recombination), and 

others. The classical evolutionary algorithms mainly include evolutionary strategies [6], genetic 

algorithms (𝐺𝐴) [24] and differential evolution (𝐷𝐸) [11, 51]. 



GAs is a popular example of a bio-inspired optimization technique that mimics the process of natural 

selection to find optimal or near-optimal solutions to complex problems. 𝐺𝐴𝑠 are widely used in 

various domains, including optimization, machine learning, and artificial intelligence, due to their 

ability to effectively explore large and complex search spaces. 𝐺𝐴𝑠 works by iteratively evolving a 

population of candidate solutions using simple steps. At the end of the algorithm, the solution with 

the highest fitness value in the final population is considered the best-found solution. 

 

(1) 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛: Randomly create a population of candidate solutions (usually represented as 

binary strings or other data structures). 

(2) 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛: Assess the quality of each candidate solution in the population by 

calculating its fitness value using a predefined objective function. The fitness function is the 

normalized objective function in the interval 0-1. 

(3) 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛: Choose a subset of the population for reproduction based on their fitness values. 

Higher-fitness solutions are more likely to be selected, emulating the survival of the fittest 

principle. Usually, the ranking of solutions or tournament system is used. 

(4) 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟: Generate new offspring solutions by recombining the selected parent solutions. 

This is typically done by exchanging parts of their genetic information, such as swapping 

sections of their binary strings. 

(5) 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛: Introduce small random changes into the offspring solutions to promote diversity 

in the population and prevent premature convergence to suboptimal solutions. This process is 

analogous to genetic mutations in biological systems. Simple binary inversion with very low 

probability is common. 

(6) 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛: Repeat steps 2 to 5 for a predefined number of generations until a termination 

criterion is met (e.g. reaching a maximum number of generations, spending the budget of 

objective/fitness function evaluation, finding a solution with a satisfactory fitness value, or 

observing no significant improvement over several generations). 

 

Many metaheuristics find inspiration in the collective intelligence of animal societies. These are called 

swarm algorithms. Some species make intelligent decisions without central control. Based on the 

limited knowledge of an individual, swarms achieve their optimization goals, e.g.for foraging. Modeling 

these events has led to the development of popular algorithms such as Particle Swarm Optimization 

(𝑃𝑆𝑂) [18], Ant Colony Optimization [14], Self-organizing Migration Algorithm (𝑆𝑂𝑀𝐴) [65], whose 

successes were then followed by Artificial Bee Colony [26], Grey Wolf Optimizer [35] and many others. 

Apart from the above, algorithms using inspiration in physical laws [41] or cognitive science [7] are also 

popular. However, it is important not to forget another important subfield of 𝐸𝐶𝑇, namely symbolic 

regression. Symbolic regression (symbolic feature identification) is an approach to search for features 

to analyze data sets to synthesize data-generating systems (models) fully. Symbolic regression is the 

process of synthesizing a final model from the basic simple functions, operators, and terminals 

(variables and constants) that correspond to, for example, a given data set. 

John Koza first introduced the symbolic regression approach as the well-known concept of genetic 

programming (𝐺𝑃) [27], later followed by Conor Ryan with grammatical evolution (𝐺𝐸) [44]. There are 

also many other methods and areas, such as Evolutionary Hardware and Cartesian Genetic 

Programming [56]. Still, above all, we should mention the symbolic regression method, namely 

Analytical Programming (𝐴𝑃), developed by Prof. Ivan Zelinka [69] in 2001, which became the basis of 

many of the experiments presented here. 



1.3. Motivation 

The apparent motivation behind this research survey is to show how, and especially why, these 

algorithms are so important and interesting in nonlinear systems and how they can be applied in an 

engineering way. 

As such, the issue of optimization has been an essential topic of research with various application 

domains for many past years. The problems of optimization have been solved by the classical 

mathematical apparatus, numerical methods (descent or pattern searching), techniques based on 

(non)linear programming (including mixed integer versions), and many more. 

The computational and algorithmic complexity increases not only with the complexity of the optimized 

problem given by the number of parameters (arguments, dimensions) but also with the number of 

constraints and the domain of arguments of the optimized function (real, integer, logical, linguistic). 

Thus, to avoid unbearable computational demands in many cases, the need to implement complex 

solvers and often use the domain knowledge of a large team of experts, it is advantageous to use 

computational methods based on metaheuristics. 

Using these methods requires only a very good knowledge of the optimized problem, often the 

(external) relationship between the input and output data, i.e. correctly defining the objective function 

whose optimization should lead to the problem’s solution. Another advantage is that these algorithms, 

by their nature, always aim at finding the global extreme. Many of them, as population-based 

algorithms, provide at the end of their run a large set of different quality solutions, which may differ 

from each other in the value of the objective function and the position in the search space. Moreover, 

these algorithms are suitable for parallelization and execution on modern platforms. The disadvantage 

of these algorithms is that they work with stochastic operations, and there is no guarantee of 

optimality. 

Figure 1 shows the landscape of an objective function (input/output mapping) constructed for 

synchronizing chaotic systems represented by a set of differential equations. Each point of this space 

represents one possible control action on the system through coupling parameters. As can be seen, 

the landscape is very complex (multimodal containing many local extremes), and finding an optimal 

solution representing an optimal control intervention using classical methods can be extremely 

difficult, if not impossible, even in this limited area. In this case, metaheuristics (evolutionary and 

swarm algorithms) stand out for their performance and efficiency, as they can find a good solution 

quickly. They can quickly explore the space and target specific areas even in such a very complex 

problem. The details, limitations, advantages, and disadvantages of using metaheuristics and different 

constructions of the objective function are discussed in the following sections devoted to different 

case studies linking metaheuristics and deterministic chaos. For more examples and discussions, refer 

to [68]. 



Figure 1. Objective function landscape for evolutionarily driven chaos synchronization problem. Atypical example from [68], 

where the task was to find optimal values of coupling parameters 𝑎 and 𝑐. 𝐶𝑉 stands for Cost function Value. 

 

2. Chaos in the dynamics of artificial intelligence models and metaheuristics 

For many reasons like analysis of population behaviour, tuning of parameters, or simply investigating 

the effectiveness and applicability of evolutionary algorithms to given tasks, it is very important to 

know how algorithms behave under certain conditions and whether there might be hidden problems 

in their dynamics. If we look at evolutionary algorithms, we find that they are actually discrete 

dynamical systems that can also be represented by differential or difference equations. Hence, we can 

assume that these algorithms can externally exhibit the behaviour that is proper to classical dynamical 

systems modeled by standard differential equations. 

The first researchers to point this out were Agapi and Wright in 2001 [61] in their study of genetic 

algorithms. They demonstrated the presence of chaotic dynamics within the algorithm itself and 

discussed the impact on its operation. In [61], models of dynamic systems of genetic algorithms are 

considered when the population size goes to infinity. Their work is based on the research of [58-60]. 

The elegant theory of simple genetic algorithms is based on a random heuristic search on the idea of 

heuristic map 𝐺 [61]. An important research point in [61] is that map 𝐺 includes all the dynamics of a 

simple genetic algorithm. Sample bifurcation diagrams are shown in Figures 2-3. Ideas about chaos 

existence in a simple genetic algorithm are explained in detail in 61, 68]. In both publications was 

shown that chaos can be observed in heuristic algorithms, which certainly does not apply only to simple 

genetic algorithms. 

 



 

Figure 2. Bifurcation diagram of simple 𝐺𝐴. The control parameter a belongs to the triplet of control parameters 𝑎, 𝑏, 𝑇 

ofheuristic map 𝐺 used to model the behaviour of 𝐺𝐴. Reconstructed accordingto [61]. 

 

Figure 3. Bifurcation diagram of simple 𝐺𝐴. The control parameter a belongs to the triplet of control parameters 𝑎, 𝑏, 𝑇 

ofheuristic map 𝐺 used to model the behaviour of 𝐺𝐴. Reconstructed accordingto [61]. 

 



While 𝐴𝐼 algorithms and models are typically designed to be deterministic and predictable, some 𝐴𝐼 

models can exhibit chaotic behaviour under certain conditions. Recurrent Neural Networks (𝑅𝑁𝑁𝑠) 

[33] are a class of neural networks that can process data sequences and maintain an internal state 

across time steps. 𝑅𝑁𝑁𝑠, particularly when using nonlinear activation functions, can exhibit chaotic 

behaviour when their internal dynamics become sensitive to small changes in input or parameters. 

Another 𝐴𝐼 model exhibiting chaotic features is Echo State Networks (𝐸𝑆𝑁𝑠) [30], a reservoir 

computing model consisting of a large, fixed, and randomly connected recurrent neural network called 

the reservoir. 

The reservoir can exhibit rich, complex, and even chaotic dynamics, depending on the choice of 

connection weights and activation functions. Finally, even if it is not directly an 𝐴𝐼 model, some Cellular 

Automata rules can lead to chaotic behaviour, as observed in the famous Game of Life by John Conway 

or Rule 30 by Stephen Wolfram. 

The presence of chaos in 𝐴𝐼 models, metaheuristic, is often considered a challenge to be mitigated or 

controlled, as it can make the model’s behaviour difficult to predict, analyze and interpret. However, 

in some cases, controlled chaos, or the state called ‘the edge of chaos’ can be harnessed to improve 

the exploration and learning capabilities of 𝐴𝐼 models. 

 

3. Chaos synthesis and identification 

The challenging task is not only to solve differential equations and their behaviour, but also to 

synthesize them based on existing data. In the experiments described in this section, we point out that 

evolutionary techniques can also synthesize a system of equations to satisfy predefined criteria (i.e. 

exhibits deterministic chaos). 

In recent decades, there have been introduced many different approaches to the construction of 

chaotic systems, or also, in other words, the synthesis of chaos. Synthesizing chaotic systems can be 

done through various methods, often involving mathematical models, systematicapproaches, 

orphysical systems designedto exhibitchaoticbehaviour [2,10, 12, 13, 19, 54, 72]. 

An original approach towards synthesizing chaotic systems based on the principles of symbolic 

regression is proposed in [66]. It is a synthesis of dynamical systems that exhibit chaotic behaviour. 

The complex structure synthesis was based on symbolic objects (terminals, non-terminals) {𝑥, 𝐴, +, −, 

×,/} contained in one of the simplest chaotic systems, the logistic equation, as in (1). 

 

 

 

During these experiments, many new descriptions of chaotic systems in the form of differential 

equations were synthesized. In the Figures 4-8 are selected four examples of bifurcation diagrams of 

these artificially created chaotic systems, which demonstrate that evolution has been able to construct 

sets of equations to generate chaotic behaviour in specific interval. An example of the definition of 

such a synthesized system is given in (2) and Figure 4. More details can be found in [66, 68]. 

 

 



 

On the other hand, successful attempts have been made to identify the equations in the analytical 

description so that their behaviour fits the observed data exactly. The research, published in [70], is 

illustrated in Figure 9 which demonstrates finding an analytical description of a system such that the 

system generates the same bifurcation diagram as the original for which a description was searched. 

The figure shows essentially two bifurcation diagrams one in black and the other in red. The black 

bifurcation diagram is the original data to which the mathematical description was searched and the 

red bifurcation diagram is the diagram generated by the found mathematical description as 

constructed by the evolutionary algorithms. 

 

 

 

 

 

 

 

 

 

 

  

Figure 4. Bifurcation diagram of evolutionary synthesized chaotic system (2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Bifurcation diagram of an evolutionary synthesized chaotic system, selected example from [66,68]. 

The difference between the two bifurcation diagrams is practically minimal. Finally, however, it should 

be noted that the above-mentioned approach of identifying chaos through bifurcation diagrams is 



based on the consideration of equilibrium states and therefore works well for self-excitation of chaos, 

but does not allow one to effectively reveal hidden chaotic attractors (for example, in systems without 

equilibrium states). 

 

4. Control 

This section aims to present possible approaches to control various chaotic systems using evolutionary 

(metaheuristic) algorithms. The focus here is on the design of an objective function that gives feedback 

to the metaheuristics on the quality of the process of searching the space for possible solutions. 

Furthermore, the influence of chaotic dynamics and the design ofthe objective function on the shape 

ofthe hyperplane and thus on the possibilities and limitations of the efficiency of metaheuristic 

algorithms is discussed. Individual case studies are then presented in each subsection, including simple 

discrete chaotic maps with mention of coupled map lattices (𝐶𝑀𝐿) systems and an example of a real 

chaotic system. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Bifurcation diagram of an evolutionary synthesized chaotic system, selected example from [66,68]. 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Bifurcation diagram of an evolutionary synthesized chaotic system, selected example from [66, 68]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Bifurcation diagram of an evolutionary synthesized chaotic system, selected example from [66,68]. A zoom of 

Figure 7. 

 



 Figure 9. Bifurcation diagrams of discrete chaotic system identification. Black - original system, red -

identified. Synthesis of a system based on the components of Equation (1). 

 

4.1. Control of simple chaotic systems 

Since the early 1990s, when 𝑂𝐺𝑌 (Ott, Grebogi and Yorke) method [38] has been introduced, many 

chaos control methods have been developed like sliding mode [62], based on fuzzy systems [22] or 

local chaos control based on the Lyapunov approach [42]. Many targeting algorithms have been 

published with emphasis on a significant reduction of the stabilization time, simply to overcome 

several drawbacks of OGY [20] related to optimality and with the long initial chaotic waiting phase 

before the trajectory is stabilized. One of these techniques is the Pyragas’ delayed feedback control 

method [40], which can be considered a ‘targeting’ algorithm. Despite the limitations of the Pyragas 

method identified in [28], the reason why this technique is suitable for metaheuristic-based 

optimization is the number of available control parameters, which have to be set otherwise by 

inaccurate estimation or demanding mathematical analysis. The application of evolutionary algorithms 

may lead to improved system behaviour and faster stabilization of the desired unstable periodic orbit 

(𝑈𝑃𝑂) state - either a steady fixed point (𝑝 − 1 orbit) or an arbitrarily stable periodic event (𝑝 − 2 or 

higher orbit). 

Many methods have also been developed to control the so-called space-time chaos that is generated, 

among other things, by 𝐶𝑀𝐿 systems. Control laws for 𝐶𝑀𝐿 have been derived based on a priori 

knowledge of the structure of 𝐶𝑀𝐿 systems, which usually remains hidden in the real world [45]. 

Methods such as external observer [8], evolutionary algorithms [66], etc. have also been used to 

control 𝐶𝑀𝐿s. 

The connection between metaheuristics and deterministic chaos control has been explored and 

published in recent years in papers [4, 15, 32, 43, 63, 64, 67]. 



In the following two subsections, the control law is based on the above-mentioned method of Pyragas 

Extended Delayed Feedback - 𝐸𝑇𝐷𝐴𝑆. Therefore, visualizations of the objective (cost) function 

landscapes are shown for different combinations of 𝐸𝑇𝐷𝐴𝑆 method parameters. 

 

4.2. Objective function design 

Nowadays, metaheuristics optimization algorithms are known to be an effective tool for almost any 

optimization problem with various levels of complexity and difficulty to solve. But the quality of 

optimization results usually depends on the design of the objective function, especially when 

evolutionary algorithms are used to control the chaos. Since we are dealing with the minimization 

problem for parametric optimization (minimizing the cost of stabilization), we are referring to the 

objective function as the cost function (𝐶𝐹). The cost function is used to transform the search space 

(optimized parameters) into a geometric problem by adding an additional dimension defining the 

quality of the solution, and the metaheuristic optimization algorithm then tries to find the global 

extreme of the function (minimum or maximum) by searching the neighbourhood, cooperations 

between solutions, or operators such as crossover and mutation. 

It is well known that deterministic chaos and chaos control techniques are very sensitive to parameter 

settings and initial conditions. In the case of parametric optimization, they are also extremely sensitive 

to the design of the cost function used, which is used for evaluating quality for a certain combination 

of optimized parameters for the control/synchronization method. Regarding sensitivityto initial 

conditions, this can be prevented in more ways than the design of the optimization cost function 

discussed here. The dependence of chaos on the initial data can be overcome by the requirement to 

have one connected global attractor. This means all trajectories, except for a set of measure zero, are 

attracted to one chaotic set (a self-excited attractor with some mixing properties, e.g. in the classical 

Lorenz system). Regarding the reported results here for the Henon attractor, it is important to avoid 

multistability and the presence of hidden attractors (for details, please refer to [16]). 

There are several approaches to designing an objective/cost function to control or synchronize chaos. 

The most critical factor for calculating the quality of the solution is to choose appropriate metrics or 

indicators describing that the system has been stabilized, and then to appropriately transform their 

values, add any penalties and other optimality criteria (number of steps, robustness for different initial 

conditions, etc.) The authors in [31] use the 𝐼𝑇𝐴𝐸 criterion (Integral of the Time weighted Absolute 

Error). The paper [1] uses complex definitions of cost functions implementing calculations with Jacobi 

matrices and spectral radius. 

Below is a summary of proposals from the authors of this research survey that have been used in 

several published papers [37, 46, 47]. The various proposals include simple functions, more complex 

ones with multiple criteria (but still intended for single-criteria metaheuristic algorithms), and so-called 

black-box functions that do not require explicit prior knowledge of the periodic orbit for stabilization. 

A summary of the advantages and disadvantages of the various designs of the cost functions also 

complements the overall survey. 

The proposal of the basic cost function (𝐶𝐹𝑆𝑖𝑚𝑝𝑙𝑒) is based on minimizing the area created by the sum 

of the differences in discrete times 𝑡 between the required (target) state 𝑇𝑆𝑡 and the real system 

output (actual state) 𝐴𝑆𝑡 on the whole simulation interval with a total of n discrete time steps (3). This 

𝐶𝐹 design is very convenient for the evolutionary searching process due to the relatively favourable 

𝐶𝐹 landscape. (See Figure 11.). 



 

 

 

But this simple approach has one major drawback: the inclusion of the initial chaotic transient 

behaviour of the not-stabilized system in the value of the cost function. Consequently, the parameter 

search cannot be targeted for precise stabilization. The slight numerical difference in stabilization 

quality is suppressed by including the initial chaotic transient behaviour mentioned above. On the 

other hand, this proposal should aim the metaheuristic algorithm to search for the shortest possible 

overall initial chaotic behaviour, hence to time optimality. Still, it depends on the amplitude of the 

chaotic oscillations. Of course, this design is only suitable for stabilizing the system to a steady state 

(𝑝 − 1 orbit) since the phase shift between 𝑇𝑆𝑡 and 𝐴𝑆𝑡 is not known in advance. 

Different designs of the cost functions should secure the successful stabilization of either 𝑝 − 1 orbit 

(stable state) or any other higher periodic orbit anywise phase shifted. The so-called universal cost 

function is based on searching for the desired stabilized periodic orbit and thereafter, calculation of 

the difference between desired target state (value) and found actual periodic orbit on the short time 

interval - 𝜏𝑠 (20 iterations) from the point, where the first minimal (pre-set small) value of the 

difference between desired and actual system output is found (i.e. floating window for minimization - 

see Figure 10). This value is fixed and was set based on experimental results. It was purposely chosen 

so that there is no mismatch between the system’s sensitivity to changes in adjustable parameters and 

changes in the values of the cost function. Furthermore, due to final cost values converging towards 

zero (in case of successful stabilization), this 𝐶𝐹 also allows the using of a stopping criterion, avoiding 

very time-demanding simulations. The 𝐶𝐹𝑈𝑁𝐼 has the form (4). 

 

 

 

Where: 

 𝜏1  - the first min value of difference between 𝑇𝑆 and 𝐴𝑆  

 𝜏2  - the end of optimization interval (𝜏1 + 𝜏𝑠) 

 𝑝  = 0 if 𝜏𝑖 − 𝜏2 ≥ 𝜏𝑠 

 𝑝 =  10 ∗ (𝜏𝑖  — t2) if Ti — 𝜏2 < 𝜏𝑠 (i.e. late stabilization). 

 

In order to include the time optimality of the stabilization, it was necessary to modify the definition of 

the universal 𝐶𝐹𝑈𝑁𝐼 to convert the newly defined multi-criteria problem into a single-criteria one. The 

simplest, but at the same time the most problematic from the point of view of motion on the search 

space, is that the entire 𝐶𝐹 is multiplied by the number of iterations (𝑁𝐼) of the first found the 

minimum value of the difference between the desired and the actual output of the system (the origin 

of the fully stabilized UPO). However, given the extreme sensitivity of the chaotic system to the control 

method parameter settings, this could override the emphasis on stabilization accuracy (i.e. multiplying 

part of the cost function by the order of tens to hundreds of iterations). At the same time, it is still 



necessary to work separately with the part of the cost function for stabilization quality and the part 

for time optimality. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. 'Floating window'for minimization. 

 

Figure 11. Examples of a 𝐶𝐹𝑠𝑖𝑚𝑝𝑙𝑒 landscapes, stabilization of 𝑝 − 1, parametric optimization of 𝐾 and 𝐹𝑚𝑎𝑥 for Pyragas 

control method. 

 

Indeed, it is not possible to simply perform the above-mentioned multiplication of 𝐶𝐹𝑈𝑁𝐼 and (𝑁𝐼), 

since in the case of full stabilization the result would be zero, regardless of the number of steps. It is, 

therefore, necessary to define a constant 𝑆𝐶 which, with respect to common techniques for converting 

a multi-criteria problem to a singlecriteria problem, will provide approximately the same numerical 

value (in order) for both parts of the complex cost function. The value of 𝑆𝐶 (6) is computed using 

𝐸𝑥𝑝𝐶𝐹, which is the value of the exponent of the power of 10 of the unpenalized basis part of the cost 

function (5). To avoid uncertainties associated with the stabilization value returning 0, a small constant 

is added to the value of the cost function defining the stabilization quality. Such a design also allows 

the introduction of preferential weights - either for quality or speed. 



 

 

  

 

 

The final design of targeting 𝐶𝐹 (𝐶𝐹𝑀𝑈𝐿𝑇𝐼) has the form (7). The metaheuristics should find the 

solutions to secure the fast targeting of the desired behaviour of the system. 

 

The last possible modification is to increase the robustness for a different range of initial conditions to 

ensure that the found control parameters are not optimal only for the initial conditions used in the 

optimization. The final 𝐶𝐹 value is computed as a sum of 𝑚 repeated simulations for different initial 

conditions, where (for example) 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is from the range 0.05-0.95 and uses step 0.1 (i.e. 𝑚 = 10). 

Consequently, the metaheuristics should find robust solutions securing the fast targeting of the desired 

behaviour of the system for almost any initial conditions. The 𝐶𝐹 used for the evolutionary approach 

is given in (8): 

 

The issue of pure searching for periodic orbits causes very chaotic, erratic, and discrete-type 𝐶𝐹 

landscapes (see Figure 14). As a sort of compromise between the simple design of a cost function for 

the 𝑝 − 1 orbit only and the above universal designs requiring knowledge of the desired state (periodic 

orbit), experiments were performed with functions that should allow the defined order of the periodic 

orbit to be found. The trade-off is more from a user’s point of view since transient chaotic oscillations 

are still included in the calculation of the cost function. In recent publications, this type of function has 

been referred to as a ‘black box.’ Based on the choice of the target orbit, a specific cost function is 

selected. 

In this case, it is not possible to use the simple rule of minimizing the area created by the difference 

between the required and actual state on the whole simulation interval. It means that this cost function 

design does not take any numerical target state into consideration, but the selected target behaviour 

of the system. The proposal is based on the following simple rule. In discrete systems, the iteration 

𝑦(𝑛) and 𝑦(𝑛 +  𝑘) of output value, where 𝑘 is the order of unstable periodic orbit, must be the same. 

The idea is then to minimize the area created by the difference between the n and 𝑛 +  𝑘 output 

iteration on the whole simulation interval, thus at the same time, this proposal of 𝐶𝐹 should secure 

fast targeting into the close neighbourhood of desired periodic orbit. Also, it is crucial to include the 



penalization, which should avoid the finding of solutions, where the stabilization occurs on boundary 

values (here, for experiments with Henon map {-1.0,1.5}) or oscillation between them occurs. This 

penalization was calculated as the sum of the number of iterations, where the system output reaches 

the saturation boundary value. The 𝐶𝐹1 for stabilization on 𝑝 − 1 orbit has form (9). 

 

 

 

where: 𝑃𝐵𝐵 =  𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑑𝑖𝑓𝑓 = 𝑦𝑡+𝑘 − 𝑦𝑡, and 𝑘 = order of desired orbit. 

 

Table 1. Simulation results characteristics for different 𝐶𝐹 types. 

 

 

In the case of higher periodic orbits, other simple numerical criteria had to be implemented. It defines 

that in the case of 𝑝 − 2 orbit, there must be some (bigger) difference between the selected output 

iterations. Considering the fact of minimizing the 𝐶𝐹 value, the numerical criterion in (9) had to be 

rewritten into the suitable form (10), which is an example for 𝑝 − 2 orbit, and 𝑐 - is a small constant 

1.10-16 which was added to prevent the evolutionary optimization from crashing, since upon finding 

the possible solution stabilized at 𝑝 − 1 orbit it returns the division by zero. 

 

 

 

The example of cost function for 𝑝 − 2 orbit 𝐶𝐹2 has the form (11), and 𝑝 − 4 orbit has the form (12). 

 

 



The brief overview of the simulation results characteristics given as the advan-tages/disadvantages for 

each single cost function design is given in Table 1. The cost functions landscapes (and their 2D or 3D 

cross-sections) are depicted in Figures 11-16. These figures show the dependence of the cost function 

landscape on the selected optimized parameters of Pyragas control technique (gain constant 𝐾 and 

limitation of perturbation 𝐹𝑚𝑎𝑥. 𝐶𝐹𝑠𝑖𝑚𝑝𝑙𝑒 is shown in Figures 11 and 12 (for 𝑝 − 1 and 𝑝 − 2 orbit), 

𝐶𝐹𝑈𝑁𝐼 in Figure 13, 𝐶𝐹𝑀𝑈𝐿𝑇𝐼 in Figure 14, and finally two Figures 15 and 16 for black-box type cost 

functions (𝐶𝐹𝐵𝐵), showing the differences between the task of finding the periodic orbit of two 

different types (𝑝 − 1 and 𝑝 − 2). 

 

4.3.Example of metaheuristic based control of discrete chaotic maps 

This section contains illustrative examples of chaos control optimization results for the Henon map and 

Pyragas 𝐸𝑇𝐷𝐴𝑆 technique. Figures 18-21 always show pairs ofbest-found results and re-runs (100 

runs) for different initial conditions. 

The results of the experimental simulations confirm the characteristics of the landscapes of the cost 

functions and their respective definitions. The optimization of the control method parameters using 

𝐶𝐹𝑠𝑖𝑚𝑝𝑙𝑒 (Figure 17) and 𝐶𝐹𝑈𝑁𝐼 (Figure 18) provides fast stabilization for the same initial conditions 

that were used for running the metaheuristics. 

Figure 12. Examples of a 𝐶𝐹𝑠𝑖𝑚𝑝𝑙𝑒 landscapes, stabilization of 𝑝 − 2, parametric optimization of 𝐾 and 𝐹𝑚𝑎𝑥 for Pyragas 

control method. 

Figure 13. Examples of a 𝐶𝐹𝑈𝑁𝐼 landscapes, stabilization of 𝑝 − 1, parametric optimization of 𝐾 and 𝐹𝑚𝑎𝑥 for Pyragas 

control method. 



Figure 14. Examples of a 𝐶𝐹𝑀𝑈𝐿𝑇𝐼 landscapes, stabilization of 𝑝 − 1, parametric optimization of 𝐾 and 𝐹𝑚𝑎𝑥 for Pyragas 

control method. 

 

For a broader range of initial conditions, then, both approaches do not always guarantee stabilization, 

and in the case of 𝐶𝐹𝑈𝑁𝐼, the highly chaotic landscape of the cost function and possible overfitting only 

to specific initial conditions (local optimum in an otherwise complex 𝐶𝐹 surface) are also manifest. 

Figure 15. Examples ofa 𝐶𝐹𝐵𝐵1 landscapes, stabilization of 𝑝 − 1, parametric optimization of 𝐾 and 𝐹𝑚𝑎𝑥 for Pyragas control 

method. 



Figure 16. Examples ofa 𝐶𝐹𝐵𝐵2 landscapes, stabilization of 𝑝 − 2, parametric optimization of 𝐾 and 𝐹𝑚𝑎𝑥 for Pyragas control 

method. 

Figure 17. Stabilization of Henon map with evolutionary optimized 𝐸𝑇𝐷𝐴𝑆 technique, 𝐶𝐹𝑠𝑖𝑚𝑝𝑙𝑒. 

 

The more computationally demanding 𝐶𝐹𝑀𝑈𝐿𝑇𝐼, then, ensures finding a robust combination of control 

parameters (Figure 19). The results of repeated simulations for different initial conditions and black 

box-type cost functions depicted in Figures 20-21, in turn, then show that simply designed to find a 

particular type of system behaviour may not be the best solution for this particular case, despite the 

favourable cost function andscape for metaheuristic optimization.  

Figure 18. Stabilization of Henon map with evolutionary optimized ETDAS technique, 𝐶𝐹𝑈𝑁𝐼. 



In essence, the results confirm that when metaheuristics are used to control complex (nonlinear) 

systems, there must be a mutually appropriate fit between the definition of the cost function and the 

properties of its landscape. 

Figure 19. Stabilization of Henon map with evolutionary optimized 𝐸𝑇𝐷𝐴𝑆 technique, 𝐶𝐹𝑀𝑈𝐿𝑇𝐼. 

Figure 20. Stabilization of Henon map with evolutionary optimized 𝐸𝑇𝐷𝐴𝑆 technique, 𝐶𝐹𝐵𝐵1. 

 

Figure 21. Stabilization of Henon map with evolutionary optimized 𝐸𝑇𝐷𝐴𝑆 technique, 𝐶𝐹𝐵𝐵2. 

 

4.4. Control of a real chaotic system - plasma reactor control 

The evolutionary algorithms were also used to control the plasma reactor in real time. Specifically, this 

involved active noise compensation from the signal using evolutionary techniques. This signal is 

generated by a Langmuir probe that was inserted in the plasma reactor. It is a diagnostic probe used 

to analyze the energy distribution in plasma processes. Plasmas in general, especially plasmas driven 



by radio frequencies, are intrinsically nonlinear. Strong nonlinear potential waveforms around the 

probe embedded in the plasma, strongly distort the useful signal sensed by the probe. The cost of the 

research was to use evolutionary computation techniques to synthesize seven harmonic signals, with 

two parameters (frequency and amplitude). Thus, a total of 14 parameters have been optimized. The 

aforementioned seven harmonic signals were used to synthesize the resulting signal, which was 

intended to compensate for interference in the optimal case. The results from the experiments were 

published in [36]. 

 

4.5. Control of spatiotemporal chaos 

Evolutionary computation techniques can handle more complex problems, such as even the 

stabilization of spatiotemporal chaos [64], as demonstrated in Figures 23-25. The cost function design 

was very similar to 𝐶𝐹𝑠𝑖𝑚𝑝𝑙𝑒 (3) described in section 4.2, where the feedback pinning value has been 

optimized based on the difference between an actual spatiotempo-ral chaotic system and desired 

state. In Figure 22 we can see an example of the landscape of the cost function, where each point of 

this curve represents the quality of the control intervention. The goal of the evolutionary techniques 

was to find the lowest point on this landscape. Of course, this is a very trivial demonstration, but the 

search space is still very complex. The research for example in [45] describes in detail the background 

and results in analysis. 

 

4.6. Symbolic regression for chaos control 

Another challenging task for evolutionary computation is undoubtedly symbolic regression in the 

feedback control rule synthesis problem. In recent publications, this approach is referred to as 

‘metaevolution.’ The control technique (rules) can be viewed as a symbolic structure that can be 

synthesized according to the stabilization requirements of the chaotic system. 

 

 

 

 

 

 

 

 

Figure 22. The 𝐶𝐹 landscape of 𝐶𝑀𝐿 chaos control by 𝐸𝐴. The best control value (pinning) is located in the deepest 

position. 



Figure 23. Stabilization and control of the spatiotemporal - 𝐶𝑀𝐿 chaotic system by 𝐸𝐴. The 𝑥 axis are iterations (time),𝑦 

axis number of input sites. Two time and one spatial period stabilization are visible. 

 

Figure 24. Stabilization and control of the spatiotemporal - 𝐶𝑀𝐿 chaotic system by 𝐸𝐴. The 𝑥 axis are iterations,𝑦 axis 

number of input sites. A stable state in time and space is achieved here (the black part). 

 

Figure 25. Stabilization and control of the spatiotemporal - 𝐶𝑀𝐿 chaotic system by 𝐸𝐴. The 𝑥 axis are iterations,𝑦 axis 

number of input sites. A stable state in time and space is achieved here (the black part). 

 

The advantage is that it is not necessary to focus only on the ‘common’ state-of-the-art technique and 

estimate its optimal parameters. Using symbolic regression methods, the entire complex structure of 

the control method is generated, along with appropriate values of possible parameters. In addition, 

very specific constraints can be chosen, such as robust stabilization for selected types of chaotic 

systems, their regimes and initial conditions, or preferences for time, quality, and conditions for 



achieving stabilization. The disadvantage is of course the increase in computational complexity. More 

detail on this is written in the following papers [37, 47, 48]. 

 

4.7. Future challenges and possibilities 

Research opportunities in the field of metaheuristically based control optimization, synthesis, or 

synchronization of chaotic systems are certainly open for the future. Experiments with real-world 

problems have shown that simpler and more strongly stochastic algorithm strategies are preferable 

for the aforementioned tasks. The available high-performance computing capabilities then allow the 

use of symbolic regression optimization methods and overall more complex cost function designs. The 

full potential of multi-criteria optimization can also be exploited thanks to the available multi-criteria 

evolutionary frameworks. For the metaheuristic algorithms themselves, it is then possible to use a 

number of new autoconfiguration frameworks like 𝑖𝑅𝑎𝑐𝑒 [29] or 𝑆𝑀𝐴𝐶 [25], which makes it 

unnecessary to laboriously search for metaheuristic hyperparameter settings. 

For a more detailed description and more results regarding the interconnection between deterministic 

chaos and evolutionary algorithms (or any general metaheuristics), we recommend as a starting 

reference [48,68], where a large number of references to other works of similar type can be found. 

 

5. Chaos for evolutionary computation 

However, it is also necessary to focus on the evolutionary computational techniques (metaheuristics) 

themselves. In the last decade, it has become very popular to hybridize chaos and metaheuristics 

through the use of unconventional randomization schemes. Since stochastic processes are the basis of 

functionality in heuristic algorithms, chaotic systems are used as pseudo-random generators 

influencing, through their complex dynamics, e.g. the selection of individuals for the crossover process, 

the size of the mutation, the probabilities of performing other specific operations, and the actual 

movement on the hyperplane of possible solutions and the decision for the next steps. Examples of 

successful applications can be found [34, 49], benchmarking studies [57, 71], and exploring the impact 

of chaotic dynamics on population diversity or from the perspective of different types of chaotic 

systems [50]. 

 

6. Conclusion 

This paper summarizes the intersection of two areas, namely deterministic chaos and so-called 

biologically inspired algorithms, or evolutionary computational techniques, which fall into the group 

of metaheuristic algorithms, and are a very important part of today’s modern computer science and 

computational intelligence. This paper summarized two different aspects of the fusion of chaos and 

evolutionary computational techniques. First, the occurrence of chaos in evolutionary algorithms and 

swarm intelligence itself was discussed, and research opportunities are found there. In the second, the 

possibilities of using evolutionary computational techniques to synthesize, identify, or control chaotic 

systems were described, both as simulations of discrete chaotic maps and as control of real chaotic 

systems. Individual case studies are always briefly described, supported by graphical outputs, and 

possibilities for further research are discussed. In particular, in the area of evolutionary control of 

chaotic systems, the design of cost functions for optimization, the implications of their construction 

on the landscape, and the possibilities of search by evolutionary algorithms are described in detail. 



Given the continuous increase in computing power, the availability of parallel computing architectures, 

self-configuration frameworks for the hyperparameters of the metaheuristics used, and 

implementations of multi-criteria algorithms, it can be argued without a doubt that this survey paper 

can provide a solid foundation for further significant advances and significantly better results in the 

effective deployment of evolutionary computational techniques in research questions and applications 

related to deterministic chaos. 
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