
Received 17 April 2024, accepted 5 May 2024, date of publication 8 May 2024, date of current version 17 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3399060

Enhancing Software Effort Estimation With
Self-Organizing Migration Algorithm:
A Comparative Analysis of
COCOMO Models
DARINA BAJUSOVA , PETR SILHAVY , AND RADEK SILHAVY
Faculty of Applied Informatics, Tomas Bata University in Zlín, 760 01 Zlin, Czech Republic

Corresponding author: Petr Silhavy (psilhavy@utb.cz)

This work was supported in part by the Faculty of Applied Informatics, Tomas Bata University in Zlín, under Grant RVO/FAI/2024/002
and Grant IGA/CebiaTech/2023/004.

ABSTRACT This study presents a comprehensive analysis of enhancing software effort estimation accuracy
using a Self-Organizing Migration Algorithm (SOMA)-optimized Constructive Cost Model (COCOMO).
By conducting a comparative study of traditional COCOMO models and SOMA-optimized variants across
preprocessed datasets (NASA93, NASA63, NASA18, Kemerer, Miyazaki94, and Turkish), our research
focuses on crucial evaluation metrics, including Mean Magnitude of Relative Error (MMRE), Prediction
at 0.25 (PRED(0.25)), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). The analysis
encompasses various configurations of COCOMO models—basic, intermediate, and post-architecture
COCOMO II, supplemented with additional statistical testing and residual analysis for in-depth insights.
The results demonstrate that the SOMA-optimized COCOMO models generally surpass traditional models
in predictive accuracy, especially notable in metrics such as MMRE where an improvement of up to 12%,
PRED(0.25) with an enhancement of 15%, MAE reduction by 18%, and a decrease in RMSE by 20%
were observed. However, performance variances were identified in specific scenarios, highlighting areas for
further refinement, particularly in large-scale estimations where residual plots suggested the potential for
underestimation or overestimation. The study concludes that integrating the SOMA optimization algorithm
into COCOMOmodels significantly enhances the accuracy of software effort estimations, providing valuable
insights for future research to optimise estimations for larger projects and advance prediction models.
This advancement addresses the technical challenge of parameter accuracy and offers a methodological
improvement in model selection and application, underscoring the potential of metaheuristic optimization
in software effort estimation.

INDEX TERMS Software effort estimation, COCOMO models, SOMA, metaheuristic optimization.

I. INTRODUCTION
The escalating complexity and magnitude of contemporary
software development endeavours have significantly under-
scored the critical role of precise software effort estimation.
Accurate estimations are indispensable for enabling informed
decision-making and fostering successful project manage-
ment. Despite a wide spectrum of available estimation

The associate editor coordinating the review of this manuscript and

approving it for publication was Pinjia Zhang .

methodologies, the persistent challenge remains in achieving
precise predictions, with a common propensity towards
either overestimation or underestimation of project efforts.
The latter scenario often precipitates project failure due to
constraints in time and budget [1], [2].

Within the extensive array of estimation models, algo-
rithmic constructs such as the Constructive Cost Model
(COCOMO) and its progeny, COCOMO II, continue to be
favoured for their simplicity and versatile applicability across
diverse project stages [3], [4]. Nevertheless, the accuracy

67170

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0008-0066-7039
https://orcid.org/0000-0002-3724-7854
https://orcid.org/0000-0002-5637-8796
https://orcid.org/0000-0002-1288-956X

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

of these models is heavily reliant on the precision of input
parameters, a dependency that can engender significant errors
in estimation. To facilitate the reliability of these models,
machine learning techniques, particularly metaheuristic algo-
rithms, have been harnessed to refine parameter values,
thereby enhancing estimation accuracy [5].

Metaheuristic algorithms are celebrated for their pro-
ficiency in identifying near-optimal solutions efficiently,
rendering them highly suitable for addressing the intri-
cate optimization challenges encountered in software effort
estimation. These algorithms are dichotomized into single-
solution-based and population-based methods, with the
latter category, epitomized by strategies such as the
Self-Organizing Migrating Algorithm (SOMA), demonstrat-
ing exceptional efficacy owing to their evolutionary approach
to solution refinement [6].

A. CHALLENGES IN ACCURATE SOFTWARE EFFORT
ESTIMATION
The endeavour to accurately estimate software effort is
beleaguered by challenges emanating from software devel-
opment projects’ intrinsic variability and complexity. The
predicament resides in the selection and implementation
of estimation models. Although algorithmic models like
COCOMO and COCOMO II proffer structured method-
ologies, their effectiveness is critically dependent on the
precision of input parameters. Erroneous estimations of these
parameters can precipitate substantial inaccuracies, further
exacerbated by the complexity inherent in the estimated
projects.

Moreover, human factors exert a significant influence.
Estimation transcends a mere quantitative exercise, encom-
passing subjective judgments made by estimators. Cognitive
biases, insufficient experience, and the exigencies imposed
by business or market expectations can all culminate in overly
optimistic or unduly conservative estimates.

Notwithstanding their recognized limitations, the indus-
try’s reliance on traditional estimation models remains
steadfast. These models frequently neglect the non-linear
and non-deterministic dimensions of software development,
engendering either too optimistic or overly pessimistic
estimates. Herein lies the potential for enhancement through
metaheuristic algorithms like SOMA, which provide a more
adaptable and robust mechanism for parameter optimization.

B. OBJECTIVES OF THE STUDY
The motivation for this study is the limited application
of advanced metaheuristic optimization algorithms, pre-
cisely the Self-Organizing Migration Algorithm (SOMA),
in improving the accuracy and adaptability of software effort
estimation models like COCOMO. Previous efforts predom-
inantly focused on conventional optimization techniques and
did not thoroughly explore the comparative effectiveness of
various models enhanced by advanced algorithms.

This study explores and addresses software effort esti-
mation challenges by leveraging the SOMA optimization

algorithm. SOMA exhibits distinctive features that are
particularly well-suited to software effort estimation. Its
ability to efficiently navigate complex, multidimensional
search spaces and avoid local optima makes it an excellent
choice for optimizing the COCOMO model parameters.
These characteristics ensure a more thorough exploration of
potential solutions, enhancing the likelihood of identifying
optimal or near-optimal parameters for effort estimation. The
study aims to:

1) Evaluate the impact of the SOMA optimization algo-
rithm on the accuracy of effort estimation in the
COCOMO and COCOMO II models, thereby address-
ing the technical challenge of parameter accuracy.

2) Determine whether the optimization of constants (a, b)
in these models using SOMA can lead to statistically
significant improvements in estimation precision, thus
tackling the methodological challenge of model selec-
tion and application.

3) Compare the performance of the SOMA-optimized
models against traditional models and other meta-
heuristic algorithms to establish a benchmark for
estimation accuracy.

4) Enhance the understanding of how metaheuristic
algorithms can mitigate the human factor challenge
by reducing the reliance on subjective judgment and
providing a more data-driven, objective approach to
estimation.

5) Contribute to the body of knowledge in software
effort estimation by providing empirical evidence
of the effectiveness of metaheuristic optimization in
improving estimation outcomes.

This study introduces a novel approach to software effort
estimation by integrating the Self-Organizing Migration
Algorithm (SOMA) with the Constructive Cost Model
(COCOMO) and its successor, COCOMO II. The fusion of
SOMA with these well-established models aims to address
the persistent challenges in software effort estimation,
notably the accuracy of parameter estimation and the
adaptation of models to contemporary software development
practices. The novelty of this research lies in several key
areas:

1) Advanced Optimization with SOMA: Unlike tradi-
tional efforts focusing on linear or manual optimization
techniques for model parameters, this study leverages
SOMA, a metaheuristic optimization algorithm, for
dynamic and sophisticated COCOMO and COCOMO
II model parameters. This is one of the first studies to
systematically analyze the impact of SOMA on these
models, particularly targeting the optimization of the
constants a and b, which are crucial for the models’
accuracy.

2) Comprehensive Comparative Analysis: By conducting
a detailed comparison of SOMA-optimized models
against traditional COCOMO models and other meta-
heuristic algorithms, this research provides a broad

VOLUME 12, 2024 67171

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

perspective on the performance of various optimiza-
tion strategies. Including numerous datasets, such as
NASA93, NASA63, NASA18, Kemerer, Miyazaki94,
and Turkish, ensures the robustness and generalizabil-
ity of the findings.

3) Contribution to Body of Knowledge: Beyond imme-
diate practical applications, this research enriches the
academic discourse on software effort estimation by
offering empirical evidence of metaheuristic optimiza-
tion’s potential benefits. It opens new avenues for
future research, particularly in optimizing estimations
for larger projects and further advancing prediction
models.

C. RESEARCH QUESTIONS AND HYPOTHESES
This research aims to address the following questions:

• RQ1: How does the SOMA optimization algorithm
impact effort estimation accuracy in COCOMO and
COCOMO II models?

• RQ2: Can optimising constants (a, b) in these models
using SOMA lead to statistically significant improve-
ments in estimation precision?

Based on these questions, the study hypothesizes that:

• H0: Applying the SOMA optimization algorithm to
COCOMO and COCOMO II models does not result
in more accurate software effort estimations (MMRE,
PRED(0.25), MAE, and RMSE) than the original
models.

• H1: Applying the SOMA optimization algorithm to
COCOMO and COCOMO II models will result in
more accurate software effort estimations (MMRE,
PRED(0.25), MAE, and RMSE) than the original
models.

To investigate these hypotheses, a comprehensive anal-
ysis was conducted using NASA93, NASA63, NASA18,
Kemerer, Miyazaki94, and Turkish datasets. The MMRE
metric was employed as a fitness function to evaluate the
performance of the optimized models, supplemented by a
10-fold cross-validation method to prevent overfitting. The
accuracy of the SOMA-optimizedmodels was comparedwith
that of the original COCOMO and COCOMO II models,
as well as other metaheuristic algorithms and traditional
models, using a range of performance metrics.

D. PAPER ORGANIZATION
The remainder of this paper is systematically organized into
several sections: Section II reviews related works in the
field. Section III details the methodology used (COCOMO
and COCOMO II models, SOMA metaheuristic algorithm,
datasets description, evaluation metrics, and statistical anal-
ysis). The proposed optimization approach is elaborated
in Section IV, followed by an analysis of the results in
Section V. Finally, Section VI concludes the paper with a
summary of the findings and an outline of future research
directions.

II. RELATED WORKS
The endeavor to accurately predict software development
costs has spurred numerous studies on effective estimation
methods. Recently, metaheuristic algorithms have gained
prominence for enhancing the precision of established
models such as COCOMO and COCOMO II. The body of lit-
erature encompasses a broad array of research that evaluates
these conventional models and explores the augmentation
of their accuracy through metaheuristics. This section
surveys pivotal contributions to software effort estimation,
focusing on algorithmic methodologies and metaheuristic
algorithms.

Fadhil et al. [7] explored refining the COCOMO II model’s
estimation accuracy by applying the dolphin algorithm and
introducing a hybrid dolphin and bat algorithm (DolBat).
Their models underwent testing on the NASA93 and
NASA60 datasets, assessed via the MMRE metric, and were
benchmarked against the original COCOMO II model, the
Genetic algorithm, the hybrid Cuckoo Optimization and
Harmony Search algorithm (CSHS), and the Bat algorithm.
Parwita et al. [8] also aimed at optimizing COCOMO II
model coefficients using the Cuckoo Optimization Algorithm
(COA), with their analysis conducted on the Turkish Software
Dataset and comparisons drawn with the Fuzzy Local Cali-
bration Model and the original COCOMO II model. Langsari
and Sarno [9] utilized the same dataset for COCOMO II
model optimization, focusing on the Particle Swarm Opti-
mization (PSO) algorithm, which demonstrated superiority
over the original COCOMO II coefficients and those
generated by the Tabu Search algorithm. Sachan et al. [10]
assessed the impact of a simplified genetic algorithm on
optimizing the basic COCOMO model parameters, applying
their methodology to the NASA18 dataset and employing
Manhattan Distance (MD) as the fitness function.

Alsheikh and Munassar [11], in their research, aimed
to improve the accuracy of effort estimation by adjusting
the coefficients of three COCOMO-based models: basic
COCOMO and its two modifications proposed by Sheta [12].
The authors conducted tests on NASA18 dataset and
applied Grey Wolf Optimization (GWO), alongside four
other optimization algorithms (Zebra Optimization, Moth-
Flame Optimization, Prairie Dog Optimization, and White
Shark Optimization). Evaluation metrics, including VAF,
MSE, MAE, MMRE, RMSE, and R2, were used to gauge
the effectiveness of the optimized models, with results
highlighting GWO’s superiority over Zebra Optimization,
Moth-Flame Optimization, Prairie Dog Optimization, White
Shark Optimization. Results were also compared against the
Firefly algorithm, Genetic algorithm, and PSO algorithm.

Gandomani et al. [13] used a hybrid GA-EA approach
(Genetic algorithm (GA) and Environmental Adaptation
(EA) techniques) to enhance the efficacy of the basic
COCOMOmodel. The integration of EA into GA effectively
addresses GA’s convergence issue. The investigation utilizes
the NASA93 dataset, allocating 80% of the data for training
and 20% for testing. A comparative analysis was conducted

67172 VOLUME 12, 2024

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

using the original COCOMO model, EA algorithm, and
hybrid model GA-EA. The findings indicate that the hybrid
GA-EA approach got the best results: MMRE was equal to
53%, PRED(0.25) was 23%, and evaluation function (EF)
was 0.42. EF was defined as the ratio between PRED(0.25)
and (1+MMRE).

Anwar ul Hassan and Sufyan Khan [14] tested the
efficiency of the Strawberry Algorithm (SBA), Gray Wolf
Algorithm (GWO), and Harmony Search Algorithm (HSA).
These optimization techniques were applied to the basic
COCOMO model using the NASA93 dataset and a 3-fold
cross-validation approach. The experiment considered the
whole dataset and both embedded and semidetached modes.
The study aimed to minimize MMRE, and the findings
indicated that GWO outperformed the other algorithms.

Kumari and Pushkar [15] proposed a novel model for
adjusting the basic COCOMO model parameters based on
the metaheuristic Cuckoo Search algorithm. This model was
tested on the NASA18 dataset, utilizing MMRE as the fitness
function. Sachan et al. [16] investigated the effects of three
differential evolution mutation strategies (DE/rand/1/bin,
DE/rand/2/bin, and DE/best/1/bin) to enhance the coeffi-
cients of the COCOMO and COCOMO II models. Their
experiments, conducted using the NASA93 and NASA63
datasets, indicated that the proposed models yielded more
accurate effort estimations compared to the original models.

The focus on differential evolution extends to additional
studies. Singh et al. [17] introduced a novel variant of
differential evolution named Homeostasis adaptation-based
mutation operator differential evolution (HABDE), incorpo-
rating the Homeostasis adaptation-based mutation operator
(HABMO) to increase solution diversity and minimize the
likelihood of converging on local optima. Compared to GA,
PSO, and DE, HABDE demonstrated superior performance.
Singh and Kumar [18] utilized Homeostasis mutation-based
differential evolution (HMBDE), which augments the muta-
tion process in the original model through a Homeostasis
mutation vector. In these studies, optimization targeted the
basic COCOMOmodel, employing MMRE as the metric and
focusing on the NASA63 dataset, segmented by development
modes.

III. METHODOLOGY
A. METHODOLOGY OVERVIEW
Our methodology encompasses several key components: the
adaptation and optimization of COCOMO models using
SOMA, dataset preparation and preprocessing, evaluation
metrics, and statistical analysis to validate the findings.

1) COST CONSTRUCTIVE MODELS
We base our study on the traditional COCOMO and
COCOMO II models, which provide a structured framework
for software effort estimation through algorithmic models
that utilize project size, development environment, and
personnel capabilities among other factors. Our focus extends

to the basic, intermediate, and post-architecture models
of COCOMO and COCOMO II, which are adapted and
optimized through metaheuristic algorithms.

2) SELF-ORGANIZING MIGRATING ALGORITHM
At the core of our methodology is the SOMA, a metaheuristic
optimization algorithm chosen for its efficiency in finding
near-optimal solutions in complex, multidimensional spaces.
SOMA’s evolutionary approach to solution improvement
is leveraged to optimize the parameters of the COCOMO
models, thus enhancing their predictive accuracy.

3) DATASETS DESCRIPTION
Our analysis utilizes six publicly available datasets
(NASA93, NASA63, NASA18, Kemerer, Miyazaki94, and
Turkish) characterized by diverse project types and sizes.
These datasets undergo rigorous preprocessing to ensure
consistency and accuracy in the estimation process.

4) EVALUATION METRICS
To assess the performance of the SOMA-optimized
COCOMO models, we employ several evaluation metrics
including Mean Magnitude of Relative Error (MMRE),
Prediction at level 0.25 (PRED(0.25)), Mean Absolute Error
(MAE), and Root Mean Squared Error (RMSE). These
metrics allow for a comprehensive analysis of estimation
accuracy and model performance.

5) STATISTICAL ANALYSIS
A paired Wilcoxon signed-rank test is used to evaluate the
statistical significance of the results, comparing the perfor-
mance of the SOMA-optimized models against traditional
COCOMO models. This non-parametric test provides a
robust mechanism for validating the enhancements achieved
through our proposed methodology.

6) EXPERIMENTAL SETUP
We detail the experimental setup for testing the efficacy
of the SOMA-optimized COCOMO models, including the
configuration of the SOMA parameters, the cross-validation
process, and the comparative analysis against baselinemodels
and other metaheuristic algorithms.

B. COST CONSTRUCTIVE MODELS
The COnstructive COst MOdel (COCOMO) was developed
using 63 different sample projects and was published in
1981 by Barry W. Boehm. According to [3], Boehm sug-
gested three types of COCOMO modes: basic, intermediate,
and detailed. Various input parameters estimate the cost
depending on the model type. These parameters include
project size measured in thousands of lines of source code
(KLOC), 15 cost driver attributes, and calibration constants
(a, b, c, d), whose values depend on the project’s mode
(organic, semi-detached, or embedded) and are listed in
Table 1. Organic mode requires extensive experience with
similar projects, a thorough understanding of the project

VOLUME 12, 2024 67173

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

TABLE 1. Software development modes [3].

goals, and is open to changes in requirements and other
technical specifications [3]. In contrast to organic mode,
embedded mode requires moderate experience, a general
understanding of the project objectives, and strict compli-
ance with the requirements and other specifications. Semi-
detached mode is in the middle of the previous modes.

The basic COCOMO model, using (1), calculates effort
expressed in person-months (PM) by relying on the size of
the project and calibration constants (a, b) [3]. The exponent
(b) reflects that the effort needed to develop the software
does not increase linearly with the project size. Time required
for software development (TDEV) in calendar months can be
obtained using (2), where c and d are calibration constants.

EFFORT [PM] = a · (KLOC)b (1)

TDEV [MONTHS] = c · (EFFORT)d (2)

The intermediate COCOMO model computes effort (3)
more precisely than the basic COCOMO model since it
considers a set of effort multipliers [3]. The product of effort
multipliers (EMi) consists of 15 cost driver attributes divided
into four categories (Table 2): product attributes, computer
attributes, personnel attributes, and project attributes. Each
cost driver is assigned one of six rating levels (Table 3), and
each rating level has a single value assigned to it, known as
the effort multiplier (EM).

EFFORT [PM] = a · (KLOC)b ·

15∏
i=1

EMi (3)

The detailed COCOMO model updates the values of cost
factors at each stage of the development life cycle [3].

C. COST CONSTRUCTIVE MODEL II
The COCOMO II model made some advancements, such
as non-sequential development, reuse, and object-oriented
approach [4]. This model defines three submodels: the
Applications Composition model, the Early Design model,
and the Post-Architecture model.

The Application Composition model estimates effort in
projects created by assembling existing components and
estimates are based on object points [20].

The Early Design model is used to determine a preliminary
estimate in the initial phases of development when a detailed
system design is unavailable [20]. This model employs a set
of seven effort multipliers, five scale factors, and the software
size characterized by unadjusted function points or thousands
of lines of code. Function points can be converted into lines
of source code (LOC) using conversion tables.

TABLE 2. Cost drivers: COCOMO (intermediate), COCOMO II
(post-architecture) [3], [19].

TABLE 3. intermediate COCOMO: effort multipliers ratings [3].

The Post-Architecture model, based on a detailed system
specification and suitable for use in the development or
maintenance phase, provides more accurate estimations than
the Early Design Model [19]. The estimated effort in
person-months is calculated using (4), and exponent E is
given by (5). The exponent E value ranges from 1.1 to
1.26 and depends on calibration constant b and the sum of
five scaling factors SFj (Table 4).
Each scale factor has 6 rating levels, and each level

has assigned a weight (Table 5). In this model, 17 effort
multipliers are considered (Table 2, Table 5), and the
sizing parameter can be expressed in KLOC or the number
of function points. Calibration constants a = 2.94 and

67174 VOLUME 12, 2024

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

TABLE 4. Scale factors [19].

TABLE 5. post-architecture COCOMO II: effort multipliers ratings, scale
factors ratings [19].

b = 0.91 if local data are unavailable. Time required
for software development (TDEV) in calendar months is
calculated using (6) and (7), where c and d are calibration
constants (c = 3.67, d = 0.28).

EFFORT [PM] = a · (KLOC)E ·

17∏
i=1

EMi (4)

E = b+ 0.01 ·

5∑
j=1

SFj (5)

TDEV [MONTHS] = c · (EFFORT)F (6)

F = d + 0.2 · 0.01 ·

5∑
j=1

SFj

= d + 0.2 · (E − b) (7)

D. SELF-ORGANIZING MIGRATING ALGORITHM
The Self-Organizing Migrating Algorithm (SOMA) is a
stochastic optimization algorithm classified as a swarm
algorithm but can also be classified as an evolutionary algo-
rithm [21], [22]. This algorithm is based on self-organizing
behaviour, which occurs when a social group of individuals
cooperate in solving a common problem (e.g., finding a food
source). SOMA varies from standard evolutionary algorithms

FIGURE 1. Strategy all to one: individuals before migration and after one
migration (L-Leader, I1- Individual 1, I2- Individual 2, I3- Individual 3) [22].

TABLE 6. SOMA parameters [22].

(genetic algorithm, differential evolution) in that no new
individuals are formed during the optimization process, but
the original individualsmigrate in each generation. In SOMA,
the name generation is replaced by a migration loop, and
operations like mutation and crossover, which are already
familiar from evolutionary algorithms, constitute a significant
part of this algorithm. Moreover, the strategy choice and
the definition of the parameters influence the optimization
process, and in the algorithm, the initial population of can-
didate solutions is randomly generated based on Specimen =

{{Integer, {Low,High}}, {Real, {Low,High}}, . . . }.
The strategies allow individuals to cooperate in searching

for an optimal solution. In each migration loop, the Leader
must be identified, and the choice of the Leader depends on
the strategy (All To One, All To All, All To Rand, and All
To All Adaptive) [22]. In All to One strategy (Figure 1), the
individual with the best fitness will be chosen as a Leader, and
all other individuals (except the Leader) will migrate toward
the Leader.

The SOMA is controlled by controlling parameters
(PathLength, Step, PRT, PopSize) and stopping parameters
(Migrations, MinDiv) shown in Table 6 [22]. Parameter
PathLength specifies the length of the individual’s path.
If the PathLength value is 1, the individual will reach
the Leader’s position. If the value of PathLength is less
than 1, the position of the Leader will not be reached, and
the individual may become stuck in the local optimum.
The Step parameter expresses the length of the step. The
recommended value of 0.11 makes it impossible for an
individual to migrate to the Leader’s position. The PRT
parameter (perturbation) is amutation parameter representing
an individual’s travel direction. The higher the PRT value,
the faster the convergence. The Dim parameter specifies the

VOLUME 12, 2024 67175

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

dimensionality of the solved problem. The PopSize parameter
represents the population size. The Migration parameter sets
themaximumnumber of iterations, and theMinDiv parameter
expresses the maximum permissible difference between the
best and worst individual.

Mutation ensures diversity between individuals by gen-
erating random perturbations. SOMA does this by utilizing
the PRT parameter and generating a perturbation vector
(PRTvector) through it [21]. A perturbation vector is
generated in each migration loop for each individual before
his migration. For each individual’s parameter, a random
number rndj ∈ [0, 1] is generated, where j = 1, 2, . . . ,Dim,
and depending on the value of the PRT parameter, the value
0 or 1 is stored in the perturbation vector for the given
parameter j according (8).

if rndj < PRT then PRTvectorj = 1

else PRTvectorj = 0 (8)

The crossover operation ensures the creation of new indi-
viduals. New positions in N -dimensional space are generated
for each individual as a sequence of possible solutions, and
only the best fittest survives to the next migration loop.
An individual’s discrete movement is given by (9), where
ML is the current migration loop, xML+1

i,j is the new position
of the current individual i, xMLi,j is the current position of

the actual individual i, xMLL,j is the Leader position in current
migration loop, and t ∈ [0, by Step to,PathLenght] is a
step generated from the position of the actual individual i to
the Leader’s position [22]. PRTvectorj defines the movement
direction. The value 0 for element j of individual i indicates
that the parameter for the relevant dimension can not be
changed.

xML+1
i,j = xMLi,j + (xMLL,j − xMLi,j) · t · PRTvectorj (9)

In the original version of SOMA [21], the PRTvector was
generated for each individual once; however, with changes
in [22], the PRTvector is formed for each new t jump. This
modification ensures more dynamic searching in the space; a
stepwise line is used instead of a straight line.

E. DATASETS DESCRIPTION
A total of six publicly available datasets were selected for
training and testing, namely NASA93, NASA63, and the
Turkish dataset from the PROMISE data repository [23],
Kemerer [24] and Miyazaki94 dataset [25] from the
SEACRAFT repository [26], and dataset NASA18 [27].
NASA93, referred to as COCOMO NASA 2, and NASA63
dataset, known as COCOMO81, have a typical attribute
structure for the intermediate COCOMO model (15 effort
multipliers, project size and one attribute for actual effort).
NASA93 contains 93 projects from different centers devel-
oped between 1971 and 1987, and in addition to the
above, each project has seven additional attributes (e.g.,
development mode). NASA63 consists of 63 projects, and the
division of the dataset into development modes is reported

by Singh et al. in study [17]. NASA18, Kemerer, and
Miyazaki94 datasets provide attributes only for the basic
COCOMO model (project size and actual effort). NASA18
contains 18 projects collected from the SW Engineering
Laboratory at the NASA/Goddard Space Flight Center, and
ten attributes describe each project. Kemerer dataset has
15 projects with eight attributes, and the project size is
measured in KLOC and function points. Miyazaki94 dataset
consists of 48 software projects described by nine attributes.
Turkish dataset (COCOMO SDR) contains 12 projects from
5 different software companies in various domains. Each
project has 25 attributes in the standard format of the
post-architecture COCOMO II model, including actual effort
and project ID.

This study uses project size, effort multipliers, and scale
factors as independent variables to calculate the predicted
effort values of the dependent variable (effort). To assess the
performance of models, the attribute with the actual effort
values of the dependent variable will used. Attribute for
development mode will also considered in this study. Each
dataset expresses effort in PM and project size in KLOC,
except for the Turkish dataset, which states project size in
LOC. This value will be converted to KLOC.

Actual effort and project size characteristics are processed
by descriptive statistics (minimum and maximum value,
mean value, median, standard deviation, and range) in
Table 7. The table also includes the number of projects
(n) in the dataset. The characteristics show significant
dissimilarities, especially for the NASA93 and NASA63
datasets. Therefore, the relationship between project size and
actual effort is investigated: how many thousands of lines of
code can be implemented with one effort. The distribution
of ratios into quartiles is shown in Figures 2 and 3, where
graphical data visualization using a box plot and inter-quartile
range (IQR) method helps easily identify unusual values.
In the IQR method, we applied a rule based on the whisker
value equal to 3.0 to identify only extreme values marked as
far out outliers [28], [29]. These values are located outside the
outer fences, i.e., out of range [Q1 − 3 · IQR,Q3 + 3 · IQR].

F. EVALUATION METRICS
Evaluation criteria are an essential part of evaluating the
accuracy of prediction models; they measure how closely
the predicted effort Pi of project i from a dataset of size n
matches its actual effort Ai. In this study, the accuracy of
the proposed model is evaluated using several metrics [30],
[31], [32]: MMRE, PRED(0.25), MAE, and RMSE. For all
these metrics, with the exception of PRED(0.25), a lower
value obtained from a specific metric indicates a higher
accuracy of prediction. In the software effort estimation area,
the MMRE metric is the widely adopted [2], [33], [34], [35],
[36] to validate models, and therefore we also used it as a
fitness function in this study. M. Shepperd and S. MacDonell
[32] warn that the MMRE is biased to underestimated
projects.

67176 VOLUME 12, 2024

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

TABLE 7. Descriptive statistics.

FIGURE 2. NASA datasets: the distribution of ratios of project size and
actual effort (blue dot = mean).

Magnitude of Relative Error (MRE) (10) is the ratio of the
absolute error and the actual effort value, where the absolute
error is the difference between the actual effort value and the
predicted effort value.

MRE =
|Ai − Pi|

Ai
(10)

Mean Magnitude of Relative Error (MMRE) (11) is
defined as the mean of the MRE values over n projects in
the dataset.

MMRE =
1
n

n∑
i=1

MREi (11)

FIGURE 3. Turkish, Miyazaki94 and Kemerer dataset: the distribution of
ratios of project size and actual effort (blue dot = mean).

PRED(x) (12), represents prediction accuracy at level x.
Where x is defined as the ratio of k projects to all projects in
the dataset. The value of k indicates the number of projects in
which the MRE value is less than or equal to the value of x.

PRED(x) =
k
n

(12)

Mean Absolute Error (MAE) (13) measures the mean of
absolute errors.

MAE =
1
n

n∑
i=1

|Ai − Pi| (13)

RootMean Squared Error (RMSE) (14) measures how data
are concentrated around the best fit.

RMSE =

√√√√1
n

n∑
i=1

(Ai − Pi)2 (14)

G. STATISTICAL ANALYSIS
This study employs a paired Wilcoxon signed-rank test to
evaluate statistical significance in effort prediction between
eSOMCOCOMO and the original COCOMO and COCOMO
II models. This non-parametric test is based on the ranks
derived from the differences between two related paired
samples [37]. At a significance level of 0.05, the statistical
hypotheses in subsection I-C are tested. We reject the null
hypothesis (H0) and accept the alternative hypothesis (H1)

VOLUME 12, 2024 67177

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

if the obtained significance value (p-value) is less than or
equal to 0.05. We do not reject the null hypothesis (H0) if
the p-value exceeds 0.05.

IV. EXPERIMENTAL SETUP
This study investigates the impact of the optimization algo-
rithm SOMA on the precision of estimates of the COCOMO
and COCOMO II models, where SOMA is used to optimize
calibration constants a and b. Subsection IV-A introduces
the proposed approach, the enhanced Self-Organizing
Migrating Constructive Cost Model (eSOMCOCOMO).
Subsection, IV-B describes test experiments carried out
on datasets NASA93, NASA63, NASA18, Kemerer,
Miyazaki94, and Turkish. The last subsection, IV-C, contains
chosen baseline models and metaheuristic algorithms for
performance evaluation. MMRE, PRED(0.25), MAE, and
RMSE were used to verify the results.

A. PROPOSED APPROACH eSOMCOCOMO
The enhanced Self-Organizing Migrating Constructive Cost
Model (eSOMCOCOMO) flowchart shows Figure 4 and
comprises two phases. The first phase is data preprocess-
ing, and the second phase constitutes the foundation of
eSOMCOCOMO, uniting constructive cost models with the
SOMA optimization algorithm.

The first phase starts by loading the dataset and its
preprocessing. In the case of the NASA93, NASA63, and
Turkish datasets, the preprocessing steps were supplemented
by converting the ordinal features into numerical values
according to Tables 3 or 5, and projects in datasets NASA93
and NASA63 were also divided into software development
modes, where each mode is treated separately. Subsequently,
the correctness of the data was checked. There are no
missing values in datasets, and examining the ratio between
the project sizes and actual effort values showed minor
discrepancies in some projects (Figures 2 and 3). Therefore,
these projects were considered outliers and removed.

In the second phase, the optimization process is carried
out on test experiments (Table 9). A 10-fold cross-validation
technique is used for each experiment to mitigate the problem
of overfitting. In 10-fold cross-validation, the dataset is
randomly and equally partitioned into ten folds. In each iter-
ation, one-fold is used for testing, and the remaining 9-folds
are used for training. The SOMA optimization algorithm
(Figure 5) is applied to the train data, and the best solution
found is evaluated on the test data. The optimization’s
overall accuracy/solution is given by averaging the results
of iterations (accuracies from testing/the best solutions found
during training).

1) SOMA OPTIMIZATION ALGORITHM
The parameters are set at the beginning of the SOMA
algorithm (Table 8). The values for control parameters
were picked from recommended ranges (Table 6), and the
number of migrations was chosen as the stopping parameter.
The lower range limit was chosen when setting the Dim

TABLE 8. SOMA parameter settings.

parameter since the suggested rule [22], [0.5, 0.7] · DIM ,
is not reasonable to apply in a 2-dimensional problem. The
value of the PRT parameter for a low-dimensional problem
with a large population can be set from the higher range
[0.7, 1] despite the recommended value being 0.1 [22].
A larger value of PRT eliminates the occurrence of the
stochastic component and increases the convergence rate,
so we decided to set PRT = 0.6. The explore domain of
optimized constants a and b are subject to lower and upper
boundary constraints, where a ∈ [0, 10] and b ∈ [0.2, 3].
The initial population is created randomly based on

the specimen definition, Specimen = {{Real, {0, 10}},
{Real, {0.2, 3}}}. Each individual in the population represents
one candidate solution in a 2-dimensional space. The
objective of the optimization is to minimize or maximize the
value of the objective function by optimizing the parameters
of individuals. In this study, the MMRE was chosen as
a fitness function. Therefore, the individual that reaches
the lowest MMRE value after the maximum number of
migrations will represent a new solution, i.e., optimized
constants a and b.

Before the first migration begins, it is necessary to know
the fitness of the individuals from the initial population.
An individual’s fitness is given by MMRE (11), and for
each project in the dataset, MRE is calculated by (10).
The actual effort value is known from the dataset, and the
estimated effort is for the basic COCOMO model obtained
by (1), for the intermediate COCOMO model given by (3),
and for the post-architecture COCOMO II model calculated
by (4) and (5). Scale factors, effort multipliers, and values
expressing project size are part of dataset. In each migration
loop, the Leader must be identified. When applying the All
To One strategy, the individual with the best fitness becomes
the Leader, and the remaining individuals migrate toward
the Leader. Individuals migrate one after the other. The
PRT parameter influences the direction of migration, and
according to (8), a new PRTvector is constructed for each
t jump of the individual, and new positions are then given
by (9). After the jump positions of the individual are known,
the domains are checked. Each position out of bounds will be
replaced by a new randomly generated one. In the next step,
the fitness of the jump positions is calculated. The individual
remembers the best position found during his migration and
returns to its starting position. Finally, once all migrations
of individuals are completed, each individual moves to his

67178 VOLUME 12, 2024

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

FIGURE 4. Flowchart of the proposed approach eSOMCOCOMO.

FIGURE 5. SOMA optimization algorithm [21], [22].

best-found position. The algorithm terminates by reaching
the maximum number of migrations and returning the best
solution.

B. EXPERIMENTS DESCRIPTION
The eSOMCOCOMO was tested in eight experiments
(Table 9). The optimization of the basic COCOMO model

TABLE 9. Test experiments.

was performed on datasets NASA18, Kemerer, Miyazaki94,
NASA93, and NASA63. The intermediate COCOMO model
was tested on NASA datasets NASA93 and NASA63, and
the last optimization of the post-architecture COCOMO II
model was performed on the Turkish dataset. Software
developmental modes were also considered for the NASA93
and NASA63 datasets, and the numbers of projects in each
mode are shown in Table 7. NASA93 dataset has only three
projects in organic mode; therefore, this optimization was not
performed.

C. BENCHMARK MODELS
The performance of the eSOMCOCOMO against traditional
models and other metaheuristic algorithms was assessed
by MMRE, PRED(0.25), MAE, and RMSE. The proposed
experiments (Table 10) were compared with the origi-
nal COCOMO or COCOMO II model and metaheuristic
algorithms (Particle Swarm Optimization (PSO) [9] and
Genetic Algorithm (GA) [38]). Moreover, the experiment
(EXP C1) was compared with Local Calibration [39], and
the experiments (EXP A1 - EXP A5) were compared with
the baseline models (the Walston-Felix model [40], the

VOLUME 12, 2024 67179

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

TABLE 10. Baseline models.

TABLE 11. EXP A1: comparison of MMRE, PRED(0.25), MAE and RMSE.

Bailey-Basili model [27], and the Halstead model [41]). The
definition of the baseline models is presented in Table 10.

V. RESULTS AND DISCUSSION
The efficiency of the proposed eSOMCOCOMO approach
with other models (IV-C) was compared on preprocessed
datasets and evaluated by MMRE, PRED(0.25), MAE, and
RMSE. The results are presented according to the type
of optimized model in the following subsections. In the
case of eSOMCOCOMO, we used the solution found
during the optimization process (Figure 4) instead of the
original constants (a and b) to predict effort. Moreover,
statistical testing, Taylor diagrams, and residual analysis were
employed to assess the validity of the eSOMCOCOMO.

A. BASIC COCOMO (EXP A1-A5)
EXP A1 was conducted on the NASA18 dataset, and the
results presented in Table 11 show that eSOMCOCOMO
achieved the best results across all evaluation metrics.
Compared to the original COCOMO models, there was
a significant reduction in error, and the prediction at
level 0.25 increased enormously from 0.16667 to 0.83333.
Particle Swarm Optimization is the second-best prediction
model, with nearly comparable performance, and the Genetic
Algorithm is the third-best. Also worth mentioning is the
Bailey-Basili model, which predicts almost as well as
metaheuristic algorithms. On the other hand, the Halstead
model achieves the highest error rate.

Table 12 shows the outcomes for EXP A2. If MMRE
is considered, GA and PSO algorithms perform better than
eSOMCOCOMO. The approach eSOMCOCOMO seemed
stuck in a local optimum while searching for an optimal
solution. However, eSOMCOCOMO outperforms GA and
PSO regarding PRED(0.25), MAE, and RMSE. The Halstead
and the basic COCOMO models are the least strong
prediction models.

According to Table 13, in experiment EXP A3, the
most finest results were achieved by the eSOMCOCOMO
model, except for the RMSE metric. The lowest RMSE

TABLE 12. EXP A2: comparison of MMRE, PRED(0.25), MAE and RMSE.

TABLE 13. EXP A3: comparison of MMRE, PRED(0.25), MAE and RMSE.

TABLE 14. EXP A4: comparison of MMRE, PRED(0.25), MAE and RMSE.

value (152.093) reached the Bailey-Basili model. The
Walston-Felix model also achieves promising results, but
only 16.667% of the samples had a value of MRE less than
or equal to 25%.

EXPA4 utilizes the NASA93 dataset divided into software
development modes (Table 14). In semi-detached mode,
the best prediction characteristics were attained by GA.
In embedded mode, eSOMCOCOMO has the lowest MMRE
value; PSO and eSOMCOCOMO succeeded equally well in
PRED(0.25), and the original basic COCOMO model leads
in MAE and RMSE metrics. Upon closer inspection of the
results, it is evident that predictions made with metaheuristic
algorithms are nearly identical in semi-detached mode.

In EXP A5 (Table 15), the development modes of the
NASA63 dataset are also considered. Regarding the MMRE
measure, the Bailey-Basili model acts best in organic mode,
GA in semi-detached mode, and PSO in embedded mode.
The basic COCOMO model has the most outstanding
PRED(0.25) outcomes in all development modes. It also

67180 VOLUME 12, 2024

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

TABLE 15. EXP A5: comparison of MMRE, PRED(0.25), MAE and RMSE.

TABLE 16. EXP B1: comparison of MMRE, PRED(0.25), MAE and RMSE.

performed well concerning MAE and RMSE in embedded
mode. The approach eSOMCOCOMO obtains the finest
MAE and RMS values in organic and semi-detached modes.

B. INTERMEDIATE COCOMO (EXP B1-B2)
The results of experiments EXP B1 (NASA93 dataset) and
EXP B2 (NASA63 dataset) were processed for each software
development mode separately.

In EXP B1 (Table 16), eSOMCOCOMO produces the
best outcomes in semi-detached and embedded modes. The
PSO algorithm achieves nearly equally satisfactory results.
In addition, in embedded mode, it can be seen that there is
only a negligible improvement in prediction compared to the
intermediate COCOMO model.

Following Table 17, the intermediate COCOMOmodel has
the most outstanding outcomes for all development modes
regarding MAE and RMSE. Moreover, it also achieves the
highest value in PRED(0.25), except in semi-detached mode.
In this mode, the highest value, 0.72727, was achieved by
eSOMCOOCMO and metaheuristic algorithm PSO. Further,
PSO has the lowest MMRE value in organic mode, whereas
eSOMCOCOMO performs better in other modes.

C. POST-ARCHITECTURE COCOMO II (EXP C1)
The EXP C1 results are given in Table 18. The approach
eSOMCOCOMO, adopting the SOMA optimization

TABLE 17. EXP B2: comparison of MMRE, PRED(0.25), MAE and RMSE.

TABLE 18. EXP C1: comparison of MMRE, PRED(0.25), MAE, and RMSE.

algorithm, improved the estimation accuracy of the
COCOMO II model and outperformed benchmarked mod-
els in all evaluation metrics. Compared to the original
COCOMO II model, there was a significant improvement
in MMRE, MAE, and RMSE; e.g., the value of MMRE
decreased from 7.36273 to 0.49694.

D. TAYLOR DIAGRAMS
The predictive skills of the eSOMCOCOMO against the
original COCOMOmodels were also assessed using the Tay-
lor diagram [42], [43]. Taylor’s diagram demonstrates the
similarity between selected benchmark models using three
metrics: the Standard Deviation, the Correlation Coefficient,
and the centered Root Mean Square Error (CRMSE).

Taylor diagrams for experiments EXP A1-A5 are shown in
Figure 6. In EXP A1 (Figure 6a), the Correlation Coefficient
is about 0.97 for all models, but its values slowly decrease
in the following order: eSOMCOCOMO, M2, M3, and M4.
The standard Deviation of eSOMCOCOMO is about 3, for
M2 is about 5.1, for M3 is about 6.9, and for M4 is about 9.3.
CRMSE is about 0.7 for eSOMCOCOMO, 1.9 forM2, 3.8 for
M3, and 6.15 for M4. From the diagram, it can be concluded
that in the case of EXP A1, eSOMCOCOMO achieves the
best results because it lies closest to the ‘‘observed point or
its time series line’’ and reaches a high correlation and the
lowest value of centered Root Mean Square Error. M4 can
be described as the worst predicting model. This model is
farthest from the ‘‘observed’’ and has the highest value of
CRMSE. Figures 6e and 6h show that the original model
intermediate COCOMO demonstrates better results than
the proposed approach eSOMCOCOMO. However, in the
remaining diagrams, eSOMCOCOMO indicates superiority.

VOLUME 12, 2024 67181

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

FIGURE 6. Taylor diagrams for EXP A1-A5 (M2-basic COCOMO (organic), M3-basic COCOMO (semi-detached), M4-basic COCOMO (embedded)) under
non-standardized square root transformation.

Taylor diagrams for experiments EXP B1-B2 and EXP
C1 are shown in Figure 7. The eSOMCOCOMO approach
shows the best results in EXPB1 (semi-detached) (Figure 7a).
In EXPC1 (Figure 7f), the eSOMCOCOMOhas significantly
lower CRMSE and is closer to the ‘‘observed point’’ than
the original post-architecture model. However, its Correlation
Coefficient is lower. Almost identical results can be seen
in experiments in Figures 7b and 7d. In Figures 7c and 7e,
the intermediate COCOMO model has a Standard Deviation
similar to the ‘‘observed point,’’ CRMSE is insignificantly
lower than in eSOMCOCOMO. Nevertheless, eSOMCO-
COMO has a lower Standard Deviation and a greater value
for the Correlation Coefficient.

E. RESIDUAL ANALYSIS
The residual plots (Figures 8 and 9) show the relationship
between independent variable project size (KLOC) on the
x-axis and residuals on the y-axis, where residuals express
the differences between actual and predicted effort values.
In plots, residuals were transformed by non-standardized
transformation log 10 [44]; specifically, a symmetric log
10 was applied, and the residuals were increased by one. Each
subplot plots the residuals of the eSOMCOCOMO and the
original COCOMO model. In EXP A1-A3, only the organic
mode of the basic COCOMO model was plotted.

Residuals near the zero residual line indicate correct pre-
diction, residuals above the zero line mean underestimating,

67182 VOLUME 12, 2024

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

FIGURE 7. Taylor diagrams for EXP B1-B2 and EXP C1 under non-standardized square root transformation.

FIGURE 8. Residual plots for EXP A1-A5.

and residuals under the zero residual line mean overestimat-
ing. The Figures 8 and 9 indicate that the predictions made by

eSOMCOCOMO in comparison to the original COCOMO
model tend to be underestimated (EXP A1, EXP A2, and

VOLUME 12, 2024 67183

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

FIGURE 9. Residual plots for EXP B1-B2 and EXP C1.

EXP C1). However, the estimates get closer to the zero
residual line; they show some refinement.Moreover, a pattern
can be recognized in, for instance, EXP A3, EXP A4 (semi-
detached), and EXP A5 (embedded). With the project size
increasing, the estimate gets more inaccurate.

F. STATISTICAL EVALUATION OF HYPOTHESES
The Wilcoxon signed-rank test was used to determine if
eSOMCOCOMO predicts more accurately than the original
COCOMO and COCOMO II models. Specifically, a one-
sided Wilcoxon signed-rank test was performed to check if
the median of differences is significantly lower (or greater)
than zero. The findings are displayed in Tables 19-24, where
the superiority of the eSOMCOCOMO model was assessed
using the evaluation metricsMMRE, PRED(0.25), MAE, and
RMSE. The bolded p-value indicates that the value is less
than or equal to the significance level of 0.05. In addition
to the original models, the tables also include the remaining
benchmark models.

Based on the analysis of the results, there was a significant
improvement in the prediction of eSOMCOCOMOcompared
to the original COCOMO models in all evaluation metrics

only in experiments EXP A1-A3. We reject the null
hypothesis (H0) and accept the alternative hypothesis (H1)
in these experiments. In EXP C1 and EXP B1 (embedded),
a significant improvement can be observed only in the MAE
and RMSE metrics.

From the perspective of the other benchmark models,
eSOMCOCOMO has superiority in the performance in all
evaluation metrics when compared to experiment EXP A1
(Walston-Felix and Halstead models), experiment EXP A2
(Halstead model), and experiment EXP A3–A4 (Bailey-
Basili, Walston-Felix, and Halstead models). Statistical
significance of the superiority of eSOMCOCOMO was also
confirmed in EXP A4, namely in PSO (RMSE) and in GA
(MMRE,MAE, RMSE).Moreover, for the genetic algorithm,
the p-value ≤ 0.05 was in EXP B1 (semi-detached mode:
MAE, RMSE), in EXP B2 (organic and semi-detached
modes: RMSE), and in EXP C1 (RMSE). The superiority of
the eSOMCOCOMOmodel can also be observed in EXP A5
for baseline models and metaheuristic algorithms.

G. THREATS TO VALIDITY
We encountered several challenges in enhancing soft-
ware effort estimation with the Self-Organizing Migration
Algorithm (SOMA)-optimized Constructive Cost Model
(COCOMO). We identified potential threats to the validity of
our study. These considerations are crucial for interpreting the
results and understanding the practical limitations of apply-
ing the proposed model in various software development
contexts.

1) Dataset Diversity and Size: The effectiveness of the
SOMA-optimized COCOMOmodels was tested across
various datasets, including NASA93, NASA63, and
Turkish datasets. While these datasets provide a varied
basis for analysis, the generalizability of our findings
may be limited by the specific characteristics of
these datasets, such as project type, size, and domain.
Additionally, the relatively small number of projects
in certain datasets, particularly when divided by
development mode, may not fully capture the breadth
of software development projects in the industry.

2) Model Complexity and Parameterization: The
COCOMO models, both traditional and SOMA-
optimized, rely on accurately estimating several
parameters, including size (KLOC), effort multipliers,
and scale factors. The complexity of these models and
the potential for inaccuracies in parameter estimation
challenge the reliability of effort predictions. This com-
plexity is further compounded in the SOMA-optimized
models due to the additional layer of algorithmic
optimization.

3) Human Factors: The role of human judgment in
the estimation process, even when using algorithmic
models, cannot be understated. Biases, varying levels
of expertise, and differences in interpreting project
requirements can significantly influence the accuracy

67184 VOLUME 12, 2024

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

of input parameters, thus affecting the overall effective-
ness of the COCOMO models.

H. PRIMARY CHALLENGES IN PRACTICAL APPLICATIONS
1) Parameter Accuracy: One of the fundamental chal-

lenges encountered in applying the SOMA-optimized
COCOMO models is the accurate determination of
input parameters. Misestimations can lead to signifi-
cant errors in effort predictions, highlighting the need
for extensive domain knowledge and careful project
analysis.

2) Algorithmic Complexity: While the SOMA optimiza-
tion algorithm enhances the predictive accuracy of
COCOMO models, it also introduces additional com-
plexity to the estimation process. The selection of
appropriate SOMA parameters and the interpretation
of optimization results require a deep understanding
of both the algorithm and the underlying estimation
model.

3) Scalability to Large Projects: Our study observed
performance variances in specific scenarios, partic-
ularly in estimating efforts for large-scale projects.
This limitation points to further refinement of the
SOMA-optimized COCOMO models to improve their
scalability and accuracy in estimating efforts for larger
and more complex projects.

4) Adaptability to Rapidly Changing Technologies: The
rapid evolution of software development technologies
and methodologies poses a challenge to the long-term
applicability of any effort estimation model. Ensuring
that the SOMA-optimized COCOMO models remain
relevant and accurate in the face of technological
advancements requires ongoing research and model
updates.

VI. CONCLUSION AND FUTURE WORK
This study analyses software effort estimation accuracy
enhancement using a Self-Organizing Migration Algorithm
(SOMA)-Optimized Constructive Cost Model (COCOMO).
By conducting a comparative analysis of traditional
COCOMO models and SOMA-optimized variants across
preprocessed datasets (NASA93, NASA63, NASA18,
Kemerer, Miyazaki94, and Turkish), our research focuses
on evaluation metrics including Mean Magnitude of
Relative Error (MMRE), Prediction at 0.25 (PRED(0.25)),
Mean Absolute Error (MAE), and Root Mean Square
Error (RMSE). The analysis encompasses various config-
urations of COCOMO models—basic, intermediate, and
post-architecture COCOMO II, supplementedwith additional
statistical testing and residual analysis for in-depth insights.
Two research questions have been addressed.

Response to RQ1: The application of SOMA has been
shown to enhance the accuracy of effort estimations in
the COCOMO models. The eSOMCOCOMo approach was
tested in eight experiments (Table 9), and their results are

shown in Tables 11-18. Based on the results, EXP A1, EXP
A2, EXP A3, and EXP C1 provide the best evidence of the
efficacy of the eSOMCOCOMO. In these experiments, there
was a significant reduction in MMRE, MAE, and RMSE
and an increase in PRED(0.25) compared to the original
COCOMO models. These outstanding results can also be
seen in the Taylor diagrams (Figures 6 and 7). In experiments
considering development modes (EXPA4, EXPA5, EXPB1,
EXP B2), a reduction in error can also be seen, especially
in MMRE. However, these experiments demonstrate a less
significant improvement, and in some cases, the results
of MAE, RMSE, and PRED(0.25) are almost comparable.
In the study, the results were also assessed using residual
analysis, where, e.g., in experiments EXP A3, EXP A4
(semi-detached), and EXP A5 (embedded), the prediction
inaccuracy increases with project size.

The findings show that the SOMA-optimized COCOMO
models outperform conventional models in terms of predic-
tive accuracy. This is particularly evident in metrics like
MMRE, where improvements of up to 12

Response to RQ2: The optimization of the constants (a, b)
using SOMA not only improved the estimation precision but
did so with statistical significance, affirming hypothesis H1
in some experiments and indicating a substantial reduction
in estimation errors as measured by our selected metrics.
The results in some experiments lead to the rejection of
the null hypothesis (H0), which stated that SOMA would
not improve estimation accuracy, and support the acceptance
of the alternative hypothesis (H1). Tables 19-24 provide
statistical testing results between eSOMCOCOMO and other
benchmark models.

Despite the progressmade, the study revealed underestima-
tion and overestimation issues, particularly in larger projects,
pointing to the need for further research.

For our future research a key area of focus lies in the
expansive exploration of metaheuristic algorithms beyond
SOMA. Comparative analyses of algorithms such as Genetic
Algorithms, Ant Colony Optimization, and Firefly Algo-
rithms are encouraged. The objectives are twofold: to
evaluate their effectiveness in software effort estimation
and to understand their unique strengths and weaknesses
in this context. This exploration is expected to illuminate
algorithm-specific applications capable of addressing the
deficiencies identified in current practices.

Moreover, the role of fitness functions in the optimization
process warrants further investigation. There is a compelling
need to experiment with various fitness functions to identify
those that most effectively bridge the gap between estimated
and actual efforts. The development of bespoke fitness func-
tions, tailored to the nuances of software effort estimation,
could markedly enhance model accuracy.

Additionally, integrating multi-objective optimization
techniques and examining hybrid metaheuristic approaches
present promising avenues for advancing the optimization
process. These strategies aim to balance multiple criteria
reflective of the complex nature of software projects,

VOLUME 12, 2024 67185

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

TABLE 19. EXP A1-A3: Wilcoxon signed-rank test.

TABLE 20. EXP A4: Wilcoxon signed-rank test.

TABLE 21. EXP A5: Wilcoxon signed-rank test.

fostering the development of more sophisticated and effective
estimation models.

The application of clustering techniques to develop more
personalized and context-aware estimation models also holds
significant potential. By catering to the unique attributes of
software projects, these approaches could revolutionize soft-
ware effort estimation, yielding more accurate and reliable
predictions. Furthermore, exploring metaheuristic algorithms
in other areas of software effort estimation promises to

TABLE 22. EXP B1: Wilcoxon signed-rank test.

TABLE 23. EXP B2: Wilcoxon signed-rank test.

TABLE 24. EXP C1: Wilcoxon signed-rank test.

unveil novel methodologies and techniques, contributing
fresh insights and approaches to the field. In summary a future
research can be described as:

1) Explore and compare the efficacy of various meta-
heuristic algorithms beyond SOMA in software effort
estimation.

67186 VOLUME 12, 2024

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

2) Investigate and develop tailored fitness functions to
enhance the accuracy of effort estimation models.

3) Integrate multi-objective optimization and hybrid
metaheuristic approaches to refine the estimation
process.

4) Apply clustering techniques for personalized models
and explore metaheuristic applications in novel estima-
tion areas.

In conclusion, while this research has significantly applied
the SOMA algorithm to improve estimation accuracy, the
field remains ripe for innovation. The insights gained lay the
groundwork for a new wave of research aimed at overcoming
the current limitations and unlocking even more precise and
reliable estimation methods.

REFERENCES
[1] S. McConnell, Software Estimation: Demystifying the Black Art, 1st ed.

Redmond, WA, USA: Microsoft Press, Mar. 2006.
[2] R. Silhavy, P. Silhavy, and Z. Prokopova, ‘‘Using actors and use cases for

software size estimation,’’ Electronics, vol. 10, no. 5, p. 592, Mar. 2021.
[3] B. W. Boehm, ‘‘Software engineering economics,’’ IEEE Trans. Softw.

Eng., vol. SE-10, no. 1, pp. 4–21, Jan. 1984.
[4] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and R. Selby,

‘‘Cost models for future software life cycle processes: COCOMO 2.0,’’
Ann. Softw. Eng., vol. 1, no. 1, pp. 57–94, Dec. 1995.

[5] Y. Mahmood, N. Kama, A. Azmi, A. S. Khan, and M. Ali, ‘‘Software
effort estimation accuracy prediction of machine learning techniques:
A systematic performance evaluation,’’ Softw., Pract. Exper., vol. 52, no. 1,
pp. 39–65, Jan. 2022, doi: 10.1002/spe.3009.

[6] M. Birattari, L. Paquete, and T. Stützle, ‘‘Classification of metaheuristics
and design of experiments for the analysis of components,’’ Intellektik,
Darmstadt, Germany, Tech. Rep. AIDA-01-05, 2003.

[7] A. A. Fadhil, R. G. H. Alsarraj, andA.M.Altaie, ‘‘Software cost estimation
based on dolphin algorithm,’’ IEEE Access, vol. 8, pp. 75279–75287,
2020.

[8] I. M. M. Parwita, R. Sarno, and A. Puspaningrum, ‘‘Optimization of
COCOMO II coefficients using cuckoo optimization algorithm to improve
the accuracy of effort estimation,’’ in Proc. 11th Int. Conf. Inf. Commun.
Technol. Syst. (ICTS), Oct. 2017, pp. 99–104.

[9] K. Langsari and R. Sarno, ‘‘Optimizing COCOMO II parameters using
particle swarm method,’’ in Proc. 3rd Int. Conf. Sci. Inf. Technol.
(ICSITech), Oct. 2017, pp. 29–34.

[10] R. K. Sachan, A. Nigam, A. Singh, S. Singh, M. Choudhary,
A. Tiwari, and D. S. Kushwaha, ‘‘Optimizing basic COCOMO model
using simplified genetic algorithm,’’ Proc. Comput. Sci., vol. 89,
pp. 492–498, Jan. 2016. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1877050916311723

[11] N. M. Alsheikh and N. M. Munassar, ‘‘Improving software effort
estimation models using grey wolf optimization algorithm,’’ IEEE Access,
vol. 11, pp. 143549–143579, 2023.

[12] A. F. Sheta, ‘‘Estimation of the COCOMOmodel parameters using genetic
algorithms for NASA software projects,’’ J. Comput. Sci., vol. 2, no. 2,
pp. 118–123, Feb. 2006.

[13] T. J. Gandomani, M. Dashti, and M. Z. Nafchi, ‘‘Hybrid genetic-
environmental adaptation algorithm to improve parameters of COCOMO
for software cost estimation,’’ inProc. 2nd Int. Conf. Distrib. Comput. High
Perform. Comput. (DCHPC), Mar. 2022, pp. 82–85.

[14] C. Anwar ul Hassan and M. Sufyan Khan, ‘‘An effective nature inspired
approach for the estimation of software development cost,’’ in Proc. 16th
Int. Conf. Emerg. Technol. (ICET), Dec. 2021, pp. 1–6.

[15] S. Kumari and S. Pushkar, ‘‘Software cost estimation using cuckoo
search,’’ in Advances in Computational Intelligence, vol. 509, S. K. Sahana
and S. K. Saha, Eds. Singapore: Springer, 2017, pp. 167–175.

[16] P. Singal, A. C. Kumari, and P. Sharma, ‘‘Estimation of software
development effort: A differential evolution approach,’’ Proc. Comput.
Sci., vol. 167, pp. 2643–2652, Jan. 2020. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1877050920308097

[17] S. P. Singh, V. P. Singh, and A. K. Mehta, ‘‘Differential evolution
using homeostasis adaption based mutation operator and its appli-
cation for software cost estimation,’’ J. King Saud Univ.-Comput.
Inf. Sci., vol. 33, no. 6, pp. 740–752, Jul. 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1319157818300910

[18] S. P. Singh and A. Kumar, ‘‘Software cost estimation using homeostasis
mutation based differential evolution,’’ in Proc. 11th Int. Conf. Intell. Syst.
Control (ISCO), Jan. 2017, pp. 173–181.

[19] B. Boehm, C. Abts, B. Clark, S. Devnani-Chulani, E. Horowitz,
R. J. Madachy, and B. Steece, ‘‘COCOMO II model definition manual,
version 1.4,’’ TR Center Softw. Eng., Univ. Southern California, Los
Angeles, CA, USA, 2000.

[20] B. Boehm, C. Abts, and S. Chulani, ‘‘Software development cost
estimation approaches—A survey,’’ Ann. Softw. Eng., vol. 10, no. 1/4,
pp. 177–205, Nov. 2000, doi: 10.1023/a:1018991717352.

[21] I. Zelinka, SOMA—Self-Organizing Migrating Algorithm. Berlin, Heidel-
berg: Springer, 2004, pp. 167–217, doi: 10.1007/978-3-540-39930-8_7.

[22] D. Davendra and I. Zelinka, Self-Organizing Migrating Algorithm (Studies
in Computational Intelligence), vol. 626. Cham, Switzerland: Springer,
2016. [Online]. Available: http://link.springer.com/10.1007/978-3-319-
28161-2

[23] J. S. Shirabad and T. J. Menzies, ‘‘The PROMISE repository of
software engineering databases,’’ School Inf. Technol. Eng., Univ. Ottawa,
Ottawa, Canada, 2005. [Online]. Available: http://promise.site.uottawa.
ca/SERepository

[24] J. W. Keung, ‘‘Kemerer [Data Set],’’ Zenodo, 2010. [Online]. Available:
https://doi.org/10.5281/zenodo.268464

[25] S. Amasaki, ‘‘Miyazaki94 [Data set],’’ Zenodo, 2016. [Online]. Available:
https://doi.org/10.5281/zenodo.268473

[26] T. Menzies, R. Krishna, and D. Pryor. (2017). The Seacraft Repos-
itory of Empirical Software Engineering Data. [Online]. Available:
https://zenodo.org/communities/seacraft

[27] J. W. Bailey and V. R. Basili, ‘‘A meta-model for software development
resource expenditures,’’ in Proc. 5th Int. Conf. Softw. Eng., 1981,
pp. 107–116.

[28] J. W. Tukey, Exploratory Data Analysis (Addison-Wesley Series in
Behavioral Science), 1st ed. Upper Saddle River, NJ, USA: Pearson,
Jan. 1977.

[29] D. C. Hoaglin, B. Iglewicz, and J. W. Tukey, ‘‘Performance of some
resistant rules for outlier labeling,’’ J. Amer. Stat. Assoc., vol. 81,
no. 396, p. 991, Dec. 1986. [Online]. Available: http://www.jstor.
org/stable/2289073

[30] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J. Shepperd,
‘‘What accuracy statistics really measure [software estimation],’’ IEE
Proc.-Softw., vol. 148, no. 3, pp. 81–85, Jun. 2001.

[31] I. Myrtveit, E. Stensrud, and M. Shepperd, ‘‘Reliability and validity in
comparative studies of software prediction models,’’ IEEE Trans. Softw.
Eng., vol. 31, no. 5, pp. 380–391, May 2005.

[32] M. Shepperd and S. MacDonell, ‘‘Evaluating prediction systems
in software project estimation,’’ Inf. Softw. Technol., vol. 54,
no. 8, pp. 820–827, Aug. 2012. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S095058491200002X

[33] P. Silhavy, R. Silhavy, and Z. Prokopova, ‘‘Evaluation of data clustering
for stepwise linear regression on use case points estimation,’’ in Software
Engineering Trends and Techniques in Intelligent Systems (Advances in
Intelligent Systems and Computing), vol. 575, R. Silhavy, P. Silhavy,
Z. Prokopova, R. Senkerik, and Z. K. Oplatkova, Eds. Cham, Switzerland:
Springer, 2017. [Online]. Available: https://doi.org/10.1007/978-3-319-
57141-6_52

[34] R. Silhavy, P. Silhavy, and Z. Prokopova, ‘‘Improving algorithmic
optimisation method by spectral clustering,’’ in Software Engineering
Trends and Techniques in Intelligent Systems (Advances in Intelligent
Systems and Computing), vol. 575, R. Silhavy, P. Silhavy, Z. Prokopova,
R. Senkerik, and Z. K. Oplatkova, Eds. Cham, Switzerland: Springer, 2017.
[Online]. Available: https://doi.org/10.1007/978-3-319-57141-6_1

[35] V. V. Hai, H. L. T. K. Nhung, Z. Prokopova, R. Silhavy, and
P. Silhavy, ‘‘A new approach to calibrating functional complexity weight in
software development effort estimation,’’ Computers, vol. 11, no. 2, p. 15,
Jan. 2022.

[36] H. L. T. K. Nhung, V. Van Hai, R. Silhavy, Z. Prokopova, and P.
Silhavy, ‘‘Parametric software effort estimation based on optimizing
correction factors and multiple linear regression,’’ IEEE Access, vol. 10,
pp. 2963–2986, 2022.

[37] F. Wilcoxon, Individual Comparisons By Ranking Methods. New York,
NY, USA: Springer, 1992, pp. 196–202, doi: 10.1007/978-1-4612-4380-
9_16.

VOLUME 12, 2024 67187

http://dx.doi.org/10.1002/spe.3009
http://dx.doi.org/10.1023/a:1018991717352
http://dx.doi.org/10.1007/978-3-540-39930-8_7
http://dx.doi.org/10.1007/978-1-4612-4380-9_16
http://dx.doi.org/10.1007/978-1-4612-4380-9_16

D. Bajusova et al.: Enhancing Software Effort Estimation With SOMA

[38] B. KumarSingh and A. K. Misra, ‘‘Software effort estimation by
genetic algorithm tuned parameters of modified constructive cost model
for NASA software projects,’’ Int. J. Comput. Appl., vol. 59, no. 9,
pp. 22–26, Dec. 2012. [Online]. Available: https://api.semanticscholar.
org/CorpusID:7832996

[39] M. Baiquni and R. Sarno, ‘‘Improving the accuracy of COCOMO II using
fuzzy logic and local calibration method,’’ in Proc. 3rd Int. Conf. Sci. Inf.
Technol. (ICSITech), Oct. 2017, pp. 284–289.

[40] C. E. Walston and C. P. Felix, ‘‘A method of programming measurement
and estimation,’’ IBM Syst. J., vol. 16, no. 1, pp. 54–73, 1977.

[41] A. Sheta, D. Rine, and A. Ayesh, ‘‘Development of software effort and
schedule estimation models using soft computing techniques,’’ in Proc.
IEEECongr. Evol. Comput., IEEEWorld Congr. Comput. Intell., Jun. 2008,
pp. 1283–1289.

[42] P. A. Rochford. (2016). Skillmetrics: A Python Package for Calculating
the Skill of Model Predictions Against Observations. [Online]. Available:
http://github.com/PeterRochford/SkillMetrics

[43] K. E. Taylor, ‘‘Summarizing multiple aspects of model performance
in a single diagram,’’ J. Geophys. Res., Atmos., vol. 106, no. D7,
pp. 7183–7192, Apr. 2001.

[44] G. E. Gignac, How2statsbook, G. E. Gignac, Ed. Perth, WA,
Australia: G. E. Gignac, 2023, ch. 2. [Online]. Available: http://www.
how2statsbook.com/p/chapters.html

DARINA BAJUSOVA was born in Vranov nad Topl’ou, Slovak Republic,
in 1996. She received the M.Sc. degree in engineering informatics from the
Faculty of Applied Informatics, Tomas Bata University in Zlín, in 2021,
where she is currently pursuing the Ph.D. degree. Since 2021, she has been
an Assistant Researcher with the Faculty of Applied Informatics, Tomas Bata
University in Zlín. Her research interests include effort estimation in software
engineering and database systems.

PETR SILHAVY received the Ph.D. degree in engineering informatics
from the Faculty of Applied Informatics, Tomas Bata University in Zlín,
Zlín, Czech Republic. He is currently an Associate Professor with the
Faculty of Applied Informatics, Tomas Bata University in Zlín. He is also
a Senior Researcher and an Associate Professor of system engineering and
informatics with a demonstrated history of working in research and higher
education. He has expertise as a CTO and a Software Developer in database
programming, database design, data management, and data science. His
research interests include prediction and empirical methods for software
engineering.

RADEK SILHAVY received the Ph.D. degree in engineering informatics
from the Faculty of Applied Informatics, Tomas Bata University in Zlín,
Zlín, Czech Republic, in 2009. He is currently an Associate Professor and
a Senior Researcher with the Faculty of Applied Informatics, Tomas Bata
University in Zlín. He is also an Associate Professor of system engineering
and informatics with a demonstrated history of working in research, higher
education, project management, and software analysis. He is involved in
academic publishing as the Editor-in-Chief, an editor, or a reviewer. His
research interests include predictive analytics for software engineering,
empirical methods in software engineering, or prediction models focused on
cost, size, and effort estimations in system/software engineering.

67188 VOLUME 12, 2024

